California State Polytechnic College

Bulletin

Agriculture
Engineering
Arts & Sciences

San Luis Obispo
San Dimas
Pomona
Attention, Prospective Students

A GUIDE TO PLANNING FOR COLLEGE

Below are listed basic questions which you should ask as you plan for your college education. Page references indicate where in this publication you can find the answers as they pertain to California State Polytechnic College.

In what fields of instruction does the college offer degrees?
- Agriculture, at San Luis Obispo, page 55, and at Kellogg-Voorhis, page 208.
- Engineering, page 97.
- Arts and Sciences, page 141.

Does the college offer nondegree occupational curricula? Page 58.

Can I meet the requirements for admission? Page 28.

May a student transfer from another college? Page 29.

What fees are charged? Page 31. At Kellogg-Voorhis Campus, page 206.

What scholarships are available to freshmen? Pages 22-25 and page 205.

Does the college have an ROTC unit? Page 21.

What services does the college maintain for students?
- Counseling and testing, page 21.
- Assistance in finding part-time employment, page 22.
- Placement at graduation, page 22.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC CALENDAR, 1956-57</td>
<td>4</td>
</tr>
<tr>
<td>1956 and 1957 Calendars</td>
<td>6</td>
</tr>
<tr>
<td>ADMINISTRATION</td>
<td>9</td>
</tr>
<tr>
<td>State Board of Education</td>
<td>9</td>
</tr>
<tr>
<td>State Department of Education</td>
<td>9</td>
</tr>
<tr>
<td>College Administration</td>
<td>9</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>13</td>
</tr>
<tr>
<td>Aims of the College</td>
<td>13</td>
</tr>
<tr>
<td>History</td>
<td>13</td>
</tr>
<tr>
<td>Accreditation</td>
<td>14</td>
</tr>
<tr>
<td>Lands and Location</td>
<td>14</td>
</tr>
<tr>
<td>Buildings and Equipment</td>
<td>15</td>
</tr>
<tr>
<td>The Foundation</td>
<td>17</td>
</tr>
<tr>
<td>Student Organizations and Activities</td>
<td>18</td>
</tr>
<tr>
<td>The Alumni Association</td>
<td>19</td>
</tr>
<tr>
<td>Special Instructional Services</td>
<td>20</td>
</tr>
<tr>
<td>Reserve Officers Training Corps</td>
<td>21</td>
</tr>
<tr>
<td>Student Personnel Services</td>
<td>21</td>
</tr>
<tr>
<td>ADMISSIONS</td>
<td>28</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>28</td>
</tr>
<tr>
<td>Transfer Credit</td>
<td>30</td>
</tr>
<tr>
<td>Classification of Students</td>
<td>30</td>
</tr>
<tr>
<td>FEES AND EXPENSES</td>
<td>31</td>
</tr>
<tr>
<td>GENERAL REGULATIONS</td>
<td>33</td>
</tr>
<tr>
<td>Registration Procedure</td>
<td>33</td>
</tr>
<tr>
<td>Change of Curriculum</td>
<td>33</td>
</tr>
<tr>
<td>Change of Study List</td>
<td>34</td>
</tr>
<tr>
<td>Class Attendance</td>
<td>34</td>
</tr>
<tr>
<td>Minimum Grade Requirements</td>
<td>34</td>
</tr>
<tr>
<td>Grading System</td>
<td>35</td>
</tr>
<tr>
<td>Maximum and Minimum Load</td>
<td>35</td>
</tr>
<tr>
<td>Honors (President's List)</td>
<td>36</td>
</tr>
<tr>
<td>Transfer to Other Colleges</td>
<td>36</td>
</tr>
<tr>
<td>Credit by Examination, and Auditing</td>
<td>36</td>
</tr>
<tr>
<td>Credit for Military Service</td>
<td>36</td>
</tr>
<tr>
<td>Eligibility for Intercollegiate Athletics</td>
<td>36</td>
</tr>
<tr>
<td>Honorable Dismissal</td>
<td>37</td>
</tr>
<tr>
<td>Probation, Suspension, or Expulsion</td>
<td>37</td>
</tr>
<tr>
<td>Course Numbering System</td>
<td>37</td>
</tr>
<tr>
<td>Symbols</td>
<td>38</td>
</tr>
<tr>
<td>DEGREES AND CREDENTIALS</td>
<td>39</td>
</tr>
<tr>
<td>Graduation Requirements</td>
<td>39</td>
</tr>
<tr>
<td>Application for Graduation</td>
<td>40</td>
</tr>
<tr>
<td>Double Majors</td>
<td>40</td>
</tr>
<tr>
<td>Master of Arts Degree</td>
<td>40</td>
</tr>
<tr>
<td>Preparation for Elementary and Secondary School Teaching</td>
<td>42</td>
</tr>
<tr>
<td>Selection of Teacher Candidates</td>
<td>42</td>
</tr>
<tr>
<td>Specific Requirements</td>
<td>43</td>
</tr>
<tr>
<td>Approval of Teacher Candidates</td>
<td>52</td>
</tr>
<tr>
<td>Student Teaching and Supervision</td>
<td>52</td>
</tr>
<tr>
<td>Placement of Teachers</td>
<td>54</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS—Continued

THE AGRICULTURAL DIVISION

The Agricultural Division

Technical Curricula in Agriculture

Agricultural Engineering Department

Animal Husbandry Department

Dairy Husbandry and Manufacturing Department

Farm Management Department

Field, Fruit, and Truck Crops Department

Ornamental Horticulture Department

Poultry Husbandry Department

Soil Science Department

Veterinary Science Department

THE ENGINEERING DIVISION

Aeronautical Engineering Department

Air Conditioning and Refrigeration Engineering Department

Architectural Engineering Department

Electrical Engineering Department

Electronic Engineering Department

Industrial Engineering Department

Machine Shop Department

Mechanical Engineering Department

Printing Department

Welding Department

THE ARTS AND SCIENCES DIVISION

Agricultural Journalism Department

Biological Sciences Department

Education Department

English and Speech Department

Home Economics Department

Mathematics Department

Military Science and Tactics Department

Music Department

Physical Education Department

Physical Sciences Department

Social Sciences Department

KELLOGG-VOORHIS CAMPUS

INTRODUCTION

History

GENERAL INFORMATION

Lands and Location

Buildings and Equipment

The Foundation

Student Organizations and Activities

Student Personnel Services

Admissions and General Regulations

Fees and Expenses

THE AGRICULTURAL DIVISION

Agricultural Management and Sales Department

Animal Husbandry Department

Fruit Production Department

General Crops Department

Horticultural Services and Inspection Department

Ornamental Horticulture Department

Soil Science Department

Related Agricultural Courses

ARTS AND SCIENCES COURSES

DIRECTORIES

Department Heads and Chairmen by Divisions

Faculty

The State Bureau of Agricultural Education

INDEX
SUMMER QUARTER, 1956

Four Weeks Term
- Guidance testing of new students
- Registration and scheduling of all students
- Classes begin for all students
- Last day to return registration books
- Last day to add or drop courses without penalty
- Last day to enroll for four-week term
- Independence Day—academic holiday
- Final examinations

Six Weeks Term
- Guidance testing of new students
- Registration and scheduling of all students
- Classes begin for all students
- Last day to add or drop courses without penalty
- Last day to return registration books
- Last day to enroll for six-week term
- Final examinations

FALL QUARTER
- Beginning of academic year (faculty only)
- Guidance testing of new students *
- Arrival date for new students previously tested
- Registration and scheduling of new students
- Registration and scheduling of old students
- Classes begin for all students
- Last day to enroll for fall quarter
- Last day to return registration books
- Last day to add courses
- Mid-term examinations
- Veterans' Day—academic holiday
- Thanksgiving—academic holiday
- Pre-scheduling for winter quarter
- Final examinations
- Christmas—academic holiday

* Guidance tests for new students are given during the spring and summer on May 11-12, August 3-4, and August 24-25.
WINTER QUARTER

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 3</td>
<td>Thursday</td>
<td>Guidance testing of new students</td>
</tr>
<tr>
<td>January 5</td>
<td>Saturday</td>
<td>Registration and scheduling of all students</td>
</tr>
<tr>
<td>January 7</td>
<td>Monday</td>
<td>Classes begin for all students</td>
</tr>
<tr>
<td>January 14</td>
<td>Monday</td>
<td>Last day to enroll for winter quarter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to return registration books</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to add courses</td>
</tr>
<tr>
<td>January 23</td>
<td>Wednesday</td>
<td>Last day classes may be dropped without penalty</td>
</tr>
<tr>
<td>February 11-16</td>
<td>Thursday, Tuesday</td>
<td>Mid-term examinations</td>
</tr>
<tr>
<td>March 9</td>
<td>Saturday</td>
<td>Pre-scheduling for spring quarter</td>
</tr>
<tr>
<td>March 14-19</td>
<td>Thursday, Tuesday</td>
<td>Final examinations</td>
</tr>
<tr>
<td>March 19</td>
<td>Tuesday</td>
<td>End of winter quarter</td>
</tr>
<tr>
<td>March 20</td>
<td>Wednesday</td>
<td>Academic holiday</td>
</tr>
</tbody>
</table>

SPRING QUARTER

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 21</td>
<td>Thursday</td>
<td>Guidance testing of new students</td>
</tr>
<tr>
<td>March 25</td>
<td>Monday</td>
<td>Registration and scheduling of all students</td>
</tr>
<tr>
<td>March 26</td>
<td>Tuesday</td>
<td>Classes begin for all students</td>
</tr>
<tr>
<td>April 2</td>
<td>Tuesday</td>
<td>Last day to enroll for spring quarter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to return registration books</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to add courses</td>
</tr>
<tr>
<td>April 11</td>
<td>Thursday</td>
<td>Last day classes may be dropped without penalty</td>
</tr>
<tr>
<td>April 18</td>
<td>Thursday</td>
<td>Last day for acceptance of senior projects without penalty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to file for June commencement</td>
</tr>
<tr>
<td>April 19-21</td>
<td>Friday, Sunday</td>
<td>Easter—academic holiday</td>
</tr>
<tr>
<td>April 27</td>
<td>Saturday</td>
<td>Last day to file for master's examinations</td>
</tr>
<tr>
<td>May 6-11</td>
<td></td>
<td>Mid-term examinations</td>
</tr>
<tr>
<td>May 30</td>
<td>Thursday</td>
<td>Memorial Day—academic holiday</td>
</tr>
<tr>
<td>June 8-14</td>
<td>Saturday, Friday</td>
<td>Final examinations</td>
</tr>
<tr>
<td>June 15</td>
<td>Saturday</td>
<td>End of spring quarter, commencement</td>
</tr>
<tr>
<td>June 16</td>
<td>Sunday</td>
<td>End of academic year (faculty only)</td>
</tr>
</tbody>
</table>

TENTATIVE SUMMER QUARTER, 1957

Four Weeks Term

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 20</td>
<td>Thursday</td>
<td>Guidance testing of new students</td>
</tr>
<tr>
<td>June 24</td>
<td>Monday, 8 a.m.</td>
<td>Registration and scheduling of all students</td>
</tr>
<tr>
<td>June 25</td>
<td>Tuesday</td>
<td>Classes begin for all students</td>
</tr>
<tr>
<td>July 4</td>
<td>Thursday</td>
<td>Independence Day—academic holiday</td>
</tr>
<tr>
<td>July 18-19</td>
<td>Thursday, Friday</td>
<td>Final examinations</td>
</tr>
</tbody>
</table>

Six Weeks Term

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 18</td>
<td>Thursday</td>
<td>Guidance testing of new students</td>
</tr>
<tr>
<td>July 22</td>
<td>Monday, 8 a.m.</td>
<td>Registration and scheduling of all students</td>
</tr>
<tr>
<td>July 23</td>
<td>Tuesday</td>
<td>Classes begin for all students</td>
</tr>
<tr>
<td>August 29-30</td>
<td>Thursday, Friday</td>
<td>Final examinations</td>
</tr>
<tr>
<td></td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>JANUARY</td>
<td></td>
<td>JULY</td>
</tr>
<tr>
<td>FEBRUARY</td>
<td></td>
<td>AUGUST</td>
</tr>
<tr>
<td>MARCH</td>
<td></td>
<td>SEPTEMBER</td>
</tr>
<tr>
<td>APRIL</td>
<td></td>
<td>OCTOBER</td>
</tr>
<tr>
<td>MAY</td>
<td></td>
<td>NOVEMBER</td>
</tr>
<tr>
<td>JUNE</td>
<td></td>
<td>DECEMBER</td>
</tr>
</tbody>
</table>

[6]
ADMINISTRATION
ADMINISTRATION

STATE BOARD OF EDUCATION

William L. Blair (President) Pasadena
Byron H. Atkinson Los Angeles
William N. Bucknam Ceres
Dr. Mabel E. Kinney Los Angeles
Thomas J. Mellon San Francisco
James R. Mussatti San Francisco
Max Osso San Diego
Wilber D. Simons Redding
Mrs. E. K. Strong Stanford University
William G. Werner Alameda

STATE DEPARTMENT OF EDUCATION

Hon. Roy E. Simpson Superintendent of Public Instruction and State Director of Education
J. Burton Vasche Associate Superintendent of Public Instruction and Chief, Division State Colleges and Teacher Education
Joel A. Burkman Assistant Chief, Division of State Colleges and Teacher Education

COLLEGE ADMINISTRATION

Julian A. McPhee President
Leona M. Boerman Secretary to the President
Robert E. Kennedy Assistant to the President
George G. Clucas Administrative Dean, Finance and Development
C. O. McCorkle Administrative Dean, Instruction
Harold O. Wilson Administrative Dean, Student and College Affairs
Donald S. Nelson Business Manager
Everett M. Chandler Dean of Students
Harold P. Hayes Dean, Engineering Division
Vard M. Shepard Dean, Agricultural Division
Robert L. Maurer Assistant Administrator, Arts and Sciences Division
J. Cordner Gibson Dean, Student Personnel and Business Management, Kellogg-Voorhis Campus
Carl Englund Dean of Agriculture, Kellogg-Voorhis Campus
Henry House Director of Students, Kellogg-Voorhis Campus
Douglass W. Miller Director of Public Relations
Kenneth E. Young Acting Head, Arts and Sciences, Kellogg-Voorhis Campus
C. Paul Winner Admissions Officer
Albert J. Aschenbrenner Admissions Officer, Kellogg-Voorhis Campus
Leo F. Philbin Registrar
Robert J. Winterbourne Registrar, Kellogg-Voorhis Campus
LeRoy B. Hughes Director of Athletics
E. D. Lovett College Physician
Oberlin B. Nereson Guidance Officer
John D. Lawson Activities Officer
John E. Jones Placement Officer
James S. Wilkinson Residence Supervisor-Counselor
Francis S. Allen Librarian
Eugene E. Brendlin Foundation Manager

[9]
GENERAL INFORMATION
Cafeteria No. 1

Men's Dormitories

Women's Dormitories
GENERAL INFORMATION

AIMS OF THE COLLEGE

California State Polytechnic College provides occupational education at the collegiate level in agriculture, engineering, and the liberal arts. Its liberal arts instruction also emphasizes the preparation of secondary school teachers. General education courses and participation in campus activities are combined with the college's specialized instruction to prepare graduates for citizenship and leadership.

The basic purpose of California State Polytechnic College is to prepare young men and women for managerial, technical, and teaching occupations by training the hands as well as the head, by adding "know-how” to "know-why." The training is specific and practical. Each year of study is planned to prepare the student for additional jobs in the training area of his major department. Requirements of the job, rather than of professional graduate schools, determine the educational experiences offered to each student. Practical laboratory work under job conditions is emphasized. Students learn by doing. They may also earn while learning through the project system of instruction in which the college has been a pioneer.

To make maximum use of the student's interest in his field of specialization as an incentive to study, work in the major department is begun in the freshman year. This plan also ensures job preparation for the student who cannot spend four years at college. The course of study, therefore, is "upside-down" in comparison with the conventional college program which groups general education courses and basic theory into the first two years while deferring the more specialized and practical work until the last two years. Through early contact between the student and the practical phases of his major subject, the college seeks also to make the student aware of the value of sciences related to his major so that he may apply himself more diligently to such courses.

The general education courses and the related courses which support the occupational instruction are offered in each of the four college years. This plan makes it possible to schedule in the later college years those courses with content which requires greater maturity and experience. Students thus have a better opportunity to understand what they are studying and to obtain maximum values in general education.

California State Polytechnic College accepts responsibility not only for the occupational education of its students but also for helping them to obtain the best possible career opportunities. Further, through follow-up visits to the graduate and his employer it provides on-the-job assistance to the Cal Poly graduate during his first years in the field.

HISTORY

California State Polytechnic was established in 1901 by the Legislature of the State of California. It opened as a state vocational high school and was the forerunner in California of vocational education in agriculture and industry. The level of instruction was raised in 1927 to that of a junior college.

In 1933, when the school was made a direct administrative branch of the State Department of Education, it was changed from a junior college to a two-year and three-year technical college.

In 1936 a degree-transfer program was added, and in 1940 the State Board of Education authorized the college to grant the bachelor of science degree for completion of the four-year curriculum. The first baccalaureate exercises were held in 1942.

For a period of 15 years California State Polytechnic gave skills and methods courses for agriculture teacher candidates in cooperation with the University of California, which accepted this credit toward meeting requirements of special teaching credentials in vocational agriculture. When in 1946 the California Legislature authorized state colleges to give a fifth year of instruction, the college expanded its services and was accredited by the State Board of Education to recommend
students directly for the special secondary credential in vocational agriculture and the special secondary limited credential in agriculture. Early in 1947 the State Board of Education granted the college the privilege of giving the training for prospective physical education teachers and recommending graduates for the special secondary credential in physical education.

