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Polynomials Revisited 

Don Rawlings 

1. INTRODUCTION. So, you've read your fifty page manuscript a half dozen times 
and you continue to stumble across annoying typos. Is there any end in sight? Just how 
many more times do you need to read it before you're satisfied? 

For purposes of discussion, let's say that your manuscript originally contained 10 
errors and that, because of fatigue and a certain level of impatience, the probability that 
you notice an error when staring right at it is only 1/10. Then the expected number 
of errors found is one after the first reading, 1.9 after the second reading, and so on. 
Several such results rounded to the nearest hundreth are shown in Table 1. 

TABLE 1. 

#of readings 1 2 5 15 25 29 30 

expected#oferrorsfound 1.00 1.90 4.10 '7.94 9.28 9.53 9.58 

Although easily computed and certainly informative, Table 1 is not entirely satis- 
fying. If you decide that 90 percent of the errors must be found and corrected, then it 
suggests that fewer than 25 readings will do. To estimate how much less, one could of 
course just extend the table. 

What's really called for, though, is the inverse expectation, that is, the expected 
number of searches needed to find a specified percentage of the errors. Under the 
assumptions of the preceding paragraph, formula (13) in Section 4 generates the fol- 
lowing table. 

TABLE 2. 

#of errors to be found 1 2 5 9 10 

expected # of readings needed 1.54 2.51 6.63 18.81 28.30 

So, if finding 90 percent of the errors is desired, then 18.81 readings is recom- 
mended. Should you demand perfection, then brace yourself for 28.3 readings! 

The act of proofreading a manuscript is but one natural context in which a sequence 
of searches is conducted for lost objects. One can easily imagine other sequential 
search scenarios: Ranging from the commonplace to the exilarating to the risky, they 
include easter egg hunts, treasure hunts, the clearing of dangerously littered live mu- 
nitions from a region following either a war or wargames, and even Russian roulette 
with several players. 

As in proofreading, the same fundamental question arises in all such scenarios: 
What is the expected number of searches needed to find all, or some acceptable per- 
centage, of the lost objects? Time and resources are only finite after all! 
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Two technical matters must first be settled. In most situations, both the set of lost 
objects and the probability of finding a given object on a particular search must be 
estimated. The methods needed to resolve these issues will of course depend on the 
context. In the proofreading scenario, a typist's error-per-page average could be esti- 
mated through sampling. For treasure hunts, historical records and legend will be of 
importance. To approximate the find probabilities, the methods and resources available 
for the search as well as the various properties of the objects, such as size and general 
location (thick rain forest, high seas, etc.), should all be taken into account. 

Leaving these issues to the applied statistician, let's assume that such estimates have 
been made. Denote the lost objects by 01, 02, . .. , 0,X, and let qij signify the probability 
of O0 remaining lost under the conditions and strategies of the ih search. Also, qij is 
assumed to be independent of qilj for (i, j) A (i', j'). So, if 1is denotes the probability 
of Oj remaining lost during the initial s searches, then lsj = qljq2j * qsj 

The relevant distributions associated with a sequential search are: 

The sequential search distribution. For a fixed nonnegative integer s, the probability that ex- 
actly k objects are found in the initial s searches is denoted by Mn,, (k). 

The inverse sequential search distribution. For a fixed integer k from 1 to n, the probability 
that s searches are needed to find k objects is denoted by Pn,k (s). 

In the latter, each search is to be conducted in an order consistent with the labeling of 
the objects (if not previously found, 01 is sought first, then 02, . . .) and the final search 
is terminated with the kth find. Such an order of search is inherent in the proofreading 
of a manuscript: Each reading constitutes a search for errors, typically proceeding from 
the first page to the last. In the case k = n, order is actually irrelevant. 