In 1938, a completely equipped school and farm near San Dimas, in Los Angeles County, admirably situated and adaptable for technical instruction in citriculture, deciduous fruit production, agricultural inspection, and landscape gardening, was deeded to California Polytechnic by its owners, Charles B. Voorhis of Pasadena, and his son, former Congressman Jerry Voorhis. This campus was immediately put to use as a plant industries branch of the college. Although it was necessary to close the Voorhis Unit during the war period, 1942-45, it was reopened in the fall of 1945.

In November, 1949, the college received as a gift from the Kellogg Foundation the Kellogg Arabian Horse Ranch near Pomona consisting of approximately 800 acres. The property was donated to the college for advancement of practical education and for the perpetuation and improvement of the Arabian horse breeding program of America. The property, now known as the Kellogg Unit, California State Polytechnic College, lies approximately one mile from the edge of the Voorhis Unit, and is one mile from Pomona.

World War II activity of the college included national defense and war production training, the food production war training program for California, and pre-flight naval aviation training. More than 3,600 naval aviation cadets were trained on the campus at the United States Naval Flight Preparatory School, January, 1943, to November, 1944. Another 1,100 trainees received instruction in a Naval Academic Refresher Unit operated from July, 1944, to February, 1946.

ACCREDITATION

The college is fully approved as a four-year degree-granting institution by the Northwest Association of Secondary and Higher Schools, and the Western College Association.

The college has been granted regular accreditation by the State Board of Education to give the training and to make recommendation for the following credentials:

- Special Secondary Credential in Vocational Agriculture.
- Special Secondary Limited Credential in Agriculture.
- Special Secondary Credential in Physical Education.
- * General Elementary Credential.

LANDS AND LOCATION

The San Luis Obispo campus is midway between San Francisco and Los Angeles, at the foot of the Santa Lucia mountain range, 12 miles from the Pacific Ocean. The Voorhis Unit is near San Dimas in Los Angeles County and close by is the Kellogg Unit near Pomona.

Lands of the college total 3,823 acres: San Luis Obispo, 2,850 acres; Voorhis Unit, 157 acres; and Kellogg Unit, 816 acres.

A variety of land types is available for various agricultural uses. Some acreage at San Luis Obispo is used for range purposes; other land is in hay, alfalfa, and orchard. At San Dimas land is utilized for citrus, avocados, and small deciduous plantings.

Information regarding facilities, buildings, curricula, and course descriptions at the Kellogg-Voorhis campus will be found under the Kellogg-Voorhis division of the catalog.

* Application for accreditation to recommend for this credential made January, 1956.
BUILDINGS AND EQUIPMENT—SAN LUIS OBISPO CAMPUS

Dormitories—Men
The San Luis Obispo campus has six two-story dormitory buildings, 10 single story dormitories, a two-wing resident unit with adjoining recreational hall, and five student cottages located at the various agricultural units. A total of 1,037 single men students can be accommodated in these on-campus housing units.

Dormitories—Women
Chase, Jespersen and Heron Halls are the women's resident halls. The halls are well located, attractive, newly furnished and near the dining hall. One hundred sixty-four women can be accommodated in these units. Under adult supervision the halls provide leadership and activity program as well as guidance in community living.

Housing—Off Campus
There are two large privately owned and operated college approved cooperative housing units for single men students in downtown San Luis Obispo. Also there are many private homes and apartments which have been inspected and approved by the college. Well over half of Cal Poly's students live in such off-campus facilities.

Family Housing
For married students the college has an on-campus “village” of 75 one- and two-bedroom apartments, and 188 trailers. The trailer areas have central wash-rooms with modern sanitary facilities. Trailer occupants are eligible for “village” apartments on a priority basis. Domestic pets may not be kept on campus.

Cafeterias
Two campus cafeterias which serve three meals a day, six days a week and two meals on Sunday, accommodate 2,000 students per meal.

Health Center
The campus health center is equipped with examination and treatment rooms, and hospital wards. Two full-time college physicians and two full-time nurses provide 24-hour medical service.

Athletic Facilities
College athletic facilities include a 10-acre athletic field, with a field house providing locker and shower facilities. The gymnasium provides ample space for handling physical education classes and minor sports. An indoor swimming pool is complete with heating, filtration, and chlorinating equipment. Close to the gymnasium is a football field with permanent grandstand and bleachers seating 5,500 persons. Six tennis courts are available for varsity and recreational use.

Administration Building
 Constructed in 1942, this building accommodates a series of large lecture classrooms on the upper floor and administrative and faculty offices on the ground floor. The printing department, agricultural journalism department, publications offices, student body offices, and student stores are situated in the basement.

Classroom Buildings
Other major buildings in the central campus area are devoted primarily to classroom and laboratory use.

Library
The Walter F. Dexter Memorial Library, completed in 1949, seats 428 students in the reading rooms and provides four floors of stacks, film darkrooms, listening rooms, and seminar and visual education rooms. Professionally trained librarians are available to render assistance to students and faculty.

Science and Classroom Building
Twelve general-purpose classrooms and 27 fully equipped laboratories are shared by the Agriculture and Arts and Sciences Divisions. The laboratories provide facilities for instruction in soil science, veterinary science, botany, zoology, bacteriology, chemistry, and physics.
AGRICULTURAL INSTRUCTION BUILDINGS AND FACILITIES

Well distributed over the campus and farm are the major structures devoted to agricultural instruction. These include the following:

Agricultural Engineering
Seven well equipped shops including farm mechanics, farm machinery, hydrology, farm power, and rural electricity. Drafting rooms, classrooms, and staff offices are provided in a separate building. Storage and repairs are provided for in the adjacent Farm Machinery Building.

Beef Unit
- Project steer feeding barn, capacity 75 steers; commercial project feeding barn, capacity 175 steers; three barns for breeding beef cattle; 1,600 acres range and pasture; judging pavilion. Dormitory facilities for 12 students.

Central Feed Mill and Storage
- Complete feed mill for grinding, mixing, and processing feeds; bulk storage for 1,500 tons of grain; hay barn, 600 tons capacity; hay grinder unit; sack storage for 150 tons concentrates.

Crops Unit
- Vegetable packing and grading shed; fruit shed; bee-keeping laboratory; deciduous orchard; citrus and avocado acreage; vineyard. Sixty acres of cultivated land provide for Field Crop and Truck Crop Projects.

Dairy Unit
- Thirty-unit milking barn, two shelter feed barns for 100 cows, judging pavilion, young stock barn, bull barn, and complete creamery building. Project unit milk barn, feed shelter barn for 70 head of student-owned projects, and calf sheds; 600 acres of pasture. Three dormitories for 36 students.

Horse Unit
- Thoroughbred, quarter horse, and draft horse barns and paddocks.

Ornamental Horticulture Unit
- Propagation and storage building; four glass houses, three lath houses, and other propagation units; five acres for storage and growing area; 100 acres of landscaped campus.

Poultry Unit
- Central egg house, slaughter plant, battery brooder and incubation building; laying trappnest cage units and colony houses to handle 5,000 laying hens, 10,000 fattening birds, and 500 turkeys.

Sheep Unit
- Central lambing barn; project feeding barn, capacity 400 lambs; 160 acres range and pasture.

Slaughter House and Meats Laboratory
- Modern slaughter house, coolers, and meat cutting room.

Soils Unit
- Three soils laboratories, two special preparation labs, lath house and glasshouse. Crop land and range area for fertilizer trials.

Swine Unit
- Fourteen-unit central farrowing house; 18 double-unit colony houses; five boar units; 16 project feeder units; 30 acres of pasture.
ENGINEERING INSTRUCTION BUILDINGS AND FACILITIES

The major buildings utilized for engineering laboratories and shops are concentrated in the central campus area. These include the following:

Aeronautical Engineering Buildings
Engine overhaul laboratory and shop building; construction shop and hangar, adjacent to college flight strip; aeronautical laboratory; and stress laboratory.

Architectural Engineering Unit
Three-building unit, including two large, well-lighted drafting rooms, lecture rooms, and offices.

Electronic and Radio Unit
Four laboratories, a shop, stockroom, and offices—entire second floor and basement of the former Agricultural Education Building.

Engineering Building
Laboratories for the Air Conditioning and Refrigeration Department and for the Electrical Engineering Department, opposite wings; faculty offices, classrooms, and a 500-seat assembly room, central section.

Power Plant
Central steam heating plant used for laboratory experiments by Mechanical Engineering Department.

Machine and Welding Shops
Two large, well-equipped, and well-lighted shops with adjacent specialty laboratories.

Mechanical Engineering Laboratory
Fully equipped with internal combustion engines, fuel test engine, and a wide variety of instrumentation.

Printing Laboratories and Shops
An entire basement wing of the Administration Building houses adequately equipped printing laboratories such as, composing room, press room, stereotyping room, and bindery.

THE FOUNDATION

The college's unique project system of "learning by doing" and "earning while learning" has been progressively developing since 1924. At that time, projects were organized on a small scale and were financed by the Citizen's State Bank. Faculty members and parents backed this arrangement for the protection of the bank. Several years later, a faculty committee assumed the responsibility for operating the housing facilities and a cafeteria. In 1940 a nonprofit corporation known as the California State Polytechnic College Foundation was organized. With faculty members as directors, the foundation has assumed the responsibility for financing and recording the project operations, operating and managing the cafeterias and housing facilities, and providing other services to students.

The Foundation operates under a lease agreement made through the State Departments of Education and Finance. The provisions of this lease define the activities of the Foundation and the use of its funds. The accounts are audited yearly by the Department of Finance.

Through the Foundation there is available an $80,000 revolving fund from which students may borrow to finance their projects. No co-signer is required for a student to borrow from the Foundation, but he must present a working plan, a budget, and a signed contract with the Foundation before starting a project. Each student contributes a share from his earnings towards the project fund. Any losses in student projects are covered by the Foundation from the fund contributed by project operators.

Typical agricultural projects include: Fattening steers, lambs, or swine; raising and breeding cattle, both beef and dairy, for a start towards future herds; growing crop projects, such as tomatoes, sweet corn, hay, and sugar beets; raising poultry,
both meat birds and laying hens, and operating the hatchery; growing and marketing ornamental horticulture projects.

Engineering departments also conduct group projects. For example, the Electronic Engineering Department does extensive repair work on radio and television sets for students and faculty.

AGRICULTURAL PROJECT FACILITIES AT SAN LUIS OBISPO

The entire farm with its equipment, buildings, and livestock is available to students for their use in conducting a wide variety of agricultural projects.

The college Foundation has some of the best breeding livestock in the State. Many show champions have come from the beef herd, which includes Herefords, Angus, and Shorthorns, offsprings of which are sold to the students. All necessary equipment for beef cattle production—barns, dehorning and loading chutes, castration equipment, stock horses, etc., is available.

The dairy herd includes purebred Jerseys, Guernseys, and Holsteins. Equipment includes all the necessary facilities for feeding and milking, care of calves and bulls, milk testing, bottling, separating, and related operations. Students conducting dairy projects carry out their operations on a separate part of the college farm.

The swine herd is the outgrowth of a gift from C. Harold Hopkins, owner of Straloach farm, who gave his entire Poland herd—one of the best in the Western United States. Polands, Berkshires, and Durocs are in the breeding herd. Equipment includes farrowing pens, fattening pens, pig brooders, feeding equipment, etc. Students market between 600 and 700 fat and breeding swine each year.

The sheep flock is principally Hampshire and Southdown, including the sires and dams of many show champions. The sheep unit centralizes the project facilities, which are typical of a large-scale farm enterprise. Students learn shearing and the care of fleeces, as well as lamb production.

The poultry flock consists of between 3,500 and 4,000 birds. The equipment includes a modern incubator, egg-handling facilities, brooders and brooder houses, pens for trap-nesting and pedigree work, and related devices. A student assistant and the students themselves care for every operation under the supervision of the department head.

Equipment in ornamental horticulture includes land and buildings already mentioned, garden tractors, and potting and spotting equipment.

The crops department is well equipped with machinery of the types found on mechanized farms in California. Practically all farming operations are carried out by the students in project or class work. Orchards, vineyards, crop land, packing facilities, and marketing facilities are available for instructional purposes.

STUDENT ORGANIZATIONS AND ACTIVITIES

The college provides an integrated program of classroom and laboratory instruction, gainful employment, and extra-curricular activities. The latter are under the direction of an activities officer who is responsible for initiating and coordinating a well-rounded program of activities designed to develop leadership qualities in all students.

STUDENT GOVERNMENT

All students, both men and women, are members of the student association known as the "Associated Students of the California State Polytechnic College." The government of student affairs and the control of its property are vested in the Student Affairs Council, the members of which are selected according to regulations established in the student body constitution. In addition, there are boards established to oversee publications, athletics, music, College Union program, and Poly Royal. There is also a council of the various clubs and campus organizations. All interested students have an opportunity to participate in student government.

ATHLETICS

Intercollegiate competition centers primarily around the activities of the California Collegiate Athletic Association. Competition is maintained in football, basketball, baseball, track, boxing, wrestling, gymnastics, swimming, water polo, tennis, golf, and cross country. It is possible to earn a major letter award in any sport. Freshmen compete in varsity sports.
The Department of Health and Physical Education offers physical activities designed to provide a sound program of recreation, education in physical skills, and the give-and-take of games. Varsity teams in the intercollegiate sports offer opportunity for the more skilled. Intramural teams provide year-around competition in a dozen sports at an easier level of play to all who wish to enter. Medals are awarded winners in touch football, track, horseshoes, basketball, volleyball, swimming, boxing, wrestling, badminton, softball, tennis and golf.

PUBLICATIONS

Publications of the student body at the California State Polytechnic College, San Luis Obispo, are not only written and edited by students, but are also printed in the college’s printing department as laboratory work for students majoring in printing. Editorial and photographic work for publications is handled primarily by students of the journalism classes. Among the publications, two are outstanding. El Mustang, the official newspaper of the associated students of the San Luis Obispo campus, is published once each week during the school year. El Rodeo is the yearbook of the San Luis Obispo campus. Miscellaneous publications include the California Future Farmer magazine, a monthly magazine supported by and mailed to 10,000 Future Farmers of America members in nearly 200 California high schools; a Poly Royal pictorial; and the Freshman Handbook. At the Kellogg-Voorhis campus a weekly newspaper, Poly Vues, and yearbook, Madre Tierra, are published.

POLY ROYAL

Each year, during the spring, the California State Polytechnic College, San Luis Obispo, has an open-house exhibition and show conducted by the associated students. This event is known as the Poly Royal, “a country fair on a college campus.” Its purpose is to display the work accomplished during the year by the students, particularly student-owned projects. Each department of the college prepares its own display, and the show is on a competitive basis among the departments. Besides the shows and exhibits, there are many entertainment features. Each year, the athletic department schedules an intercollegiate baseball game. Other special events include an adult organization livestock judging contest, a student carnival, and an intercollegiate rodeo which attracts major colleges and universities of the West and Southwest.

CAMPUS ORGANIZATIONS

Clubs and organizations on the San Luis Obispo campus cover all departments and activities, and the opportunity exists for every student to take an active part in club life. The presidents of the various social clubs and societies form an interclub council which has direct representation in student government. There are approximately 20 departmental clubs and about 28 social clubs and societies. These numbers do not include dormitory clubs for students residing in dormitories, which number 12.

THE ALUMNI ASSOCIATION

The California State Polytechnic College Alumni Association is divided into eight geographic regions with a president for each region. These regions are:

Sacramento Valley, comprising Placer, Sutter, Colusa, Yuba, Nevada, Sierra, Butte, Glenn, Tehama, Plumas, Lassen, Shasta, Modoc, Siskiyou, and Trinity Counties.

North Coast, comprising Napa, Sonoma, Lake, Mendocino, Del Norte, and Humboldt Counties.

Golden Gate, comprising Marin, Contra Costa, Alameda, San Francisco, and San Mateo Counties.

San Joaquin Valley, comprising Kern, Kings, Fresno, Tulare, and Madera Counties.

Central, comprising Calaveras, Alpine, Amador, Sacramento, San Joaquin, Solano, Yolo, El Dorado, Mono, Mariposa, Merced, Stanislaus, and Tuolumne Counties.

Southern, comprising Santa Barbara, Ventura, Los Angeles, San Bernardino, Riverside, Orange, Imperial, San Diego, and Inyo Counties.
South Coast, comprising Santa Cruz, Santa Clara, San Benito, Monterey, and San Luis Obispo Counties.

Hawaiian Islands, comprising all the islands constituting the Territory of Hawaii.

Region at Large, comprising the 47 other states, Alaska, and other countries.

Affairs of the association are under the supervision of a Board of Directors, consisting of the national president, national vice-president, national secretary-treasurer of the association, the president of each region, the past national president of the association and two ex officio members appointed by the president of the college.

To promote further the activities of the association, a membership and activities committee of 41 has been established, consisting of the chairman, the national vice-president of the association, the eight regional presidents, and four representatives from each region.

The association publishes the Green and Gold Review four times each year. This is the official publication of the association aimed at keeping the members informed of its activities, the latest happenings at the college, and news about individual members.

The California State Polytechnic College at San Luis Obispo is the official headquarters of the association and inquiries may be addressed there to obtain information relative to membership and other matters pertinent to the association. In the Southern region, inquiries may be directed to the Kellogg-Voorhis Campus, Pomona.

SPECIAL INSTRUCTIONAL SERVICES

SUMMER QUARTER

The college offers a summer quarter for old and new students. Summer quarter offerings make it possible for a student to shorten the over-all length of time necessary to complete a prescribed curriculum.

The summer quarter is divided into four- and six-week periods, making a total of 10 weeks. Students may elect to enroll for either the four- or six-week period or both if they choose.

Summer students are permitted a maximum load of 1 1/2 quarter units per week of attendance. The maximum load in the four-week term is six units, and in the six-week term, nine units.

Admission requirements, fees and deposits, and other regulations are the same for the summer quarters as for the other three quarters of the school year.

EXTENSION COURSES

Extension courses on a college level may be given at various centers throughout the State in certain specialized fields, at such times as demand requires and instructors are available.

Full information concerning the extension course system will be sent on request.

IN-SERVICE TRAINING IN AGRICULTURE

The college plays an active role in the in-service training of teachers of vocational agriculture by providing instructional staff and facilities for workshops and training programs cooperatively sponsored by the college and the State Bureau of Agricultural Education.

The college provides an annual summer skills program of from one to three weeks, depending upon the needs and desires of the teachers as these are expressed through the Bureau of Agricultural Education. College staff members provide up-to-date training in the technical phases of agriculture and also contribute to the professional improvement of teachers by offering instruction in teaching methods.

The annual summer conference of the California Agricultural Teachers Association is held on the San Luis Obispo campus with an attendance of 400-500 persons. Facilities, special speakers, exhibits, and other services are provided by the college.

The college offers additional service to the agricultural teachers of the State by providing for off-campus field courses of short duration and concentrated form. Instruction is provided both by college faculty members and by special lecturers in specific fields of agriculture and professional methods.
EXTENSION SERVICES TO VOCATIONAL AGRICULTURE

Services to vocational agriculture departments in the secondary schools of California are provided by the college staff through such activities as: visiting vocational agriculture departments to discuss with teachers and students, dairy, animal husbandry, deciduous and citrus fruits, field and truck crops, poultry, farm mechanics, farm management, and other problems; writing for agricultural magazines; assisting high school vocational agriculture departments to solve educational and agricultural problems through correspondence; judging of livestock, poultry, crops and other products at fairs; furnishing of breeding stock and hatching eggs to improve herds and flocks owned by Future Farmers throughout the State; and preparing a variety of teaching aids.

These services are provided by the college through a cooperative arrangement with the Bureau of Agricultural Education, some offices of which are located on the campus.

SHORT COURSE AND WORKSHOP PROGRAMS

The college makes its facilities and instructional staff available for a number of professional short courses and workshop programs and conferences such as: Physical Education Workshop, School Lunch Program, Driver Education Workshop, California Nurserymen's Refresher Short Course, California Implement Dealers Short Course, California Beekeepers Association, California Hereford Breeders Association, Livestock Judging Conference, Soil Conservation Service Special Courses, and "College of Fairs."

RESERVE OFFICERS TRAINING CORPS

California State Polytechnic College maintains a voluntary General Military Science Unit, Senior Division, of the Army Reserve Officers' Training Corps (ROTC) for the purpose of preparing students to become officers in the Army of the United States. Under the General Military Science curriculum, a student is given general army training without specialization in any one branch. For those students who are selected and who pursue the advanced course (third and fourth academic years), a choice of branch will be made prior to commissioning based upon the needs of the service and the individual's desires, academic background and abilities.

The Department of Military Science and Tactics serves the students of the entire college as well as contributing to the development of qualified officers for the Army of the United States. For additional information about ROTC see page 175.

STUDENT PERSONNEL SERVICES

The college provides a number of services designed to help the student in his college work. Some of the services are directed toward group activities and experiences, others toward helping students overcome individual problems.

Counseling and Testing

The Counseling Center, under the direction of the Guidance Officer, offers service in vocational, educational, and personal counseling in accordance with the needs of the student. A staff of two counselors is provided. A well-equipped test center, under the direction of the Test Officer, is available to assist the students and counselors. An occupational library is maintained which contains accurate information concerning the vocations found in west coast industry and agriculture.

Advising

Each freshman student is assigned an adviser when he enrolls at college. This adviser helps the new student solve problems involved in becoming oriented to college life and helps to arrange a sound course of study for him. Returning students and college transfers are also assigned an adviser who helps the student arrange his instructional program.

Health Service

A student pays a $3 fee per quarter for medical service. The service provided includes a physical examination and minor and major surgery but does not include the service of any specialists. Diseases of a chronic nature which the student con-
tracted before entering school are not covered. Students may consult the college physician in his office any time by appointment.

The college maintains a well-equipped health center which includes a 16-bed ward and two individual isolation-case rooms. This health center is recognized as a hospital by the American Medical Association. Service is available 24 hours a day during the regular college year. In the event that special hospitalization is required, students may enter any one of three hospitals located in San Luis Obispo. The student, in turn, must pay for any such hospitalization which is required.

Registration is not complete until a student has completed the physical examination satisfactorily or made other arrangements with the Dean of Students.

Placement

A centralized placement service is available to students who have completed their work. The Placement Office and departments work together in assisting students to obtain the most suitable employment consistent with their preparation and experience.

No guarantee of placement is made to any student, but a sincere effort is made to find employment for anyone who shows himself worthy of this service.

The institution has been successful for a number of years in placing virtually all of its recommended graduates. Not only is placement attempted by the college for each graduate, but men so placed are contacted frequently.

The follow-up program includes contacting both the graduate and the employer to appraise success of placement and satisfaction of employer and employee, and to determine whether advancement is being made. Better positions are often found for students who have been doing satisfactory work for a sufficient period of time to justify advancement.

SUMMER EMPLOYMENT

Students are encouraged to take summer employment in fields related to their major. On-the-job application of course material stimulates an interest in and shows a need for subsequent courses.

The Placement Office receives many summer job listings. Ranchers and businessmen visit the campus in person and large business concerns send recruiters to interview undergraduates for summer employment. A summer job often leads to permanent employment.

PART-TIME EMPLOYMENT

In addition to the opportunities for students to earn money through project activities to assist them in meeting expenses, the college has established a policy of giving a maximum number of students experience by employing them to operate the entire campus and farm. The number of campus jobs is several times as great as in the typical college where regular full-time employees do much more of the work.

Not only does the college make every effort to place students in employment both on and off campus, but it seeks to correlate this outside work with the students' major courses of study. For example, students of electrical and mechanical engineering aid in operation of the power plant; dairy major students feed and care for the college's dairy herd, milk the cows, and operate the milk plant; students in ornamental horticulture maintain and improve the lawns, trees, and shrubbery; architectural engineering students develop plans for community and civic projects.

Also the college cooperates with the California State Employment Service and the local townspeople in listing employment for students. Usually this employment consists of odd jobs, although some steady part-time work is obtained. It should be noted that foreign students may not work without permits issued by the Immigration Service. United States citizenship is a requirement for many of the jobs.

Scholarships

FRESHMAN SCHOLARSHIPS

A number of freshman scholarships are available at California State Polytechnic College for students immediately after they have graduated from high school. In all cases, evidence must be submitted that additional financial assistance is necessary in order for the applicant to attend college. The applicant for these scholarships must be approved by the high school principal and one other instructor.

The sophomore and advanced scholarships are granted on the basis of performance of the individual in his work and activities at California State Polytechnic College.
Sears Roebuck and Company State-wide Scholarships Awards

The Sears Roebuck and Company offers a total of 14 scholarships to California State Polytechnic College in two different groups; 13 of these are "state-wide scholarships," the other a "sophomore scholarship" award.

Deeply cognizant of the necessity of developing trained agricultural leadership in the Nation, and recognizing the splendid results in this field now being accomplished by the college, Sears Roebuck and Company wishes to broaden the availability of such training by offering scholarships to needy California farm boys of good character and capabilities who might otherwise be unable to enter college.

In carrying out this policy, Sears Roebuck and Company has granted to California State Polytechnic College, 13 scholarships of $200 each to be awarded to first-year students who enroll in agriculture or agricultural journalism for each school year.

The scholarship award to an applicant is determined on the basis of:

1. Financial need for assistance to continue his education.
2. Interest in agriculture and accomplishments as evidenced by his supervised home farm program.
3. Scholarship as shown on the transcript of high school credits which shall include a statement of the number in the graduating class and the applicant's scholarship ranking in the class.
4. Citizenship and moral integrity, as certified by the high school principal, agricultural teacher, and others qualified to pass judgment on the applicant.

Application should be made through the local high school agricultural teacher who will have all the necessary information. Applications should be in the hands of the scholarship committee by May 1st.

West Coast Electronic Manufacturers' Association Scholarships

Two $300 scholarships are made available each year to freshmen students entering the Electronic Engineering Department. The awards are based on a competitive examination.

Air Conditioning and Refrigeration Engineering Industry Scholarship

One $1,000 scholarship is made available by employers in the Air Conditioning and Refrigeration Engineering field to a freshman student who enrolls in the Air Conditioning and Refrigeration Engineering Department. The award is based on a competitive examination.

Washburn & Condon Scholarship

Washburn & Condon Livestock Commission Company of Los Angeles and San Francisco makes available a $100 scholarship to a resident of any part of California. This young man must have carried an outstanding home farm project that included the production for market of some beef animals, hogs, or lambs, or two or more of them. He must have graduated from high school and be eligible to attend California State Polytechnic College for the school year immediately following the awarding of this scholarship, and he must enroll in the Animal Husbandry Department. He should expect to engage in the production of market livestock after completing his education.

Challenge Creamery Scholarship

One annual scholarship of $100 is awarded to a Future Farmer student who excels in dairy production and who enrolls as a freshman in dairy industries at California State Polytechnic College. Applicant is chosen from the entire State.

The E. C. Loomis and Sons Scholarship

One annual scholarship of $100 is awarded to the outstanding graduate in the high school vocational agriculture department at San Luis Obispo, Arroyo Grande, Santa Maria, or Cambria.

The Overland Scholarship in Agricultural Journalism

Awarded by the end of the first quarter of the regular school year, the Overland Scholarship is an outright grant of $250 to an agricultural journalism major chosen from among applicants possessing a past school and/or work record indicating success in the agricultural journalism field and who exhibits proved need for the scholarship to remain in school or to complete special training of particular use to an agricultural journalist. The scholarship was established by Mr.
Ben Overland, Hanford rancher, as a step toward developing “trained voices” equipped to interpret more adequately the farm to the city and the city to the farm.

Victor Equipment Company Scholarship

Victor Equipment Company makes one annual $300 scholarship award to a student who enters the Mechanical Engineering Department and who is interested in a career in the welding industry.

Sandercock Scholarship

One $2,000 scholarship is awarded by Mr. Warren W. Sandercock of San Luis Obispo. The award is paid at the rate of $500 per year for a four-year period with only one award in effect during the period. Eligible students must be residents of either Kern County or San Luis Obispo County. The Sandercock award is based on need for financial assistance, demonstrated ability to profit from college instruction, and leadership and general interest in school or civic activities.

ADVANCED STUDENT SCHOLARSHIPS AND AWARDS

L. L. Bennion Scholarship

Mr. Paul Grafe of the Grafe-Callahan Construction Company makes available an annual $250 scholarship known as the L. L. Bennion scholarship. This scholarship is awarded to an outstanding junior student who is specializing in the field of animal husbandry.

California Association of Nurserymen’s Scholarship

The California Association of Nurserymen makes available to the California State Polytechnic College an annual $100 scholarship. This scholarship is awarded to an outstanding sophomore student who is enrolled in the Ornamental Horticulture Department.

California Fertilizer Association Scholarships

Two $100 scholarship awards are made available at the San Luis Obispo campus and two $100 scholarship awards are made available at the Kellogg-Voorhis campus. One award at each campus is given to an outstanding student of junior or senior standing who is majoring in Crops Production. The second award at each campus is given to an outstanding student of junior or senior standing who is majoring in Soil Science.

Kimber Scholarship in Poultry Husbandry

Kimber Farms, Inc., makes one annual $500 scholarship award to a student who is majoring in Poultry Husbandry and who has completed at least three quarters of outstanding work in this department.

John C. Lindsay Award

An annual award of $100 will be made to the junior student in architectural engineering, who in the opinion of the staff, has presented the best problem during the year.

Philip R. Park, Incorporated, Scholarships

The Philip R. Park Company of San Pedro, California, will award two $100 scholarships to two worthy young men who have completed two years of outstanding work at this school in animal husbandry, dairy husbandry, or poultry production.

The Poultrymen’s Cooperative Association of Southern California Scholarship

One annual scholarship of $200 is awarded to an outstanding student who is majoring in Poultry Husbandry and who has completed at least three quarters of work in this department. The applicant must be a resident of one of the following counties: Fresno, Kings, Los Angeles, Orange, Riverside, San Bernardino, Santa Barbara, San Diego, San Luis Obispo, or Ventura.

Sears Roebuck and Company Sophomore Scholarship

The Sears Roebuck and Company, as a continuation of the freshman scholarship plan already described, awards a $250 sophomore scholarship to the most outstanding student of those receiving Sears Roebuck awards as first-year students.
Rotary Scholarship
The San Luis Obispo club of the Rotary International makes available to California State Polytechnic College one annual $150 scholarship. This scholarship is awarded to a student of outstanding ability in extra-curricular activities. This student must maintain a better than average record and must have at least junior standing the fall quarter following the scholarship awards. The first awards were made in the spring of 1947.

The William L. and Dorothy Jonson Scholarship
The William L. and Dorothy Jonson Scholarship is awarded in the amount of $800 for each approved demonstrational project based upon the recommendations of the heads of the Soil Science, Ornamental Horticulture, and Agricultural Journalism Departments. The award is paid at the rate of $200 per quarter over a period of four regular academic quarters.

Mahler Award
Each year, Martin Mahler, consultant on pre-stressed concrete, awards a membership in the American Society for Testing Materials to the student in Architectural Engineering doing the best work in the field of pre-stressed concrete.

OTHER SCHOLARSHIPS

South San Francisco and Stockton Union Stockyards Company Scholarships
Two annual $100 scholarships are awarded at the Grand National Junior Livestock Exposition on the basis of excellence of performance in the farm home program in the production of livestock. Applicants are limited to those participating in this special event. The scholarship awarded to a Future Farmer must be used at California State Polytechnic College.

Safeway Stores, Inc., Scholarships
Two annual $200 scholarships are awarded at the Grand National Junior Livestock Exposition on the basis of excellence of performance in the farm home program in the production of livestock. Applicants are limited to those participating in this special event. The scholarship awarded to a Future Farmer must be used at California State Polytechnic College.

Bank of America, N. T. & S. A. Scholarships
Four annual $200 scholarships are awarded at the Grand National Junior Livestock Exposition on the basis of excellence of performance in the farm home program in the production of livestock. Applicants are limited to those participating in this special event. These scholarships may be used at the California State Polytechnic College.

Pillsbury's Best Feeds Scholarships
One scholarship of $200 is offered to a Future Farmer and one scholarship of $200 to a 4-H Club member by Pillsbury's Best Feeds for boys and girls exhibiting dairy cattle or dual-purpose cattle at the Grand National Junior Livestock Exposition. All applicants must have participated in dairy or dual-purpose cattle showmanship and must have exhibited evidences of showmanship to the extent that they are at least “Qualified Showman.” Showmanship will count 20 percent in the final scoring of candidates for these scholarships. These scholarships may be used at any accredited agricultural college in the United States.

Carl Raymond Gray Scholarships
Four Carl Raymond Gray $100 scholarships are made available by the Union Pacific Railroad, Omaha, Nebraska. Applicants must have completed two or more years of vocational agriculture, or 4-H Club work, including commendable projects. One scholarship is to be awarded to one resident in each of the following counties: Los Angeles, Riverside, San Bernardino, and Orange. Scholarships may be used at California State Polytechnic College, University of California, or Chaffey Junior College. All applications, however, must be submitted not later than April 15th. Scholarships shall be used within the calendar year after the date of graduation from high school. All project books, a picture of the applicant, and, if possible, pictures of his project must accompany the application.
Standard Oil Company of California Scholarships

Thirty annual scholarships ranging from $200 to $350 each are offered by the Standard Oil Company of California to members of the Future Farmers of America and members of 4-H clubs in California. Any of these scholarships may be used at either branch of California State Polytechnic College or other colleges. Future Farmers should apply through their agriculture teachers, 4-H club members through their club leaders and county club advisers.

Student Loan Funds

There are 10 student loan funds to provide temporary assistance to worthy students. Loans from these funds are made for varying periods of time and according to regulations determined by a faculty committee. Applications should be made in the office of the Dean of Students.

The character and integrity of the student are the primary qualifications for obtaining a loan. Evidence of real need for such temporary assistance must be shown. Students who have spent funds far beyond the necessary school expenses will not be considered for loans, even though need is shown.

The Wrasse Fund

The principal source of loans is the Leopold Edward Wrasse Loan Fund, established for the benefit of deserving boys desirous of an education and needing financial assistance. Approximately $5,500 will be available for loans each year with the following general provisions:

1. First preference will be given to graduates of Caruthers High School in Fresno County, second preference to graduates of other high schools in Fresno County, third preference to graduates of California high schools.
2. During the 12-months' period preceding the granting of the loan, the applicant must have earned through his own endeavor at least half of the amount of the desired loan, and must furnish evidence to this effect.
3. Interest will not be charged until graduation, or until the student ends his enrollment. Loans must be repaid within three years after the termination of enrollment.

W. B. Camp Revolving Scholarships in Agricultural Journalism

W. B. Camp of Bakersfield has provided $1,000 to be used for either short- or long-term loans for students enrolled in the field of agricultural journalism. Preference for these loans is given first year students. However, other students are not excluded if sufficient funds exist.

The Rotary Club Fund

The San Luis Obispo Rotary Club has established a student loan fund open to any deserving student after one quarter of successful attendance.

The California State Polytechnic Women's Club Fund

The social club of women staff members and faculty wives at San Luis Obispo has established a student loan fund, increased each year by some type of public benefit. Loans are made to deserving students after one quarter of successful attendance.