The inverse sequential search distribution has some amusing sidelights. Herbran- 
son and Rawlings determined Pn,k(s) under the assumption that each find probability 
depends on the previous number of finds, which is reasonable if either resources are 
depleted or knowledge is gained in making finds [6]. Comparison of the results in this 
article with those in [6] leads to a completely probabilistic proof of an identity for the 
q-Eulerian polynomials studied by Carlitz [3] and to the discovery of a new formula 
for the incomplete q-Eulerian polynomials introduced in [6]. Also, a certain issue of 
machismo resolved in [6] may be extended to Sandell's variation of n-player Russian 
roulette [10]. 

2. THE SEQUENTIAL SEARCH DISTRIBUTION. The assumption of indepen- 
dence makes the formula for Mn,s (k) transparent. By identifying a find with success, 
the process associated with the sequential search distribution may be viewed as little 
more than Bernoulli trials with variable probabilities of success: For 1 < j < n, the 
probability of Oj being found during the initial s searches is 1 - qljq2j ... qsj. Thus, 

Theorem 1. The probability offinding k of n lost objects in the initial s searches is 

Mn,s(k) = Z H(I -151) l j (1) 
J jeJ je{1,2,...,nl\J 

where the sum is over all J C {1, 2, ... , n} of cardinality k and lsj = qljq2j ... q5j 
The expected number offinds made in the initial s searches is the sum of the expecta- 
tions offinding the individual objects: 

n n n 

ZkMn,s (k) = , (-lsj) = n - (2) 
Z(1 - Z2) 

k=O j=1 j=l 
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When qij = q < 1 for all i, j, (1) and (2) respectively reduce to 

Mn,s (k) = (I) - 
qqS)kqs(n-k) and ZkMn,s(k) = n(1-qS). (3) 

k=O 

The assumption qij = q for all i, j is reasonable if the method of search is fixed and if 
the objects are identical and lost under similar circumstances. The distribution Mn,s (k) 
in this case is exposed by (3) as the binomial distribution with success probability 
1 - qS. The second part of (3) may of course be used to generate the entries in the 
second row of Table 1. 

3. THE INVERSE SEQUENTIAL SEARCH DISTRIBUTION: k = n. In some 
cases, such as the recent one at a Los Alamos laboratory involving missing computer 
disks containing sensitive nuclear information, all lost objects must be found. To get 
at the associated distribution, we need a few preliminaries. First, 

n n 

]J(1 + txj) = tk ek(xl, x2, ... , xn) (4) 
j=l k=O 

where 

ek(Xl, X2, * * *, Xn) = 1 7Xj 

JC{1,2,...,nl, IJI=k jEJ 

is the elementary symmetric polynomial of degree k in the indeterminates xl, X2, ... , Xn - 
For n = 3, we have e0 = 1, el = xl + X2 + X3, e2 = X1X2 + X1X3 + X2X3, and e3 = 

xlx2x3. We also need 

Lemma 1. If {akl is a monotonically decreasing sequence of nonnegative real num- 
bers and , ak converges, then limm? main = 0. 

The inverse sequential distribution for k = n is deduced from Theorem 1 as follows. 
Formula (8) was established in [6]. 

Corollary 1. The probability that s searches are needed to find all n lost objects is 

n n 

Pn,n(S) = J7(1 - 1 j) - J7( - l(S)j) (5) 
j=l j=l 

where lsj = q1jq2j ... qsj If 

Z lsj converges for all j E {1, 2, .., nl, (6) 
s>l 

then the expected number of searches needed to find all n objects is finite and given by 

n 

Es Pn,n(s) = 1 + Z(-1)k1 Z ek(ls, 152 ..2 . l sn). (7) 
s>l k=l s>l 
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When qij = q < 1 for all i, j, (5) and (7) imply Pn,n(s) = (1 - qs)n - (1 - q)S-l) 

and 

ESPn,n(S) = 1 ? E( )k-1 q (8) 

Proof. The probability that s searches are required to find the entire set of lost objects 
is equal to the probability that n objects are found in s searches minus the probability 
that n objects are found in s - 1 searches: 

Pn,n(s) = Mn,s(n) -Mns-1(n) 