Student Accommodation Loan Fund

The California State Polytechnic Women’s Club and the Associated Students have set up a fund from which students may secure small, short-term loans.

Wilder Memorial Loan Fund

The Alumni Association sponsors the Wilder Memorial Loan Fund in memory of Dr. G. W. Wilder, from which small, short-term loans are made to deserving students.

California Polytechnic Memorial Loan Fund

A loan fund has been established from the contributions made by numerous persons. It is designed to aid students who need immediate financial assistance.
Chris Jespersen Fund
A loan fund has been established by the faculty of the college in memory of Senator Chris Jespersen. This fund is to provide long-term loans to needy students.

Lee Gird Levering Memorial Loan Fund
The family and friends of Lee Gird Levering, a student killed in the Korean War, have established a memorial loan fund in his memory. The purpose of this fund is to make sums available to deserving students at California State Polytechnic College. Although preference is given to students majoring in sheep husbandry, animal husbandry, or in agriculture, other students are not excluded from receiving loans from this fund.

Telegram Tribune Loan Fund
A loan fund has been established by the Telegram Tribune, San Luis Obispo daily newspaper, to make short-term loans to deserving students in agricultural journalism.

Yellow Dog Los Angeles Kennel Loan Fund
The Yellow Dog Society, Los Angeles Kennel, has established a student loan fund to be used for either short- or long-term loans. Although preference will be given to students majoring in dairy husbandry and dairy management, other students are not excluded from receiving assistance from this loan fund.
ADMISSIONS

Admission standards at California State Polytechnic College are stated in the California Administrative Code, Title 5, Education, which provides uniform admissions regulations for all California state colleges.

Admission to California State Polytechnic College is open to the graduate of any high school, or other applicant who is judged by the appropriate college authorities to possess equivalent preparation, upon the submission of evidence of fitness to profit by college instruction—such fitness to be shown by previous scholastic records and by evidence of good moral character and personal qualifications.

Placement tests which are completed by every incoming student are a part of the registration procedure and are given for the purpose of providing information for the student and his departmental adviser who will jointly plan the student’s program. The departmental adviser will use placement test results to determine the courses most suited to the student’s needs at the time of registration. These are not entrance examinations.

Engineering students complete tests in English and mathematics to determine whether or not they qualify for admission to regular courses in English, mathematics, and physics, which are prerequisites to or taken concurrently with work in engineering. Similar tests are given agricultural students to determine their proficiency in English, mathematics, and agriculture. Students majoring in arts and sciences are given tests in English and mathematics. Students entering the major in elementary education are given an additional test in penmanship. Refresher courses, which carry no college credit, are provided for students who need to “brush up” before enrolling in regular college work.

To conform to admission requirements, a student must submit an application for admission and transcripts of all previous high school and college training, including available test data. Housing, if space is available, will be arranged on the basis of information furnished with the application for admission.

Transcripts and records presented for admission or evaluation will remain in the student’s folder as a part of his permanent record upon completion of registration.

ADMISSION REQUIREMENTS

Admission to Undergraduate Standing

HIGH SCHOOL GRADUATES

For admission to a state college, a high school graduate, or other applicant who is judged by the appropriate college authorities to possess equivalent preparation, must, as a minimum, meet one of the following:

1. Have completed the equivalent of 70 semester periods (seven Carnegie units) of course work, in subjects other than physical education and military science, with grades of A or B on a five-point scale during the last three years in high school.

2. Have completed the equivalent of 50 semester periods (five Carnegie units) of course work, in subjects other than physical education and military science, with grades of A or B on a five-point scale during the last three years in high school and attained the twentieth percentile on the national norm of a standard college aptitude test.

An applicant who fails to meet these standards may be admitted, if in the judgment of the appropriate college authorities, he gives promise of being able to succeed in college.

Admission to a state college shall be limited to the number of students for whom facilities and competent instructors are available to provide opportunity for an adequate college education. The Director of Education after consultation with the president of a state college shall determine the number of students for whom there are available facilities and competent instructors at the college.
ADULT SPECIAL STUDENTS

An applicant who has attained the age of 21 years and is not a high school graduate may be admitted to a state college as an adult special student provided that he demonstrates to the proper college authorities ability to profit from college work. If such a student completes with a grade point average of 1.0 (grade of C on a five-point scale) or better a program of 36 quarter units of residence work in basic courses leading to a degree, he shall not be required to remove entrance deficiencies.

ADVANCED UNDERGRADUATE STANDING—BACHELOR OF SCIENCE PROGRAM

Bachelor of science degree candidates must complete the required curriculum as stated in Section 920 of the California Administrative Code and listed in the college catalog for the major chosen. Preparation for specific occupational fields makes it essential for a transfer student to take sufficient work at California State Polytechnic College for major department personnel to become well acquainted with the student, so that an intelligent placement recommendation may be made. Persons who have attended junior colleges or accredited four-year colleges will be given full credit for such courses as may be applicable to the pattern of course work in the California State Polytechnic College curriculum followed.

Students Who Transfer From Accredited Degree Granting Colleges and Universities

An applicant who has earned credit in accredited degree granting colleges and universities may be admitted to a state college if he meets the following standards.

1. He must have a grade-point average of 1.0 (grade of C on a five-point scale) or better for the total program attempted.

2. He may receive special consideration if he attains the twentieth percentile on the national norm of a standard college aptitude test provided that he must have been in good standing at the last college institution attended, and his previous record must be such that it would not disqualify him in the college to which he seeks admission.

3. A student who does not meet the above requirements may be admitted on probation, if in the opinion of the proper college authorities he can succeed in college.

Students Who Transfer From Unaccredited Colleges and Universities

An applicant who has attended a nonaccredited college or university may be admitted to a state college if he meets the standards listed above for transfers from degree granting colleges and universities, but credit earned in nonaccredited colleges and universities may be counted toward graduation requirements only after he has earned 36 quarter units with at least a C average.

Students Who Transfer From Junior Colleges

An applicant who has earned credit in a junior college may be admitted to a state college if he meets the standards previously listed in this section. If the applicant was ineligible for admission to a state college on the basis of his high school record he must, as a condition to admission to a state college, have completed 36 or more quarter units of college work with a grade-point average of 1.0 (grade of C on a five-point scale) or better in the total program attempted.

Not more than 64 semester units (96 quarter units) may be allowed for credit earned in a junior college. No upper division credit may be allowed for courses taken in a junior college. No credit may be allowed for professional courses in education taken in a junior college.

Other Applicants for Admission With Advanced Standing

An applicant who fails to meet the standards listed above in this section may be considered by the appropriate state college authorities for admission to the college on probation when the facts in the case seem to warrant such action.

ADVANCED UNDERGRADUATE STANDING—BACHELOR OF EDUCATION PROGRAM

Candidates for the bachelor of education degree must qualify for admission and complete requirements for the degree specified in Title 5, California Administrative Code, Section 921.
To be admitted to the bachelor of education program an applicant must:
1. Hold a California provisional general elementary or kindergarten-primary credential.
2. Present evidence of having satisfactorily completed a minimum of 90 quarter units (60 semester units) of standard college work.
3. Meet requirements of personal qualifications and general training as specified in Title 5, California Administrative Code, Sections 933 and 934.
4. Have the general elementary credential as his curricular objective.

Admission to Graduate Study

All students desiring to do graduate work must file for admission at the Admissions Office. This applies not only to graduates of other colleges, but to students at the California State Polytechnic College. Graduates of this college must reapply for admission to the graduate division following graduation.

Further information concerning admission to graduate standing will be found in the section on the master of arts degree. Information concerning other phases of the graduate program will be found in the section headed "Degrees and Credentials."

TRANSFER CREDIT

Evaluation of in-service military training will be made on the basis of American Council on Education recommendations.

No limit is placed upon the number of transferable credits from an accredited four-year college or university, except that no student will be granted a bachelor of science degree in any of the various curricula with less than three full quarters of residence, two of which immediately precede graduation, nor with less than 50 quarter units of work received in residence at California State Polytechnic College. Transfer students, in their work taken at this college, must earn a number of grade points at least equal to the number of units attempted at this college.

Individuals transferring from other colleges or universities will be admitted on a probationary basis at California State Polytechnic College if they have been on probation at the college or university last attended.

CLASSIFICATION OF STUDENTS

Students found inadequately prepared to take the full complement of courses in their selected curriculum will be classified as conditional students. By means of a planned program of tests, guidance, limitation in units, and selection of courses to be taken, conditional students will be assisted to reach full participation in their selected curriculum. As the students pursue the work of their first year, continued assistance will be given toward attainment of the student's objective.

Students electing to pursue the two-year technical program in agriculture will be classified as technical students. These students will be assisted in planning their programs by their departmental advisers.
FEES AND EXPENSES

STATE FEES AND DEPOSITS

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and service fee (quarter)</td>
<td>$6.00</td>
</tr>
<tr>
<td>Each student enrolled for less than 4 units</td>
<td>$6.00</td>
</tr>
<tr>
<td>Each student enrolled from 4 to not over 6 units</td>
<td>$10.00</td>
</tr>
<tr>
<td>Each student enrolled for over 6 units</td>
<td>$13.00</td>
</tr>
<tr>
<td>Nonresident tuition:</td>
<td></td>
</tr>
<tr>
<td>Each nonresident student enrolled for 15 units or more (per quarter)</td>
<td>$60.00</td>
</tr>
<tr>
<td>Each nonresident student enrolled for less than 15 units (per quarter per unit)</td>
<td>$4.00</td>
</tr>
<tr>
<td>Breakage deposit (year)</td>
<td>$10.00</td>
</tr>
<tr>
<td>(Refundable to student when he leaves college less any charges against him)</td>
<td></td>
</tr>
<tr>
<td>Late registration fee</td>
<td>$2.00</td>
</tr>
<tr>
<td>Late return of registration cards fee</td>
<td>$2.00</td>
</tr>
<tr>
<td>Course challenge by special examination fee (per unit)</td>
<td>$1.00</td>
</tr>
<tr>
<td>Extension course fee (per unit)</td>
<td>$1.00 or $5.00</td>
</tr>
<tr>
<td>Change of program fee</td>
<td>$1.00</td>
</tr>
<tr>
<td>Failure to meet administratively required appointment</td>
<td>$2.00</td>
</tr>
<tr>
<td>Credential fee (for each credential)</td>
<td>$4.00</td>
</tr>
</tbody>
</table>

OTHER FEES

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated student card fee (fall quarter)</td>
<td>$7.50</td>
</tr>
<tr>
<td>Associated student card fee (winter and spring quarters—each)</td>
<td>$3.75</td>
</tr>
<tr>
<td>Post office box rental (all students, per quarter)</td>
<td>$0.50</td>
</tr>
<tr>
<td>Medical fee (per quarter)</td>
<td>$3.00</td>
</tr>
<tr>
<td>Graduation fee (master's degree $10.00)</td>
<td>$7.50</td>
</tr>
</tbody>
</table>

(Must be paid at time application for graduation is submitted)

Note: Fees for the summer quarter are the same as fees for the other quarters.

Living Expenses

FOR STUDENTS LIVING IN CAMPUS RESIDENCE HALLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room and board, per quarter (subject to change)</td>
<td>$175.00–$180.00</td>
</tr>
<tr>
<td>(Must be paid quarterly in advance; students are required to furnish bed linen and blankets. Board includes three meals each day, Monday through Friday, in the college cafeterias. A cafeteria will be open Saturdays and Sundays for a la carte service.)</td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL STUDENT EXPENSES

Example A

Students living on campus and not enrolled under Public Law 16, 346, or the California Veterans Educational Institute, should be prepared to pay at time of fall quarter registration:

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakage deposit (per year)</td>
<td>$10.00</td>
</tr>
<tr>
<td>Associated student card fee (fall quarter, $7.50, winter and spring quarters, $3.75 each)</td>
<td>$7.50</td>
</tr>
<tr>
<td>Post office box rental (per quarter)</td>
<td>$0.50</td>
</tr>
<tr>
<td>Medical fee (per quarter)</td>
<td>$3.00</td>
</tr>
<tr>
<td>Materials and service fee (per quarter)</td>
<td>$13.00</td>
</tr>
<tr>
<td>Room and board</td>
<td>$180.00</td>
</tr>
<tr>
<td>Books and supplies (estimated)</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

$249.00†

* Students enrolling under Public Law 550 should be prepared to pay all costs at the time of registration.
† The student should be prepared to pay approximately the same amount at the time of winter and spring registration, with the exception of deposits which carry through the year. This total does not include nonresident tuition.
Example B

Students living on campus and enrolled under Public Law 16, 346, or the California Veterans Educational Institute should be prepared to pay at time of fall quarter registration:

- Post office box rental (per quarter) .. $0.50
- Room and board ... 180.00
- Medical fee (must be paid by student under P.L. 346) (per quarter) 3.00
- Breakage deposit (students under State Veterans program only) 10.00

*Books and supplies

$193.50

FAMILY HOUSING

The college Foundation has available the following furnished on-campus housing accommodations:

- Poly View Trailers .. $25.00 (per month)
- Poly Ninos, one-bedroom apartments 28.00 (per month)
- Poly Ninos, two-bedroom apartments 32.00 (per month)

*If the trainee has a Veterans Administration "letter of entitlement" when he registers, books and supplies will be furnished. If he does not have the "letter of entitlement," the trainee must pay all fees, including those for books and supplies, until the time the letter is presented. A refund will be made to the veteran when the letter is presented. Trainees under the California Veterans Institute purchase their own books and supplies for which they receive an allowance of $10 per month.

†The student should be prepared to pay approximately the same amount at the time of winter and spring registration, with the exception of deposits which carry through the year. This total does not include nonresident tuition.
GENERAL REGULATIONS

REGISTRATION PROCEDURE

A "Permit to Register" is prepared by the Registrar's Office for each student who has been accepted to register. Students are required to register as majors in a specific department of the college even though they may not intend to meet curriculum requirements.

Registration dates are clearly shown in the college calendar which is placed in the front of this catalog. "Incoming (new) students" are those students who have not completed the series of placement tests required by the college. Unless there is good reason to register late, students should register for each quarter on the date shown in the college calendar.

Each student should obtain a copy of the quarter class schedule before attempting to register. Instructions for registration will be provided for each student. These instructions if read carefully by the student will prevent many problems that might otherwise arise in the registration procedure.

Credit for course work completed is given only when the student is properly registered. A student is not considered properly registered unless his completed quarter registration forms, listing the program approved by his departmental adviser, are on file in the Recorder's Office. Students are not admitted to courses unless they are registered as students at the college.

Students take the following steps in completing registration, making certain that the program followed each quarter meets the requirements listed for the major curriculum chosen:

1. Obtain set of registration instructions.
2. Obtain quarter class schedule.
3. Clear through registration line:
 a. Receive Permit to Register.
 b. Pay registration fee.
 c. Pay medical fee, post office box fee, board and room.
 d. Purchase activity card.
 e. Complete placement tests. (Incoming students only, Counseling Center)
 f. Complete health examination. (Medical Center)
 g. Report to departmental adviser to plan program and complete registration forms.
 h. Submit completed registration forms to the Recorder's Office on dates shown in registration instructions.

CHANGE OF CURRICULUM

Students who find that they are in a curriculum which does not provide the kind of training for which they have the greatest aptitude are encouraged to transfer to another curriculum as soon as the condition becomes apparent. Students must contact the college Counseling Center for assistance in making curriculum changes. Approval by the Veterans Administration must be obtained by students enrolled under certain laws before the major curriculum can be changed.

Transfer from one curriculum to another does not in any way change a student's academic standing. If an individual is on probation in one curriculum and decides to change to another, he will still be on probation under the new choice.

REVISION OF CURRICULAR REQUIREMENTS

A student is not held for courses added to a curriculum in quarters which he has completed. However, a student shall meet all changes in curricular requirements affecting quarters which he has not completed. The determination of a student's standing, in reference to quarters completed, will be computed upon the basis of the number of units remaining to be completed in the student's selected curriculum.
CURRICULUM DEVIATION

Although the college has specified a curriculum for each major, under certain conditions a student may be permitted some deviation from the established curriculum. Detailed instructions for applying for a curriculum deviation may be obtained from the Recorder's Office.

CHANGE OF STUDY LIST

A period of seven days of instruction, starting with the first day that classes are held each quarter, will be allowed for making necessary program changes. Students who desire to change their programs after they have returned their registration books, must complete a "Change of Program Permit" form obtained at the Recorder's Office.

After the seven-day period, courses may be added by completing a "Petition to Add a Course" which requires the approval of the dean of the division in which the course is offered, and is subject to acceptance by the instructor involved. Physical education and music activities courses may be added, however, and changes of program involving refresher courses in English, mathematics, and chemistry may be made after the seven-day period through the Recorder's Office by completing a "Change of Program Permit."

A period of 15 days of instruction is allowed to withdraw from courses without penalty. Students who desire to withdraw from a course may do so by obtaining a "Permit to Withdraw From a Course" from the Recorder's Office. This permit must be properly filled out by the student and signed by the instructor. Before signing, the instructor will indicate whether the student is to receive a grade of F (failure) or W (withdrew) for the course. The grade of W indicates that the student is passing (Grade A to D) in the course at the time of withdrawal.

A fee of $1 will be charged for each program change made after the allowed time except in cases where the change is made upon the recommendation of the student's departmental adviser.

Students who withdraw from college prior to the end of the quarter shall receive a W or an F grade in each course depending upon whether passing or failing work has been accomplished up to the time of withdrawal.

Public Law 16 veterans must contact their Veterans Administration Training Officer before making any changes in their program.

CLASS ATTENDANCE

Students are expected to be regular in attendance in order to keep the quantity and quality of work high. Absence from classes is regarded as a serious offense, and no excuses for work missed are provided.

An excused absence can be allowed only by the instructor in charge of the class upon consideration of the evidence justifying the absence presented by the student. An excused absence merely gives the individual who missed the class an opportunity to make up the work and in no way excuses him from the work required.

MINIMUM GRADE REQUIREMENTS

Any student who fails to maintain satisfactory grades will be placed on probation. Probationary status will be assigned under the following conditions:

1. If the student transfers to this college and is admitted on probation (see under ADMISSIONS).
2. If, at the end of his first quarter in residence, the student has not made a C average.
3. If the student's cumulative grade-point average falls below a C average.
4. If, for each of any two consecutive quarters, the student has not made a C average.

A student may remove himself from probation by achieving satisfactory grades in subsequent work.

Any student will become subject to dismissal if he fails to maintain a C average while on probation.
General Regulations

Students who have been dismissed because of low scholarship will not be admitted until at least one full quarter has elapsed and then only under certain conditions. These students must make application for readmission in writing directly to the President of the college. In applying for readmission, students must list reasons why they should be readmitted and present records of courses attempted or activities directed toward improving their chances for scholastic success. Students readmitted will enter on academic probation.

GRADING SYSTEM

The following grading system is in effect:

A—Superior
B—Better than average
C—Average
D— Barely passing
E—Incomplete
F—Failure
W—Withdrawn from course without failure
NR—No report received from instructor

Grade points are assigned to the various grades as follows:

- For each unit of Grade A—3 points
- For each unit of Grade B—2 points
- For each unit of Grade C—1 point
- For each unit of Grade D—0 point
- For each unit of Grade E—0 point
- For each unit of Grade F—0 point

Passing grades are marked by A, B, C, D. Grade E (incomplete) indicates a record below passing. It can be made up or completed without repeating the course in class by re-examination, or completing all unfinished work, or both, as the instructor may determine. The removal of grade E entitles the student to the number of grade points to which he may be entitled for his passing grade.

Grade E may be given to a student for the following reasons:

1. Passing in class work, but final examination not taken.
2. Passing in class work completed and in final examination, but some assigned work not completed.

A grade of E must be made up to a passing grade the next time the course is offered, or within one year, whichever is the later. In the event this is not done, the course must be retaken.

Grade F indicates failure. It is a record so poor that it can be raised to a passing grade only by repetition of the course. The grade of F shall remain on the permanent record, but the accompanying units attempted will be disregarded if the course is subsequently retaken and passed.

The student may repeat a course in which a final grade of D has been received. The first grade earned for the course will remain on the transcript, but the units attempted will be disregarded for grade point purposes.

Students may have grades sent to their home addresses by leaving self-addressed stamped envelopes in the Recorder’s Office at the end of the quarter; otherwise, grades will be sent to students through their campus mail boxes.

MAXIMUM AND MINIMUM LOAD

All students must be classified in one of the major departments of the college. Students must register for not more than 20 quarter units of work; the only exceptions are made with the approval of the student’s division dean and completion of a petition to carry excess load. Regular credit will not be given for a course completed in any quarter unless the course appears on the student’s approved program card for that quarter. A student who desires to carry less than 7 units in a regular quarter will register as a limited student. Maximum load requirements may be waived only on presentation of evidence of ability to carry successfully such a group of courses. Maximum load for graduate students is 16 units per quarter.

Veterans enrolled under Public Law 346 must enroll for a minimum of 12 quarter units to receive full subsistence pay. Veterans enrolled under Public Law 16
must enroll for a minimum of 16 units and cannot change their courses or major unless permission is received from their Veterans Administration Training Officer. Veterans enrolled under Public Law 550 must enroll for a minimum of 14 units to receive full monthly payments.

HONORS (PRESIDENT'S LIST)

The "President's List" is published annually to honor those students who have earned a 2.0 grade point average (B average) for the school year. Students to be considered for the President's List must be enrolled for at least the minimum number of units to be considered a regular student during the enrollment period involved.

TRANSFER TO OTHER COLLEGES

Students who plan to transfer from the California State Polytechnic College to another college or university, should, at the earliest possible date, request that their transcript of record be forwarded by the Recorder's Office. Any evaluation of transcripts presented to another college or university will be made by the new institution in terms of its established policies.

CREDIT BY EXAMINATION

A regularly enrolled student may be permitted to obtain credit by examination in subject matter fields in which he is especially qualified through previous training or experience. A fee of $1 per unit is charged for such an examination. It may include written, oral, or skills tests, or a combination of all three types, and will be sufficiently comprehensive to determine that the student has essentially the same knowledges and skills as those students who successfully complete the course are required to possess. A student is not permitted to obtain credit by examination in a course unless all prerequisites for the course as specified in this catalog have been satisfied. The length of the examination will be consistent with the unit value of the course. When a re-examination is requested for a course, a six-weeks period must elapse before a petition for credit by examination will be considered. Units of credit received through this procedure may not apply toward the residence requirement for graduation.

Detailed instructions for applying for credit by examination may be obtained from the Recorder's Office.

AUDITING OF COURSES

Regularly enrolled students are allowed to audit courses if they receive permission from the instructor in charge. Students will not receive units of credit or grades for courses audited.

CREDIT FOR MILITARY SERVICE

1. Nine quarter units of elective credit will be allowed toward graduation to any student with honorable discharge submitting evidence of satisfactory completion of 15 weeks of training in the military service of the United States.
2. In addition to the nine quarter units under 1, 13½ quarter units of elective credit will be allowed toward graduation to any student submitting evidence that he has received a commission in the Army, Navy, Air Force, Coast Guard, or Marine Corps. Maximum total credit possible toward graduation for military service is 22½ quarter units.
3. In allowing for credit for in-service training, California State Polytechnic College follows the recommendations of the American Council on Education in terms of units allowed and subject matter covered.

ELIGIBILITY FOR INTERCOLLEGIATE ATHLETICS

Eligibility matters are under the jurisdiction of a faculty committee. In general, regulations are determined by conference rule. Salient points are noted below:

1. Competition is open to regularly enrolled students carrying at least 12 units applicable toward an approved objective.
2. The student must have completed a minimum of 36 quarter units between seasons of competition in a sport and cannot at any time have a deficiency of more than five grade points.
3. Freshmen are eligible for varsity competition.
4. Transfer students from four-year colleges must have a year of residence to be eligible.
5. Junior college transfers are immediately eligible. Two years of junior college competition are allowed, plus three years of varsity competition.

HONORABLE DISMISSAL

Honorable dismissal automatically will be noted on the transcript of each student who graduates or withdraws from the college, unless he has been disqualified because of misconduct.

PROBATION, SUSPENSION, OR EXPULSION

In general, the college expects its students to conduct themselves as mature young men and women. Specifically, the college will not tolerate dishonesty, drinking on the campus, or being on the campus in an intoxicated condition.

Any student of a state college may be placed on probation, suspended, or expelled for one or more of the following causes:

(a) Disorderly, unethical, vicious, or immoral conduct.
(b) Violation of any regulation governing the use or parking of motor vehicles on the college campus.
(c) Misuse, abuse, theft, or destruction of state property.

The period for which the student may be placed on probation or suspended shall not exceed 12 months. No fees or tuition paid by or for such student for the semester, quarter, or summer session in which he is suspended shall be refunded. If the student is re-admitted before the close of the semester, quarter, or summer session in which he is suspended, no additional tuition or fees shall be required of the student on account of his suspension.

A student may be expelled by the Director of Education upon the recommendation of the President of the state college in which the student is enrolled.

COURSE NUMBERING SYSTEM

The numbering system used is a three-digit system. Courses are grouped first into number series indicating the college level at which they are normally taught as follows:

1-9—Preparatory courses
100-199—Freshman courses
200-299—Sophomore courses
300-399—Junior courses
400-499—Senior courses
500-599—Graduate courses
600-699—Professional courses

The first digit indicates the level or year in which the courses are normally taught. The second digit indicates the type of course with numbers assigned as follows:

0 or 1—Lecture courses
2 or 3—Courses involving both lecture and laboratory
4 or 5—Courses composed entirely of laboratory work
6 or 7—Senior project or seminar
8 or 9—Graduate thesis or seminar

The third digit indicates the quarter in which the course is normally taught.

1, 4 or 7—Fall quarter course
2, 5 or 8—Winter quarter course
3, 6 or 9—Spring quarter course

Note: Courses numbered 1-9 carry no credit toward meeting degree requirements in any of the curricula. Courses numbered 300-499 may be used for graduate credit with permission of the Coordinator of Graduate Studies.
SYMBOLS

The following symbols are used to indicate departments in which the courses are offered:

Aero—Aeronautical Engineering
AC—Air Conditioning and Refrigeration Engineering
AE—Agricultural Engineering
Ag. Ed.—Agricultural Education
AMS—Agricultural Management and Sales
AH—Animal Husbandry
AV—Audio-Visual Education
SI—Horticultural Services and Inspection
Arch—Architectural Engineering
Art—Art
Bact—Bacteriology
Bio—Biology
Bot—Botany
CF—Fruit Production
Chem—Chemistry
CP—Crops Production
DH—Dairy Husbandry
DM—Dairy Manufacturing
Ec—Economics
Ed—Education
EE—Electrical Engineering
EL—Electronic Engineering
Eng—English
Ent—Entomology
FM—Farm Management
FP—Deciduous Fruit Production
Geog—Geography
IE—Industrial Engineering
HE—Home Economics
Hist—History
Jour—Journalism
Math—Mathematics
ME—Mechanical Engineering
MS—Machine Shop
Mu—Music
OH—Ornamental Horticulture
PE—Physical Education
Phil—Philosophy
Pol Sc—Political Science
PH—Poultry Husbandry
Phys—Physics
PI—Poultry Industries
Pr—Printing
PSc—Physical Science
Psy—Psychology
Soc—Sociology
Soc Sc—Social Science
Sp—Speech
SS—Soil Science
TC—Truck Crops
VS—Veterinary Science
Weld—Welding
Zoo—Zoology
DEGREES AND CREDENTIALS

GRADUATION REQUIREMENTS

Degree Curricula

GENERAL REQUIREMENTS FOR GRADUATION

All candidates for the bachelor of science degree shall have completed the requirements in one of the listed four-year curricula, shall have spent not less than three quarters in residence (two quarters immediately preceding graduation), shall have earned not less than 50 quarter units in residence, and shall have earned a total number of grade points at least equal to the number of units attempted. Transfer students, in their work taken at this college, must earn a number of grade points at least equal to the number of units attempted at this college.

Candidates from the Engineering Division must present a minimum of 210 quarter units of credit for graduation. Candidates from the Agriculture Division (except agricultural engineering which requires 210 quarter units) and from the Arts and Sciences Division must present a minimum of 198 quarter units of credit for graduation.

REQUIRED GENERAL EDUCATION

All candidates for the bachelor of science degree shall have completed the following general education requirements:

Social Sciences (15 units)
- 9 units of Political Science and History: Pol Sc 301, Hist 304, 305
- 3 units of Economics: Ec 201
- 3 units from Ec 105, 202, 316, 411, 412, Geog 308, Hist 107, Pol Sc 401, Soc Sc 101

Natural Sciences (15 units)
- 3-12 units of Physical Science from PSc 101, 102, 103, 209, 216, Phys 131, 132, 133, 204, 208, Chem 206, 321, 322, 323, 324, 325, 326
- 3-12 units of Life Science from Bact 221, Bio 101, 102, 103, 110, 127, 128, 129, Bot 121, 122, Zoo 131, 132, 238

Literature, Philosophy, or the Arts (9 units)
- 9 units from Literature, Philosophy, and Fine or Practical Arts: Eng 106. At least 3 units from Eng 211, 212, 213, 311, 312, 313, Phil 201. Not more than 3 units from AE 121, 122, AC 121, 129, MS 141, 142, 144, 151, 152, Weld 151, 152, Arch 244, 245, ME 121, Music or Art.

Health and Physical Education (5 units)
- 3 units of Physical Education Activity: PE 141, 142, 143, PE 241, 242, 243
- 2 units of Health and Hygiene: PE 107

Oral and Written Expression (6 units)
- 6 units of English: Eng 104, 105

Psychology (3 units)
- 3 units of Psychology: Psy 206

Additional Units in General Education (15 units)
- 15 additional units in general education chosen from the above or from courses in the following list: Math 102, 103, 111, 112, 117, 121, 122; Sp 201; Eng 301; Ec 301; Psy 202; Art (6 units); Arch 141; Music (6 units); Senior Project.

Two-year Technical Curricula

REQUIREMENTS FOR GRADUATION

All candidates for a technical certificate shall have completed 98 quarter units of courses approved by the department granting the certificate, shall have been in residence at least two quarters immediately preceding graduation, shall have
earned not less than 32 quarter units in residence, and shall have earned a total number of grade points at least equal to the number of units attempted.

APPLICATION FOR GRADUATION

Students shall make application for graduation in the Recorder's Office prior to the last date for filing such applications, as shown in the college calendar.

DOUBLE MAJORS

The student will normally meet graduation requirements for a degree in one of the major departments. It is permissible for a student to have two majors indicated on his degree if the complete requirements of both curricula have been met. A student who desires to submit only one senior project covering two graduation majors must file a petition for special consideration prior to the date of commencing the senior project.

THE MASTER OF ARTS DEGREE

Fields of Concentration

The California State Polytechnic College offers a master of arts degree in education with concentrations in the fields listed below. The purpose of the graduate program is to serve teachers, or to prepare students for teaching. In making application for admission to a program leading to the master of arts degree the student indicates one of these fields of concentration, based on the undergraduate and teaching major:

1. Agriculture
2. Biological sciences
3. Education
4. English
5. Mathematics
6. Physical education
7. Physical sciences
8. Social sciences

ADMISSION TO GRADUATE STANDING

A graduate of this college or of another four-year institution having substantially the same requirements for the baccalaureate degree is eligible to apply to the Admissions Office for admission as a graduate student. Admission does not imply that the student is accepted as a candidate for the master's degree or for an institutional recommendation for a credential, but it does place him on graduate standing and authorizes him to take graduate work for which he is otherwise eligible.

Evaluation for Admission to Graduate Standing

For purposes of evaluation, applications must be accompanied by a copy of all official transcripts of previous college work. Such evaluation should be accomplished through correspondence prior to registration.

Applicants who wish to become candidates for the master's degree must, following admission to graduate standing, file an application for tentative candidacy for the degree. The form for this application may be obtained from the Coordinator of Graduate Studies. The Graduate Study Committee must have accepted the application for tentative candidacy for the master's degree before graduate work may be applied to degree requirements.

Admission to full graduate standing may be denied on the basis of: (1) undergraduate scholarship average below 1.0, (2) graduation from a nonaccredited college, (3) completion of a four-year program not considered comparable to the bachelor of science degree, (4) failure to clear completely with the Admissions Office and the Coordinator of Graduate Studies before the college opens and courses start.

Graduate Courses Taken by Undergraduates

An undergraduate student at the San Luis Obispo Campus of the California State Polytechnic College may apply for graduate standing if he is within 12 units of graduation and if his cumulative grade point average is 1.0 or better. This will permit him to take for graduate credit courses which meet graduate criteria and are not used to meet requirements for his Bachelor of Science degree. Graduate credit will not be given for any courses taken prior to admission to graduate standing.
Admission From a Nonaccredited College

Provisional admission to graduate study may be granted to one who holds a bachelor's degree from a nonaccredited college. Such a student will be eligible for full graduate standing when he has completed 12 units of upper division or graduate work with a grade point average of 2.0 and has removed such baccalaureate deficiencies as may have existed.

Admission for Those Not Yet Cleared for Graduate Standing

Provisional graduate standing will be granted to those applicants for graduate standing who have not yet been cleared at the time the college opens and courses start. Such candidates elect graduate work at their own risk, since no candidate may use such work for the master's degree unless he is later placed on full graduate standing.

Admission to Graduate Courses

To be admitted to graduate courses a student must have graduate standing (either provisional or full) and, unless he has an undergraduate major in the field, have permission of the instructor of the course. Candidates are referred to the specific course descriptions, since in some cases the permission of the department head or division dean may be specified.

ADMISSION TO CANDIDACY FOR THE MASTER OF ARTS DEGREE

To be admitted to candidacy for a master's degree a student shall have full graduate standing and shall have met the following criteria:

1. The candidate must possess an acceptable baccalaureate degree from an accredited college or have made up such deficiencies as may have existed. As indicated in the section on Admissions a copy of all transcripts of previous work must be filed in the Admissions Office.

2. There must be a grade point average of 1.5 in all undergraduate work and 2.0 in all courses taken subsequent to admission to graduate standing. The maximum load for graduate students is 16 units per quarter.

3. The candidate must possess a valid regular day school service California credential other than an emergency or a provisional credential, or complete by the time of receiving the master's degree the requirements for such a credential. Under certain circumstances the requirements for the credential may be waived:
 (A) For students who because of citizenship in a foreign country are ineligible for a California credential, but who are teachers or are preparing to teach in a foreign country.
 (B) For teachers with a minimum of one year of teaching experience who hold a license to teach in another state, or
 (C) For applicants preparing to teach in institutions not requiring teaching credentials provided that a minimum of 18 quarter units in professional education be included in their graduate year.

4. Applicants must complete 12 quarter units of work at the California State Polytechnic College with a minimum grade point average of 2.0 before being admitted to full candidacy. Applicants who fail to maintain this average will be warned and if the deficiency continues through a second quarter, will be rejected.

5. The applicant must receive the approval of the major department and of the Graduate Study Committee.

6. The candidate must meet such standards of character, emotional stability, and general competence as may be established by the Graduate Study Committee and evaluated by tests or other evidence.