Thus, (1) implies (5). 
Now suppose (6) holds. To get (7), first note that (5) and (4) together lead to the fact 

that 

n 
ESPn,n(S) = E _(_)k-1 ES (Hl i - 17 ls) (9) 
s>l s>1 k=1 IJI=k jEj jeJ 

For a fixed J C {1, 2, ... , n}, consider the partial sum 

m m-1 
E,s Ill(s-1)j - Ilisj =1- m Ilmj+ EJIlsj- 
s=l jEj jEj jeJ s=1 jeJ 

From (6) and the comparison test, we may conclude that all sums of the form 

LHlsj 
s>1 jeJ 

converge. By invoking Lemma 1, we therefore have 

Y5 (I l(s-1)j - HllSj I+ ,= 1 + lsi. (10) 

s>n 

jEj jEj s>1 jEJ 

Then (10) and (9) imply (7). Finally, as ek(qS, qS, .. ., qS) = (n )qks, (8) follows 
from (7). U 

Besides (8), there is another notable special case for which (7) is reasonably 
tractable: For 1 < j < n, suppose that (i) finding Oj is search independent so that qij 
may be replaced by qj and that (ii) qj < 1, which guarantees that (6) holds. Under 
these assumptions, (7) gives the expected number of searches needed to find all of 
n = 3 objects as 

3 

E S P3,3 (S) = 1 + E _(-1)k-1 E ek(q qs ) 
s>1 k=1 s>1 

=1+ (qls + q2 - q3-l q-sqs-23+qs23) (1 
s>1 

+ qj + E qjqk + qlq2q3 
- 

qj lj<k<3 1- qjqk 1 -qlq2q3 
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s;:::l s;:::l k=l IJI=k jEJ jEJ

For a fixed J S; {I, 2, ... , n}, consider the partial sum

m ( ) m-l
L S nlCS-l)j - nlSj = 1-m nlmj + L nlSj.
s=l jEJ jEJ jEJ s=l jEJ

From (6) and the comparison test, we may conclude that all sums of the form

Lnlsj
s;:::l jEJ

converge. By invoking Lemma 1, we therefore have

L S (n lCs-l)j - nlSj) = 1 + L nlsj.
s;:::l jEJ jEJ s;:::l jEJ

(10)

Then (10) and (9) imply (7). Finally, as ek(qS, qS, ... ,qS) = (~)qkS, (8) follows
from (7). •

Besides (8), there is another notable special case for which (7) is reasonably
tractable: For 1 ~ j ~ n, suppose that (i) finding ej is search independent so that qij
may be replaced by qj and that (ii) qj < 1, which guarantees that (6) holds. Under
these assumptions, (7) gives the expected number of searches needed to find all of
n = 3 objects as

3

L SP3,3(S) = 1 + L(-l)k-l Lek(qf, q~, q~)
s;:::l k=l s;:::l

(11)
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Incidentally, if qj = 1 for some j, then the probability of Oj remaining lost for s 
searches is isj = 1, 1p5j lj diverges, and the expected number of searches needed 
to find Oj (and therefore to find all n objects) is infinite. 

4. THE INVERSE SEQUENTIAL SEARCH DISTRIBUTION: k < n. There are 
certainly situations in which recovery of only some of the lost set may be reason- 
able. The discussion here is limited to the case when the find probability is constant 
throughout the process. 

Corollary 2. If qij = q < 1 for all i, j, then the probability that s searches are needed 
tofind k of n objects, 1 < k < n, is 

Pn,k(S) = (1 q)kq(s-1)n 3 (n i I 
) (k -1 + )q (12) 

i=O = 

The expected number of searches needed to find k of n objects is 

k-1 n k (n (k-i- 1 + j (i ()m(1 q)kiq. (13) 

ESPn,k(S) Z E E qnimI (3 

S>1 i=O ]=O m=O m (1qn+) 
Proof. If s searches are required to make k finds, then the first s - 1 searches must 
result in i finds for some i from 0 to k - 1, leaving the 5th search to account for k -i 
finds made from the remaining n - i lost objects. Hence, 

k-1 

Pn,k(S) = ,Mn,s-1 Pn-i,k-i (1) (14) 
i=O 

To compute Pn,k (l), consider the event that one search is needed to find k of n objects. 
As the probability of Ok+j being the kth find is (k4+J)(l - q)kql, we have 

n-kk I j 
Pn,k(l) = (1- q)k E q+j)I. (15) 

j=O 

Then (14), (15), and (3) imply (12). 
To obtain (13), the probability generating function for Pn,k(s) is useful. From the 

calculation 

(q l- (s-I)nzs = E( m (l)qi-mn (qn+m-i z)s 

s>1 m=O S>1 

= Z(-1)m(i)im 
1 qn-i+mz 

m=O 

and (12), we readily obtain 

E Pn,k(S)Z = E ( 
- 

( 1)m (1 q) kq z (16) 

The eriatie o k- n K 1 m) ( I - qn-i+mz 
The derivative of (16) evaluated at z = 1 gives (13). U 
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5. THE INCOMPLETE q-EULERIAN POLYNOMIALS. Herbranson and Rawl- 
ings used the incomplete q-Eulerian polynomials as a combinatorial means of com- 
puting probabilities [6]. The tables can now be turned. In particular, (16) leads directly 
to a new identity for the incomplete q-Eulerian polynomials. 

For 1 < k < n, let 'n,k denote the set of injections from {1, 2, . . ., k} to the set 
{1, 2, .. ., n}. We express an injection f E 'n,k as the list f (I)f (2) ... f (k) of its 
range values. The descent set, descent number, and comajor index of f E 'n,k are, 
respectively, defined by 

Desf = {j: 1 < j < k, f(j) > f(j + 1)}, desf = IDesfI, and 

cmj f = 1{1, 2, . .., f (k)} \ If (l), f (2), . .., f (k)}I + , (n -j). 
jeDes f 

For f = 2 7 4 3 6 E 18,5, note that Des f = {2, 3}, des f = 2, and cmj f = 1{1, 511 + 
(8 - 2) + (8 - 3) = 13. For k = n, the set Tn,n of course coincides with the set of 
permutations on {1, 2, .. ., n} and the comajor index is a close relative of the major 
index, initially known as the greater index, first considered by MacMahon [7, Vol. 1, 
p. 135]. 

As defined in [6], the (n, k)th incomplete q-Eulerian polynomial is 

Efl,k(Z) = Z qcmifzdesf 

f EIn,k 

For example, E4,3(z) = (1 + 3q) + q2(5 + 6q + 5q2)z + q5(3 + q)z2. The function 
En,n(z) is the q-Eulerian polynomial considered by Carlitz [3]. A specialization of 
Theorem 1 in [6] gives 

Theorem 2. (Herbranson and Rawlings) If qij = q < 1 for all i, j, then the proba- 
bility generating function for the inverse sequential search distribution is 

>Pn,k(S)Z = z(l - q )k k(Z) (17) 
s~~~1 ~(zqn-k+l; q)k 

where (z; q),n = (1 - z)(1 - zq)... (1 - zqml) is the q-shiftedfactorial. 

The following are now consequences of probability. Equivalent to identity (1) in [3], 
Corollary 3 is a special case of a theorem due to MacMahon [7, Vol. 2, p. 211]. Corol- 
lary 4 is immediatedly implied by (16) and (17). 

Corollary 3. (MacMahon) The q-Eulerian polynomials are generated by 

En,n(z) = (z; q)n+l ,[m H l]nzm 
m>O 

where [j] = (1 - qj)/(l - q) denotes the q-analog of j. 