7. The applicant must pass a health examination. The regular credential examination, if taken early enough and at this college, will satisfy this requirement.

GRADUATION REQUIREMENTS FOR THE MASTER OF ARTS DEGREE

1. There must be a satisfactory completion of the candidate's degree program as determined by the Graduate Study Committee and the candidate's committee.

2. The program of graduate work must be completed with a grade point average of 2.0. (Courses are acceptable for the master's degree program only if grades of "A," "B," or "C" have been received.)
3. There must be a total of 45 quarter units of work approved for graduate credit after the candidate has been accorded graduate standing. In general all 300, 400, or 500 series courses will be accepted for graduate credit except where 500 series courses are specifically required. Other exceptions are Ed 301, Principles of Secondary Education, Ed 403, Teaching Plans and Techniques, and Ed 312, Educational Psychology, since these courses are part of the undergraduate credential pattern. The candidate should consult his adviser concerning courses which may subsequently be added to the list of exceptions.
 a. At least 36 of the total 45 units must be taken at the California State Polytechnic College after the date of establishing graduate standing.
 b. A total of 18 units must be in the candidate's area of concentration (major), including 3 units in curriculum and methods, and 9 additional units of graduate courses (500 series).
 c. A minimum of 12 graduate units in Education is required, to be selected in conference with the student's adviser.
 d. The candidate's adviser and his committee will indicate such additional courses as may be required to complete the minimum program of 45 units and to meet the student's needs.
 e. Not more than 9 units of the graduate program shall be in directed teaching, extension courses, and transfer credit.
4. Candidates who are completing their credential pattern concurrently with the master's degree must complete the credential work before they will be granted the degree.
5. Comprehensive written and oral examinations are required of all candidates.
6. Candidates are required to complete one year of teaching before completing the work for the master's degree.
7. Following successful completion of the comprehensive examinations the candidate must make application for graduation in the Recorder's Office. This must be done prior to the last date for filing such applications, as shown in the college calendar.

PREPARATION FOR ELEMENTARY AND SECONDARY SCHOOL TEACHING

California State Polytechnic College is accredited by the State Board of Education to recommend for the following credentials:
- Special Secondary Credential in Vocational Agriculture
- Special Secondary Limited Credential in Agriculture
- Special Secondary Credential in Physical Education
- General Secondary Credential with majors in Agriculture, English, Life Sciences and General Science, Mathematics, Physical Education, Physical Science and General Science, and Social Studies
- General Elementary Credential

SELECTION OF TEACHER CANDIDATES

California State Polytechnic College attempts to make a concrete contribution to the public schools' educational program of the State by preparing, in the special and general fields, teachers who will have a practical approach to the real-life social, economic, and political problems of their pupils. The "learn-by-doing" instructional method of the college is designed to prepare teachers to adjust to the needs of the pupils and the community. The practical training of the college instructors themselves integrates directly with the purpose of teacher education.

Selection of candidates to prepare for teaching is accomplished through a three-step process in addition to the personal and individual counseling given by faculty advisers.

A faculty Teacher Education Committee functions to establish policies and standards for teacher candidate selection and for the review of the candidate's qualifications. The committee is composed of instructors in professional fields, instructors concerned with supervision of student teaching, representatives of the deans of each of the three major college divisions, the Dean of Students, and other individuals such as the Agricultural Teacher Trainer.

The first step for a student in applying for admission to the teacher education program and for eventually qualifying for a teaching credential is to submit an "application for candidacy for a teaching credential" and show evidence that he
Degrees and Credentials

is likely to complete the requirements for the bachelor of science degree with a grade point average of 1.5. When graduate work is required for a credential, a grade point average of 1.75 is required for work taken in the graduate year.

Consideration of this application involves a review of the applicant's grade point average, a study of his confidential appraisals, and an examination of accumulated test data. Test results include the areas of academic aptitude, English usage, general culture, and interests. The tests ordinarily will be administered by the college during an early course in the required education sequence. The primary purpose of these tests is to inform the student of his achievement and abilities so that he can develop his strengths and eliminate his weaknesses. A secondary purpose is to help the college to appraise the student for selection, preparation, and placement purposes to produce the best possible teacher.

The second formal selective process occurs when the candidate who has previously received approval at the first step, makes application for his student (directed) teaching. A review of the applicant's achievements and progress subsequent to his first approval is made. By this time, the responsible subject matter department head, education department instructor, or the Agricultural Teacher Trainer has had further opportunity to observe and work more closely with the candidate. Only the stronger candidates are selected to enter student teaching.

The vocational agriculture cadet, in addition, must make application for a cadet appointment which is granted by the State Bureau of Agricultural Education only after a full review of the applicant's record, experience, and recommendation. The third step is the filing of an application for a teaching credential by the candidate. Successful performance in a broad and well-balanced student teaching experience is a major qualification for recommendation. The evaluations and recommendations of the supervising teacher and the administrator in the local training center are important factors in the final decision.

When the candidate is notified by letter that he has been approved, he supplies his credential adviser with:

1. A health certificate (Form 41-3);
2. Application to accompany recommendation for credential (Form 41-16);
3. A duplicate set of personal identification cards (obtained in college accounting office);
4. A money order for $4 made out to the California State Department of Education.

SPECIFIC REQUIREMENTS

The Special Secondary Credential in Vocational Agriculture

An applicant for a California State Polytechnic College recommendation for a Special Secondary Credential in Vocational Agriculture must submit:

I. An application for admission to the teacher education program.

II. Verification of three years of farm experience or its equivalent.

III. A four-year college course with a bachelor's degree in agriculture, including:

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Plant Production</td>
<td>23</td>
</tr>
<tr>
<td>B. Animal Husbandry</td>
<td>23</td>
</tr>
<tr>
<td>C. Agricultural Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>D. Agricultural Economics</td>
<td>9</td>
</tr>
<tr>
<td>E. Elective units in above four fields</td>
<td>23</td>
</tr>
<tr>
<td>F. Thirteen quarter units in education distributed as follows:</td>
<td></td>
</tr>
<tr>
<td>1. Principles of Secondary Education</td>
<td>3</td>
</tr>
<tr>
<td>2. Educational Psychology</td>
<td>5</td>
</tr>
<tr>
<td>3. Teaching Plans and Techniques</td>
<td>5</td>
</tr>
<tr>
<td>G. Electives as approved by adviser.</td>
<td></td>
</tr>
</tbody>
</table>

* Students meeting the requirements for this credential may also be recommended for the General Secondary Credential by meeting general education requirements and the pattern for a teaching minor.

† Education 203, The Teaching of Agriculture, 2 units, is strongly recommended, but not required, in the spring quarter of the sophomore year.
IV. One year of graduate work* including:

On Campus (1 1/2 Quarters)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Quarter units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 431</td>
<td>Audio-Visual Aids</td>
<td>3</td>
</tr>
<tr>
<td>Ed 503</td>
<td>Guidance in Secondary Schools</td>
<td>3</td>
</tr>
<tr>
<td>Ed 504</td>
<td>Evaluation in Secondary Education</td>
<td>3</td>
</tr>
<tr>
<td>Ed 522</td>
<td>Methods in Teaching Agricultural Mechanics</td>
<td>5</td>
</tr>
<tr>
<td>Ed 523 A-B</td>
<td>Adult and Continuation Education</td>
<td>6</td>
</tr>
<tr>
<td>Ed 524</td>
<td>Problems in Supervising Farm Programs</td>
<td>5</td>
</tr>
</tbody>
</table>

Off Campus (1 1/2 Quarters)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Quarter units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 525 A-B</td>
<td>Student Teaching in Vocational Agriculture</td>
<td>12</td>
</tr>
<tr>
<td>Ed 521 A-B</td>
<td>Curriculum and Methods in Agriculture</td>
<td>5</td>
</tr>
<tr>
<td>Ed 526 A-B</td>
<td>Vocational Agriculture Department Organization</td>
<td>3</td>
</tr>
</tbody>
</table>

The Special Secondary Limited Credential in Agriculture

An applicant for a California State Polytechnic College recommendation for the Special Secondary Limited Credential in Agriculture must submit:

I. An application for admission to the teacher education program.

II. A bachelor's degree with not less than 36 quarter units in agriculture, including:

A. Twelve quarter units of work in each of the specified subjects to be named on the credential. California State Polytechnic offers courses sufficient to meet these requirements in the fields of:

1. Horticultural Services and Inspection
2. Crops Production
3. Dairy Husbandry and Manufacturing
4. Fruit Production
5. Ornamental Horticulture
6. Animal Husbandry
7. Poultry Husbandry
8. Agricultural Engineering

B. Twenty-eight quarter units of professional work in education, including:

1. Principles of Secondary Education | 3
2. Educational Psychology | 5
3. Teaching Plans and Techniques | 5
4. Student Teaching in General Agriculture | 9
5. Curriculum and Methods in General Agriculture | 3
6. Elective in Education | 3

C. Other courses in education, the major, or the minor fields as approved by the adviser or Agricultural Teacher Trainer.

The Special Secondary Credential in Physical Education

An applicant for a California State Polytechnic College recommendation for the Special Secondary Credential in Physical Education must submit:

I. An application for admission to the teacher education program.

II. A bachelor's degree including:

A. A minimum of 63 quarter units in physical education.

B. Thirty-three quarter units of professional work in education, including:

1. Principles of Secondary Education | 3
2. Educational Psychology | 5
3. Teaching Plans and Techniques | 5
4. Student Teaching in Physical Education | 9
5. Curriculum and Methods in Health and Physical Education | 3
6. Audio-Visual Aids | 3
7. Electives | 5

* A minimum of 36 quarter units of work approved for graduate credit, taken after the student has been admitted to graduate standing.
† Education 203, The Teaching of Agriculture, 2 units, is strongly recommended, but not required in the spring quarter of the sophomore year.
Degrees and Credentials

C. Other courses in education, health, and physical education, and electives approved by the adviser.

The General Secondary Credential

An applicant for a California State Polytechnic College recommendation for the General Secondary Credential must submit:

I. An application for admission to the teacher education program.

II. A four-year college course with a bachelor's degree, including:
 A. Minimum of 13 quarter units in education as follows:

<table>
<thead>
<tr>
<th>Quarter units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Principles of Secondary Education</td>
</tr>
<tr>
<td>2. Educational Psychology</td>
</tr>
<tr>
<td>3. Teaching Plans and Techniques</td>
</tr>
</tbody>
</table>

 B. Sixty quarter units of general education from those listed under the heading, "Required General Education."

III. A. Completion of a teaching major (54 quarter units minimum, of which at least 18 must be taken from junior, senior, and graduate courses) in the field of agriculture, English, biological sciences, physical education, mathematics, physical sciences, or social sciences; and completion of a teaching minor (minimum of 30 quarter units) in a field in which majors are offered; or

 B. Completion of a major in a field not commonly taught in the secondary schools of California, such as engineering, and completion of two teaching minors (minimum of 30 units each) in fields in which teaching majors are offered.

IV. One full year of graduate work of not less than 36 quarter units, taken in residence after the student has been admitted to graduate standing at California State Polytechnic College. These units shall include:

<table>
<thead>
<tr>
<th>Quarter units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Student Teaching</td>
</tr>
<tr>
<td>B. Audio-Visual Aids (if not already taken)</td>
</tr>
<tr>
<td>C. Counseling and Guidance</td>
</tr>
<tr>
<td>D. Nine additional units selected from the following:</td>
</tr>
<tr>
<td>1. Philosophy of Education</td>
</tr>
<tr>
<td>2. Teacher-Administrator Relationships</td>
</tr>
<tr>
<td>3. Evaluation in Secondary Education</td>
</tr>
<tr>
<td>4. Adult and Continuation Education in Agriculture</td>
</tr>
<tr>
<td>5. Educational Sociology</td>
</tr>
<tr>
<td>6. Seminar in Vocational Education and Guidance</td>
</tr>
<tr>
<td>E. At least nine units in the major teaching field, including curriculum and methods in the major field.</td>
</tr>
<tr>
<td>F. Other courses to complete minimum requirements in the teaching fields and for the graduate year.</td>
</tr>
</tbody>
</table>

DEPARTMENTAL REQUIREMENTS FOR TEACHING MAJORS AND MINORS

In addition to requirements I, II, and IV above, the candidate shall complete requirements for a teaching major and a teaching minor. The candidate should contact the department head or representative of the teaching major before registering for his junior year for information concerning the integration of credential requirements with his graduation pattern.

There are good placement opportunities in teaching for majors in engineering who plan a double teaching minor in mathematics and physical science and who meet the other requirements for teacher candidates. By careful selection of electives beginning not later than the sophomore year, it is possible for most engineers in consultation with the engineering adviser to qualify for the general secondary credential within the regular five year program required of all general secondary candidates.

AGRICULTURE—Teaching Major (90 Units)

The requirements are the same as for the Special Secondary Credential in Vocational Agriculture.
California State Polytechnic College

AGRICULTURE—Teaching Minor (33 Units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Mechanics (AE 121)</td>
<td>2</td>
</tr>
<tr>
<td>Anatomy and Physiology (VS 123)</td>
<td>3</td>
</tr>
<tr>
<td>(Prerequisite: Zoo 131, 132)</td>
<td></td>
</tr>
<tr>
<td>Feeds and Feeding (AH 101, 102)</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following sequences</td>
<td>12</td>
</tr>
<tr>
<td>Animal Husbandry 121, 122, 123</td>
<td></td>
</tr>
<tr>
<td>Dairy Husbandry 121; Dairy Manufacturing 132; Dairy Husbandry 142</td>
<td></td>
</tr>
<tr>
<td>Poultry 121, 122, 123</td>
<td></td>
</tr>
<tr>
<td>Truck Crops 124, 125, 126</td>
<td></td>
</tr>
<tr>
<td>Crop Production 121, 122, 123</td>
<td></td>
</tr>
<tr>
<td>Fruit Production 131, 132, 133</td>
<td></td>
</tr>
<tr>
<td>Ornamental Horticulture 121, 122, 123</td>
<td></td>
</tr>
<tr>
<td>Three of the following general courses, outside of the major department selected above</td>
<td>12</td>
</tr>
<tr>
<td>Animal Husbandry 230</td>
<td></td>
</tr>
<tr>
<td>Truck Crops 230</td>
<td></td>
</tr>
<tr>
<td>Dairy Husbandry 230</td>
<td></td>
</tr>
<tr>
<td>Field Crops 230</td>
<td></td>
</tr>
<tr>
<td>Poultry 230</td>
<td></td>
</tr>
<tr>
<td>Fruit Production 230</td>
<td></td>
</tr>
<tr>
<td>General Nursery Practices 230</td>
<td></td>
</tr>
</tbody>
</table>

ENGLISH—Teaching Major (60 Units)

First and Second Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
</tr>
<tr>
<td>Reporting (Jour 202)</td>
<td>3</td>
</tr>
<tr>
<td>Editing and Copy Desk (Jour 233)</td>
<td>3</td>
</tr>
<tr>
<td>Journalism Practice</td>
<td>6</td>
</tr>
</tbody>
</table>

Third and Fourth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Literature (Eng 311, 312, 313)</td>
<td>9</td>
</tr>
<tr>
<td>Advanced Composition (Eng 314)</td>
<td>3</td>
</tr>
<tr>
<td>Editorial and Feature Writing (Jour 302)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 303)</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Radio and TV Programming (Sp 306)</td>
<td>3</td>
</tr>
<tr>
<td>Argumentation and Persuasion (Sp 304)</td>
<td>2</td>
</tr>
<tr>
<td>Public Relations (Jour 412)</td>
<td>3</td>
</tr>
<tr>
<td>English Literature (Eng 411, 412)</td>
<td>6</td>
</tr>
<tr>
<td>Radio and TV Laboratory (Sp 451, 452, 453)</td>
<td>6</td>
</tr>
</tbody>
</table>

Graduate Year

At least nine units including one course from each group:

1. Seminar in English (Eng 590)
 The Short Story (Eng 433) 1–6
2. Seminar in Speech Techniques (Sp 590)
 Speech Techniques in Society (Sp 403) 1–6

ENGLISH—Teaching Minor (31 Units)

First and Second Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
</tr>
<tr>
<td>Reporting (Jour 202)</td>
<td>3</td>
</tr>
</tbody>
</table>

Third and Fourth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Literature (Eng 311)</td>
<td>3</td>
</tr>
<tr>
<td>English Literature (Eng 411)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Composition (Eng 314)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 303)</td>
<td>2</td>
</tr>
<tr>
<td>Public Relations (Jour 412)</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Radio and TV Programming (Sp 306)</td>
<td>3</td>
</tr>
<tr>
<td>3 units selected from</td>
<td></td>
</tr>
<tr>
<td>American Literature (Eng 312, 313)</td>
<td>3</td>
</tr>
<tr>
<td>English Literature (Eng 412)</td>
<td>3</td>
</tr>
</tbody>
</table>
Degree and Credentials

Graduate Year

At least six units selected from at least two groups:

1. Seminar in English (Eng 590)
 - Units: 1-6
2. Seminar in Speech Techniques (Sp 590)
 - Units: 1-6
3. Supervision of School Publications (Jour 502)
 - Units: 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Seminar in English (Eng 590)</td>
<td>1-6</td>
</tr>
<tr>
<td>2.</td>
<td>Seminar in Speech Techniques (Sp 590)</td>
<td>1-6</td>
</tr>
<tr>
<td>3.</td>
<td>Supervision of School Publications (Jour 502)</td>
<td>2</td>
</tr>
</tbody>
</table>

LIFE SCIENCES AND GENERAL SCIENCE—Teaching Major (72 Units)

First and Second Years

- General Physical Science (PSc 101, 102, 103)
 - Units: 12
- General Botany (Bot 121, 122, 123)
 - Units: 12
- General Zoology (Zoo 131, 132, 133)
 - Units: 12

Third and Fourth Years

- Genetics (Bio 303)
 - Units: 3
- General Chemistry (Chem 321, 322, 323, or Chem 324, 325, 326)
 - Units: 12
- Elective courses from Biological Sciences offerings and a maximum of nine units of the following applied courses
 - Units: 12

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physical Science</td>
<td>12</td>
</tr>
<tr>
<td>General Botany</td>
<td>12</td>
</tr>
<tr>
<td>General Zoology</td>
<td>12</td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>Elective courses</td>
<td>12</td>
</tr>
</tbody>
</table>

- Animal Breeding (AH 304)
 - Units: 3
 - Prerequisite: VS 123, Bio 303
- General Field Crops (CP 230)
 - Units: 3
- General Fruit Production (FP 230)
 - Units: 3
- General Truck Crops (TC 230)
 - Units: 3
- Plant Propagation (OH 123)
 - Units: 4
- General Nursery Practices (OH 230)
 - Units: 3
- General Poultry Production (PH 230)
 - Units: 4
- Soils (SS 121)
 - Units: 4
- Anatomy and Physiology (VS 123)
 - Units: 3
 - Prerequisite: Zoo 131, 132
- Livestock Hygiene and Sanitation (VS 202)
 - Units: 3
 - Prerequisite: VS 123
- Animal Parasitology (VS 203)
 - Units: 2
 - Prerequisite: VS 123 and Chemistry

Graduate Year

- Curriculum and Methods in Biological Science (Bio 521)
 - Units: 3
- 6 units from:
 - Bio 590, Bot 590, Zoo 590, or
 - Other junior, senior or graduate courses approved by adviser
 - Units: 6

LIFE SCIENCES AND GENERAL SCIENCE—Teaching Minor (36 Units)

- General Botany (Bot 121, 122, 123)
 - Units: 12
- General Zoology (Zoo 131, 132, 133)
 - Units: 12
- 12 units from any one of the three following sequences:
 - General Chemistry (Chem 321, 322, 323) or
 - General Physical Science (PSc 101, 102, 103) or
 - Chemistry (Chem 324, 325, 326)
 - Units: 12

MATHEMATICS—Teaching Major (56 Units)

(18 units of the 56 must be in applications of mathematics)

First and Second Years

- Mathematics for Engineers (Math 117, 118)
 - Units: 10
- Differential and Integral Calculus (Math 201, 202, 203)
 - Units: 9
- Descriptive Statistics (Math 211)
 - Units: 3
- In addition, at least three units from the following:
 - Elementary Engineering Problems (Math 213)
 - Units: 2
 - Mathematics for Printers (Math 105)
 - Units: 3
 - Agricultural Mathematics (Math 102, 103)
 - Units: 3 or 6
 - Surveying
 - Units: 2, 4, or 6
- Descriptive Geometry (ME 125, 126)
 - Units: 6
- Slide Rule (Math 104)
 - Units: 1

* Applied courses.
Third and Fourth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Equations (Math 307)</td>
<td>3</td>
</tr>
<tr>
<td>Differential Equations (Math 316, 317)</td>
<td>5</td>
</tr>
<tr>
<td>*Mathematical Analysis of Engineering Problems (Math 318)</td>
<td>3</td>
</tr>
<tr>
<td>*Secondary School Mathematics (Math 402, 403)</td>
<td>6</td>
</tr>
</tbody>
</table>

In addition, at least five units from the following:

- *Engineering Statics (Phys 201) | 3 |
- *Mathematical Analysis of Engineering Problems (Math 319) | 3 |
- *Vector Analysis (Math 404, 405) | 4 |
- *Functions of a Complex Variable (Math 408) | 2 |
- Senior Project and Seminar (Math 461, 462, 463) | 6 |
- Applied Mathematics course approved by adviser | 3 |

Graduate Year

Completion of:

- *Curriculum and Methods in Mathematics (Math 521) | 3 |

3 units from the following:

- Non-Euclidean Geometry (Math 501) | 3 |
- Development of Mathematics (Math 509) | 3 |
- Survey of Modern Mathematics (Math 510) | 3 |
- Seminar (Math 580) | 3 |

In addition, at least three units from any junior, senior, or graduate mathematics course approved by adviser.

MATHEMATICS—Teaching Minor (30 Units)

First and Second Years

- Mathematics for Engineers (Math 117, 118) | 10 |
- Differential and Integral Calculus (Math 201, 202, 203) | 9 |

Third and Fourth Years

- *Secondary School Mathematics (Math 402 or 403) | 3 |

In addition, at least five units from the following:

- Differential Equations (Math 316, 317) | 5 |
- Theory of Equations (Math 307) | 3 |
- *Mathematical Analysis of Engineering Problems (Math 318) | 3 |
- *Descriptive Statistics | 3 |
- Vector Analysis (Math 404) | 2 |
- Functions of a Complex Variable (Math 408) | 2 |
- *Engineering Statics (Phys 201) | 3 |

Graduate Year

Three units selected from the following:

- *Curriculum and Methods in Mathematics (Math 521) | 3 |
- Development of Mathematics (Math 509) | 3 |
- Survey of Modern Mathematics (Math 510) | 3 |
- Non-Euclidean Geometry (Math 501) | 3 |
- Seminar (Math 580) | 3 |
- Any junior or senior mathematics course approved by adviser | 3 |

PHYSICAL EDUCATION—Teaching Major (60 Units)

First and Second Years

- General Zoology (Zoo 131, 132) | 8 |
- Safety and First Aid (PE 121) | 2 |
- Community Recreation (PE 126) | 3 |
- Swimming and Water Sports (PE 123) | 2 |
- Intramural Sports (PE 232) | 3 |
- Health Education (PE 203) | 2 |

* Applied courses.
Degrees and Credentials 49

Third and Fourth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football Theory (PE 321)</td>
<td></td>
</tr>
<tr>
<td>Baseball and Softball Theory (PE 323)</td>
<td></td>
</tr>
<tr>
<td>Track and Field Theory (PE 333)</td>
<td></td>
</tr>
<tr>
<td>or Teaching Progression in Girls Sports (PE 324W, 325W, 326W)</td>
<td>6</td>
</tr>
<tr>
<td>Kinesiology (PE 302)</td>
<td>2</td>
</tr>
<tr>
<td>Basketball Theory (PE 422)</td>
<td>3</td>
</tr>
<tr>
<td>or Introduction to Dance (PE 334W)</td>
<td>3</td>
</tr>
<tr>
<td>Organization and Administration of Physical Education (PE 401)</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education Activity (PE 341, 342, 343)</td>
<td>3</td>
</tr>
<tr>
<td>Tests and Measurements in Physical Education (PE 425)</td>
<td>3</td>
</tr>
<tr>
<td>Elementary Physical Education Activity (PE 332)</td>
<td>3</td>
</tr>
<tr>
<td>Physiology of Exercise (PE 303)</td>
<td>2</td>
</tr>
<tr>
<td>Techniques of Officiating (PE 331)</td>
<td>2</td>
</tr>
<tr>
<td>School Health Administration (PE 405)</td>
<td>2</td>
</tr>
<tr>
<td>Minor Sports Theory and Practice (PE 441, 442, 443)</td>
<td>3</td>
</tr>
<tr>
<td>or Teaching Progression in Dance (PE 446W, 447W, 448W)</td>
<td>6</td>
</tr>
<tr>
<td>Athletic Training and Massage (PE 432M) (Men Candidates Only)</td>
<td>1</td>
</tr>
</tbody>
</table>

Graduate Year

Completion of the following courses in Physical Education:
- Curriculum and Methods in Physical Education (PE 403) 3
- Corrective Physical Education (PE 406) or
 - Advanced Personal Hygiene (PE 512) or
 - Administration of Women's Physical Education (PE 511W) 3

PHYSICAL EDUCATION—Teaching Minor (30 Units)

First and Second Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Education (PE 141, 142, 143, 241, 242, 243)</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
</tr>
<tr>
<td>Community Recreation (PE 126)</td>
<td>3</td>
</tr>
<tr>
<td>Intramural Sports (PE 232)</td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 203)</td>
<td>2</td>
</tr>
<tr>
<td>Safety and First Aid (PE 212)</td>
<td>2</td>
</tr>
</tbody>
</table>

Third, Fourth, or Fifth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Sports Theory and Practice (PE 441, 442, 443)</td>
<td>3</td>
</tr>
<tr>
<td>or Teaching Progression in Dance (PE 446W, 447W, 448W)</td>
<td>6</td>
</tr>
<tr>
<td>Organization and Administration of Physical Education (PE 401)</td>
<td>3</td>
</tr>
<tr>
<td>Curriculum and Methods in Physical Education (PE 403)</td>
<td>3</td>
</tr>
<tr>
<td>Electives—three to six additional units selected from the following</td>
<td>3-6</td>
</tr>
</tbody>
</table>
 - Football Coaching Theory (PE 321) 2
 - Basketball Coaching Theory (PE 422) 2
 - Baseball Coaching Theory (PE 323) 2
 - or Teaching Progression in Sports (PE 324W, 325W, 326W) 6
 - Introduction to Dance (PE 334W) 3

PHYSICAL SCIENCES AND GENERAL SCIENCE—Teaching Major (70 Units)

First and Second Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physics (Phys 131, 132, 204)</td>
<td>12</td>
</tr>
<tr>
<td>General Chemistry (Chem 321, 322, 323)</td>
<td>12</td>
</tr>
<tr>
<td>Sound (Phys 212)</td>
<td>3</td>
</tr>
<tr>
<td>Light (Phys 223)</td>
<td>3</td>
</tr>
<tr>
<td>Construction of Laboratory Glassware (Chem 342)</td>
<td>1</td>
</tr>
<tr>
<td>Machine Shop (MS 144)</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Mathematics (Math 118)</td>
<td>5</td>
</tr>
<tr>
<td>Differential and Integral Calculus (Math 201, 202, 203)</td>
<td>9</td>
</tr>
</tbody>
</table>
Third and Fourth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
</tr>
<tr>
<td>Quantitative Analysis (Chem 331)</td>
<td>4</td>
</tr>
<tr>
<td>Electives from the following applied courses</td>
<td>6</td>
</tr>
<tr>
<td>Modern Physics (Phys 401, 402)</td>
<td>3 or 6</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Statics (Phys 201)</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Dynamics (Phys 202)</td>
<td>3</td>
</tr>
<tr>
<td>Geology (PSc 209)</td>
<td>3</td>
</tr>
<tr>
<td>Astronomy (PSc 213)</td>
<td>3</td>
</tr>
<tr>
<td>Strength of Materials (ME 202)</td>
<td>3</td>
</tr>
<tr>
<td>Steam Power Plants (ME 101)</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineering (EE 207, 208, 209)</td>
<td>9</td>
</tr>
<tr>
<td>Fluid Flow (ME 311, 312)</td>
<td>6</td>
</tr>
<tr>
<td>Industrial Heat Transfer (ME 313)</td>
<td>6</td>
</tr>
<tr>
<td>Other courses approved by adviser.</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Year

Curriculum and Methods in Physical Sciences (PSc 521) .. 3
In addition select six units from the following ... 6
Advanced Inorganic Chemistry (Chem 513) .. 3
Philosophy of Science (PSc 512) ... 3
Nuclear Physics (Phys 502) .. 3
Agricultural Biochemistry (Chem 328) .. 3
Selected Topics in Advanced Physics (Phys 501) .. 3
Other courses approved for graduate credit.

PHYSICAL SCIENCES AND GENERAL SCIENCE—Teaching Minor (37 Units)

General Physics (Phys 131, 132, 204) .. 12
General Chemistry (Chem 321, 322, 323) .. 12
A minimum of 10 units selected from the following courses, not more than eight units of the minimum to be selected from either physics or chemistry.

- Sound (Phys 212) .. 3
- Light (Phys 223) .. 3
- Engineering Statics (Phys 201) .. 3
- Quantitative Analysis (Chem 331, 332) .. 4 or 8
- Organic Chemistry (Chem 326) ... 4
- Agricultural Biochemistry (Chem 328) .. 4
- Modern Physics (Phys 401, 402) ... 3 or 6

Graduate Year

Three units selected from the following:
Curriculum and Methods in Physical Science (PSc 521) ... 3
Other courses offered in teaching major graduate year.

SOCIAL STUDIES—Teaching Major (57 Units)

First and Second Years

- History of Civilization (Hist 101, 102, 103) .. 9
- Principles of Sociology (Soc 201, 202, 203) .. 9
- American Government (Pol Sc 301) .. 3
- Principles of Economics (Ec 201, 202) .. 4
- Economic Problems (Ec 213) ... 3

Third and Fourth Years

- * United States History (Hist 301, 302, 303) .. 9
- † United States in World Affairs (Hist 305) .. 3
- State and Local Government (Pol Sc 401) .. 3
- Global Geography (Geog 308) ... 3

* Hist 304 will not substitute for any part of this requirement.
† Pol Sc 312 and 313 may be substituted for the requirement and three units of elective.
Degrees and Credentials

Graduate Year

Curriculum and Methods in Social Science (Soc Sc 521) .. 3
At least six units, including at least one course from each group .. 6
1. Sources in Social Science (Soc Sc 511) ... 3
 Contemporary Problems of the Pacific Area (Hist 583) .. 3
 Commercial Law (Ec 316) .. 3
 Contemporary Pros. International Relations (Pol Sc 586) .. 3
2. Agricultural Prices and Government Control (FM 403) ... 3
 Industrial Management (Ec 411) .. 3
 Industrial Relations (Ec 412) .. 3
 Seminar in Economic Problems (Ec 582) .. 3

SOCIAL STUDIES—Teaching Minor (30 Units)

First and Second Years

American Government (Pol Sc 301) .. 3

Third and Fourth Years

* United States History (Hist 301, 302, 303) .. 9
† United States in World Affairs (Hist 305) ... 3
State and Local Government (Pol Sc 401) .. 3
Three units selected from the following ... 3
 Global Geography (Geog 308) .. 3
 Industrial Relations (Ec 412) .. 3
 Industrial Management (Ec 411) ... 3
 Agricultural Prices and Government Control (FM 403) .. 3

Graduate Year

Curriculum and Methods in Social Science (Soc Sc 521) .. 3
Six units selected from the following ... 6
 Contemporary Problems in International Relations (Pol Sc 586) ... 3
 Seminar in Economic Problems (Ec 582) ... 3
 Contemporary Problems of the Pacific Area (Hist 583) ... 3
 Sources in Social Science (Soc Sc 511) .. 3

THE GENERAL ELEMENTARY CREDENTIAL

An applicant for a California State Polytechnic College recommendation for the General Elementary Credential may follow either of two programs, depending upon his qualifications.

A. To qualify for recommendation under the Bachelor of Science pattern leading to the General Elementary Credential the candidate must:
 I. Qualify for admission as a freshman or a transfer student as specified in the catalog section on admissions.
 II. Submit an application for admission to the elementary teacher education program and be accepted by the Teacher Education Committee.
 III. Complete satisfactorily a four-year college course leading to the Bachelor of Science degree, including a minimum of 44 units in education as follows:
 1. Principles of Elementary Education ... 3
 2. Educational Psychology ... 5
 3. Child Growth and Development .. 3
 4. Elementary School Curriculum Construction .. 3
 5. Elementary School Methods ... 18
 6. Elementary School Directed Teaching .. 12
 IV. Complete satisfactorily the major program for Elementary Education as described under the heading “Curriculum in Elementary Education.”

B. To qualify for recommendation under the Bachelor of Education pattern leading to the General Elementary Credential the candidate must:
 I. Qualify in every respect for admission as a transfer student into the Bachelor of Education program as specified in the catalog section on admissions.

* Hist 304 will not substitute for any part of this requirement.
† Pol Sc 312 and 313 may be substituted for the requirement and three units of elective.
II. Submit an application for admission to the elementary teacher education program and be accepted by the Teacher Education Committee.

III. Complete satisfactorily a four-year college course leading to the Bachelor of Education degree, as specified in Title 5, California Administrative Code, Section 921, including a minimum of 36 units in education as follows:
1. Principles of Elementary Education or Elementary School Curriculum
2. Child Growth and Development or Child Psychology
3. Elementary School Methods
4. Elementary School Directed Teaching
5. Other Professional Courses in Education

IV. Complete satisfactorily or present evidence of having completed a three-quarter unit course or its equivalent in the provisions and principles of the Constitution of the United States.

APPROVAL OF TEACHER CANDIDATES

Candidates with backgrounds of occupational and job experience, sound college academic records, demonstrated qualities of leadership, and skill in human relations, who are strongly recommended by a number of their college instructors as good teacher prospects, are encouraged and approved to proceed in the teacher education program.

Competence in the subject or field and in professional methods is mandatory for teacher candidates, as is skill in the more intangible areas of social behavior and grace, and human relationships. Emotional stability and maturity of each candidate are considered, as are his real interest in the field and his demonstrated persistence of effort.

As an example of the training required for subject competence, the student working for a Special Secondary Credential in Vocational Agriculture must achieve a bachelor of science degree in an agricultural major, and in addition, must complete course work in other fields of agriculture. The purpose is to provide both depth and breadth of training and to produce a teacher of vocational agriculture who is strongly trained in at least one field of agriculture, and who has a breadth of training and basic knowledge which will equip him to adjust quickly to the particular community in which he teaches. Because California has some 200 commercially produced crops, the beginning teacher cannot be expected to be qualified in each of these enterprises, but he must strive to broaden his qualifications constantly. The applicant must also have lived and worked most of his life on a farm or have engaged in the minimum equivalent of three years of farm work in recent years.