Proof. By Corollary 1, Pn,n(s) = (1 - qS)n - (1 - qS-l)n when qij = q < 1. It fol- 
lows that 

,3 Pn,n(s)z = z(l - z) Z(1 - qm+l)nzm. (18) 
1>l m>o 

Then (18) and (17) with k = n complete the proof. m 
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Corollary 4. The incomplete q-Eulerian polynomials are generated by 

k-1 n-ki 

En,k(z) = (zq ; q)k E E m()m (n)(k-i -1 + I) (;) (1z)-im 

6. RUSSIAN ROULETTE AND A QUESTION OF MACHISMO. The rules for 
n-player Russian roulette are as follows. Players 01, 02, .. . , on are seated around a 
table. Beginning with player 01 and proceeding in order, a partially loaded revolver is 
passed from hand to hand. Upon receiving the gun, a player spins its chamber, points 
it to his head, and pulls the trigger. Needless to say, any player who receives a head 
wound is removed from the game. Play terminates when a single player (the survivor) 
remains. 

Several interesting questions pertaining to n-player Russian roulette were consid- 
ered and resolved in [2], [5], [6], and [10]. We now revisit and extend a certain issue 
of machismo addressed in [6]. 

Prospective players should ask whether or not they have the guts and foolhardiness 
required of Russian roulette. To help decide, the number 8n of times the survivor ex- 
pects to pull the trigger is key. Herbranson and Rawlings [6] computed 8n for the case 
when the gun is reloaded so that its discharge probability remains constant and the 
case when the gun, initially containing at least n - 1 bullets, is not reloaded. Corollary 
1 allows the computation of En for a further variation introduced by Sandell [10]. 

Concerned that Russian roulette as just described is unfair (particularly to 01), 
Sandell assigns each player a different revolver. Assuming Oj's gun fires with prob- 
ability (1 - qj), Sandell shows that Oj wins with probability 

j-1 n 

Rnj =( - qj) H J _ k (1 k) (19) 
k>l m=1 m=j+l 

He then specifies ql, q2, .. ., qn so that Russian roulette becomes fair in that each 
player enjoys the same probability of surviving (Rnl = * = Rnn) 

To determine the machismo factor for Sandell's variation, we frame n-player Rus- 
sian roulette as an inverse sequential search process (with k = n - 1) by viewing each 
sweep through the playing order as a search. Each discharge of the gun is to be inter- 
preted as a bullet finding a lost soul. 

The computation of En in [6] readily extends to Sandell's variation with ql, q2,.... 
qn < 1, as follows. First, suppose Oj plays Russian roulette alone and to the death. 
By (7), the expected number S(0j) of times Oj pulls the trigger in this suicidal game 
of solitaire is 

S(Oj) = 1 + ,el(lsj) = I + ,q = 1 
s>l s>l qJ 

Next note that En is equal to the expected number of times the winner pulls the trigger 
in a game of Russian roulette played until all players have head wounds minus the 
expected number of times the winner pulls the trigger in a game of suicidal solitaire. 
To illustrate the case n = 3, our analysis and (11) give 

331[Z -Hj qj qk ? qlq2q3 -R8o) 
j=l qj 1<j<k<3 1 q jqk 1 qlq2q3 j=1 
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j-l n
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The case qj = q for all j of (19) is due to Blom, Englund, and Sandell [2]. An 
alternate formula was deduced in [9], namely, 

(1 ~q)fl mjo 
(q; q)n or 

E 
qcmj 

where Snj denotes the set of permutations a of {1, 2, ... , n} satisfying a(n) = j. 
Equating the two expressions gives the curious identity 

E cmj or (q; q)n Eqk( _ qk+l)j-l(1 - qk)n-j 
z~qmiT=(- q)fnl1 k q qO 

To place this in perspective, a special case of a result due to MacMahon [7, Vol. 2, 
p. 189] is equivalent to 

Z cmjU 
or(q; q)n 

qesn ( q) (20) 

where Sn is the set of all permutations of { 1, 2, ... , n}. Moritz and Williams [8] re- 
discovered (20) while studying a process that in essence is n-player Russian roulette 
played until no survivor remains. 
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