A full year of graduate training is required of each prospective teacher of vocational agriculture and the applicant for a cader appointment must be approved not only by the college but by the State Bureau of Agricultural Education. Active participation for at least one year in the college chapter of the Future Farmers of America, the campus organization of prospective teachers of vocational agriculture, is considered a "must" for the teacher candidate.

What has been said of the candidate for the Vocational Agriculture Credential by way of illustration, is generally applicable to candidates for other credentials. They must be competent in subject matter, emotionally mature, socially adaptable, professionally alert, and have a real interest in students and student activities.

STUDENT TEACHING AND SUPERVISION

Special Secondary Credential in Vocational Agriculture

Following the period of selection for candidates in vocational agriculture, the cadet teacher is enrolled for a full academic year of training on the graduate level. It is fully understood by cader teachers that continuing evaluations will be made of their performance. As a result, added stimulation and incentive is given to the trainee. Elimination from the program can occur at any time when achievement is below standard.

The fifth-year training program is divided into two parts: five months on campus completing specific graduate training in methods and professional courses in education and emphasizing agricultural education, and five months in off-campus student teaching activities when the cadet is assigned full-time to a school under the direction of a fully qualified supervising teacher.
The student teaching of the candidate consists of a period of observation and minor participation, followed by increasing responsibility in the actual teaching of classroom, shop, and field assignment. Full participation in the outside-of-class activity of the vocational agriculture teacher in supervising home projects, Future Farmers of America and Young Farmers activities, and adult class and community events is completed by the student teacher. First-hand acquaintance with the utilization of community resources is achieved.

The cadet training program in vocational agriculture, including the off-campus student teaching, is under the direct supervision of the agriculture teacher training staff.

Special Secondary Limited Credential in Agriculture
Trainees for this credential proceed through the same selection process as for other teacher candidates. The student teaching requirement consists of the assignment of trainees to selected local training centers under a fully qualified supervising teacher for one-half day each day of the week for one quarter. The participating experience for the student teacher is similar in respect to that required of vocational agriculture trainees, except that the out-of-school and community activities of teachers of general agriculture are usually more limited in scope than those in the vocational program.

The supervision of the student teaching for this credential is under the direction of the college Agricultural Teacher Trainer.

Special Secondary Credential in Physical Education and the General Secondary Credential
After the teacher candidate's application for student teaching has been approved by the college Teacher Education Committee, he is assigned to a public school for a minimum of half a day daily for a full quarter. Because the major portion of his credit for this quarter is for student teaching, he is to consider himself a staff member of the school to which he is assigned rather than a student on campus. It is assumed that the student teacher will participate in as many activities as possible that are representative of the certified teacher's total professional obligation. Only if the student teacher's observation-teaching schedule permits is he allowed to take a maximum of six additional units on campus.

Coordination of the assignment of student teachers is the responsibility of the Coordinator of Student Teaching. Supervising the student teacher and helping the supervising teacher are joint responsibilities of the Department of Education and the subject matter departments, with the latter taking the major share of the responsibility. These departmental representatives have been chosen because of their experience as successful public school teachers.

The Special Secondary Credential in Physical Education authorizes service in both the elementary and secondary schools and student teaching assignments are made with this in mind.

General Elementary Credential
After the student has successfully completed Principles of Elementary Education, he may apply to the Teacher Education Committee for approval as a student teacher. He must complete the course in Survey of Methods of Elementary School Teaching before assignment to a public school and entry upon actual student teaching.

The assignment is for five full days a week for a full quarter. Since the student earns nearly all of his credit for the quarter in student teaching, he is to consider himself a staff member of the school to which he is assigned, rather than a student on campus. The student teacher is expected to play an active part in all school activities that are considered part of the professional obligation of a certified teacher such as staff meetings, pupil supervision, and P. T. A. meetings. The student-teacher is allowed a maximum load of 14 units, including student teaching.

Coordination of the assignment and supervision of elementary school student teachers is the responsibility of the Coordinator of Student Teaching.
PLACEMENT OF TEACHERS

Every candidate for a credential is asked to register with the Placement Office before or during the last quarter prior to completion of the credential requirements, but no later than March 1. Registration includes the preparation of personal data, the submission of photos, and the listing of references for the confidential teacher placement folder which is sent by the Placement Office to school administrators who are considering the candidate for a teaching position. This folder is maintained permanently by the Placement Office for use whenever the teacher wishes to seek a new position. Cooperation of the candidate in keeping information in the folder up to date is necessary for most effective service.

Elementary Credential Candidates

Since student teaching for the General Elementary Credential is normally assigned in the junior year, these candidates should follow the placement procedure outlined above no later than the third week of the winter quarter of the senior year.
THE AGRICULTURAL DIVISION
THE AGRICULTURAL DIVISION

The Agricultural Division of the college prepares students in the field of agriculture with the main objective of giving them a full and broad understanding of basic factors involved in production, management, and marketing, together with the necessary skills to make efficient operators. While the division stresses production techniques and basic management to benefit to the fullest extent those returning to the farm or entering employment in agricultural fields upon leaving college, it also requires a core of basic sciences related to the production courses of the major and a substantial block of general education subjects necessary to prepare the student to take his rightful place in a democratic society.

All curricula in the Agricultural Division are arranged so that a student receives a maximum of production courses in his major field early in the program. This means that even if a student terminates his formal education at any time prior to his graduation, he has acquired a background of fundamentals and skills which makes him immediately employable in the occupational field of his choice. This system of taking production courses early in the curriculum makes it possible for the student to determine in a short time whether or not he is fitted for the curriculum he has selected. In addition, the early acquisition by the student of practical "doing" types of skills provides him with the incentive to learn the basic scientific explanations.

The Agricultural Division uses the California State Polytechnic College Foundation program of student projects to provide additional experience and practice to supplement regular production courses. This practical experience leads to the understanding of production and managerial problems that are important in the over-all training of a student in agriculture.

Admission to the Agricultural Division requires high school graduation, with satisfactory grades, but does not require a specific pattern of courses taken in high school. However, a student who anticipates enrolling in the Agricultural Division of the college will find a strong background in mathematics and physical and biological sciences advantageous.

Curricula are offered in the following majors in the Agricultural Division at San Luis Obispo: Agricultural Engineering, Mechanized Agriculture, Animal Husbandry, Field Crops Production, Truck Crops Production, Fruit Production, Dairy Husbandry, Dairy Manufacturing, Farm Management, Ornamental Horticulture, Poultry Husbandry, and Soil Science. The Veterinary Science Department offers courses which support the animal production majors.

The courses offered in each agricultural curriculum may be grouped into four areas as follows:

1. Major agriculture—The required sequence of courses offered by the department in which the student expects to graduate. These courses constitute the core instruction leading to specific preparation for the production field of the student’s choice.
2. Related agriculture—Supporting courses in agriculture selected from closely allied fields. They supplement the major agriculture block in (1).
3. Science and Mathematics—Courses selected from scientific fields which provide basic biological, physical and social science, and mathematical background and support to the agricultural block in (1) and (2) above.
4. Humanistic-Social—Courses which provide cultural background for intelligent living in a complex world society.

The following chart illustrates the typical distribution of required units in the four areas indicating emphasis and balance through the four years. The entire program totals 198 quarter units including elective units which vary depending upon the student’s major. Electives in the freshman and sophomore years are frequently chosen from agricultural courses.

<table>
<thead>
<tr>
<th></th>
<th>Freshman</th>
<th>Sophomore</th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Agriculture</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Related Agriculture</td>
<td>9</td>
<td>18</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Science and Mathematics</td>
<td>18</td>
<td>7</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Humanistic-Social</td>
<td>10½</td>
<td>8½</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

[57]
In keeping with the college-wide policy of offering major courses which lead to occupational competency from the beginning of the first year of the four-year sequence, it is essential to provide opportunity for students who may find it impossible to complete four-year programs, to obtain as early as possible a concentration of production courses with a minimum of supporting material.

A technical two-year curriculum is available in all agricultural departments. These curricula include a smaller number of units of related and general education courses than are included in the degree programs. This permits the student to acquire the basic skills in the major of his selection and a greater freedom of choice of subjects in agricultural production courses. A student not wishing to enroll in a degree curriculum will find that a two-year curriculum offers a maximum opportunity to select courses which will greatly assist him in farming after graduation.

Upon completion of 98 selected units, a student may receive a Technical Certificate in the field of his major.

The following is the two-year technical curriculum for Animal Husbandry. Other majors follow a similar pattern.

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeds and Feeding (AH 101, 102)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Market Beef Production (AH 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Elements of Swine Production (AH 122)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Elements of Sheep Production (AH 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Language Communication (Eng 100)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Math (Math 102)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Project Records (FM 100)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td></td>
<td>½</td>
</tr>
<tr>
<td>* Agricultural Biology (Bio 100)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep Husbandry (AH 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Beef Production (AH 222)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Market Swine (AH 223)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 223)</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>* Prin. of Livestock Hygiene and San. (VS 100)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Forage Crops (CP 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>* Farm Records and Farm Mgr. Prac. (FM 101)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>* U. S. Hist. and Government (Pol Sc 100)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>15½</td>
<td>16½</td>
</tr>
</tbody>
</table>

A student enrolled in the technical program may transfer to a degree program by completing courses offered in the specific four-year degree curriculum.

HORSESHOEING

A short 12-week course in horseshoeing is being offered in the spring and fall quarters. Those interested in this special course should write to the Dean of Agriculture for details.

*These courses are taken in place of the required courses in the same subject matter fields listed in the degree curricula in the first two years and may not be used as credit towards a degree.

VS 100 is replaced by CP 100 for plant majors.

All two-year technical students are required to take Math 102. Students in Agricultural Engineering are required to take Math 102 and 103.
A student majoring in this department may follow one of two curricula:

1. The Agricultural Engineering curriculum prepares students for engineering positions with farm machinery and equipment companies, manufacturers and distributors of irrigation equipment, government agencies such as the Soil Conservation Service and other positions requiring technical training in Agricultural Engineering.

2. The Mechanized Agriculture curriculum gives the student broad agricultural training with emphasis on the applied mechanical phases of agriculture. This curriculum is intended for the student who plans to own or manage a farm, teach vocational agriculture with emphasis on farm mechanics, or do sales and service work in the farm machinery and equipment field.

This department also gives training in the mechanical and engineering phases of agriculture to students majoring in other departments of the Agricultural Division.

Two new buildings containing eight shops and laboratories and two classrooms, together with a large modern farm machinery and equipment building provide excellent facilities. A wide variety of makes, models, and types of tractors and farm machinery is available for class use and students are provided with ample opportunity for the application of mechanical and engineering know-how to practical production problems in using the entire 2,850-acre college farm as a laboratory.

Students interested in the two-year technical certificate should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN AGRICULTURAL ENGINEERING

<table>
<thead>
<tr>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Agricultural Engineering (AE 100)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 128)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Engineering Drafting (ME 121, 122, 123)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Machine Shop (MS 141, 142, 143)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Animal Production</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant Production</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½ ½ ½</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying II (AE 132)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 223)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Rural Electrification (AE 224, 225)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Farm Structures (AE 231)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Irrigation (AE 236)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 201, 202, 203)</td>
<td>3</td>
<td>3 3</td>
</tr>
<tr>
<td>Physics (Phys 131, 132, 133)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½ ½ ½</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2 3</td>
<td></td>
</tr>
</tbody>
</table>

*12 units of electives shall be selected from courses in the Agricultural Division.
California State Polytechnic College

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulics (AE 312)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Farm Machinery (AE 321) or Hydrology (AE 315)</td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Surveying III (AE 331)</td>
<td>2</td>
</tr>
<tr>
<td>Farm Power (AE 334, 335, 336)</td>
<td>2</td>
</tr>
<tr>
<td>Soil Conservation (SS 202)</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Statics, Dynamics (Phys 201, 202)</td>
<td>3</td>
</tr>
<tr>
<td>Strength of Materials (ME 202, 203) or (Arch 205, 206)</td>
<td>3</td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td>3</td>
</tr>
<tr>
<td>Economics (300 or 400 Series)</td>
<td>3</td>
</tr>
<tr>
<td>Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (AE 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (AE 463)</td>
<td>2</td>
</tr>
<tr>
<td>Farm Structures (AE 433)</td>
<td>3</td>
</tr>
<tr>
<td>Equipment Engineering (AE 421) or Irrigation Engineering (AE 414)</td>
<td>3</td>
</tr>
<tr>
<td>Agriculture Machine Design (AE 422) or Conservation Engineering (AE 437)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Accounting (Ec 301, 302)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Agricultural Engineering (AE 100)</td>
<td>1</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 128)</td>
<td>2</td>
</tr>
<tr>
<td>Farm Construction and Maintenance (AE 129)</td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Drafting (ME 121, 122)</td>
<td>2</td>
</tr>
<tr>
<td>Machine Shop (MS 141, 142, 143)</td>
<td>1</td>
</tr>
<tr>
<td>Arc Welding (Weld 154, 155, 156)</td>
<td>1</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
</tr>
<tr>
<td>Animal Production</td>
<td>4</td>
</tr>
<tr>
<td>Plant Production</td>
<td>4</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
</tr>
</tbody>
</table>

CURRICULUM IN MECHANIZED AGRICULTURE

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Agricultural Engineering (AE 100)</td>
<td>1</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 128)</td>
<td>2</td>
</tr>
<tr>
<td>Farm Construction and Maintenance (AE 129)</td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Drafting (ME 121, 122)</td>
<td>2</td>
</tr>
<tr>
<td>Machine Shop (MS 141, 142, 143)</td>
<td>1</td>
</tr>
<tr>
<td>Arc Welding (Weld 154, 155, 156)</td>
<td>1</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
</tr>
<tr>
<td>Animal Production</td>
<td>4</td>
</tr>
<tr>
<td>Plant Production</td>
<td>4</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
</tr>
</tbody>
</table>

* 12 units of electives shall be selected from courses in the Agricultural Division.
Agricultural Division

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Surveying II (AE 132)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 223)</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Farm Engines (AE 220)</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Rural Electrification (AE 224, 225)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Farm Structures (AE 231, 232)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Irrigation (AE 240)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Welding (Weld 151, 152, 254)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 114, 115)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>* Electives</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15½</td>
<td>17½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Equipment Projects (AE 244)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Power (AE 335)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Parts and Inventory Control (AE 322)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Report Writing (Eng 301)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Credit (FM 310)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Inorganic Chemistry (Chem 324, 325)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Soil Conservation (SS 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Electives</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (AE 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (AE 463)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Farm Machinery (AE 321)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Farm Management (FM 322)</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>* Electives</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN AGRICULTURAL ENGINEERING

AE 1 Preparatory Agricultural Mechanics (2)
Identification, care and fitting of common tools. Development of essential tool skills. Selection and use of tools and hardware. Sheetmetal work. Cold metal work. Wood joints. Fundamental farm shop work for students whose previous training is inadequate for AE 121. 1 lecture, 1 laboratory.

AE 100 Introduction to Agricultural Engineering (1)
Agricultural Engineering as a profession. Technical areas and job opportunities. Departmental orientation. 1 lecture.

AE 121 Agricultural Mechanics (2)
Sketching and drawing, interpreting plans and blueprints, selection and grades of lumber, selection and use of tools and hardware, pipe fitting, plumbing and farm water supply, painting and wood preservatives, concrete. For majors other than Agricultural Engineering. 1 lecture, 1 laboratory. Prerequisite: AE 1 or passing score on placement test.

* 18 units of electives shall be selected from courses in the Agricultural Division.
AE 122 Agricultural Mechanics
Selection and evaluation of production equipment associated with the student's major. Study of specifications and plans. Construction and repair of production equipment. Fences and gates. Framing small buildings. Students register for this course by sections according to their specific majors. 1 lecture, 1 laboratory. Prerequisite: AE 121

AE 128 Agricultural Mechanics
Specifications, plans, and construction of general agricultural production equipment. Pipe fitting, plumbing, and farm water supply. Concrete. Selection and grades of lumber, bills of material. Painting and wood preservatives. For Agricultural Engineering majors. 1 lecture, 1 laboratory. Prerequisite: AE 1 or passing score on placement test.

AE 129 Farm Construction and Maintenance
Maintenance, construction, modification, and repair of farm buildings and equipment. Cost estimates based on materials and methods of repair. Students will register for this course by sections according to their major. 1 lecture, 1 laboratory. Prerequisite: AE 122 or 128

AE 131 Agricultural Surveying I
Use and care of typical surveying instruments. Chains, levels, alidades, transits. The principles of chaining and differential leveling. 1 lecture, 1 laboratory. Prerequisite: Math 102 or 117 (concurrently).

AE 132 Agricultural Surveying II
Transit surveys. Closed traverses. Centerline surveys. Plane coordinates. Marking grade and setting slope stakes. 1 lecture and 1 laboratory. Prerequisite: AE 131 and trigonometry.

AE 220 Farm Engines
Fundamental principles of gasoline and diesel engines and their accessories. Tune-up, adjustment, minor overhaul, and servicing. Fuels and lubricants. For Agricultural Division students other than Agricultural Engineering. 2 lectures, 1 laboratory. Prerequisite: AE 241

AE 221 Farm Machinery
Basic principles of machines. Materials of construction. Lubrication and maintenance. Selection, operation, and adjustment of primary and secondary tillage equipment. Seeding, planting, and fertilizing equipment. 2 lectures, 1 laboratory. Prerequisite: AE 121 or 128

AE 222 Farm Machinery
Selection, operation, and adjustment of weed control equipment, spraying and dusting equipment. Hay, forage, grain, cotton, and miscellaneous harvesting equipment. 1 lecture, 1 laboratory. Prerequisite: AE 221

AE 223 Farm Machinery
Assembly of new equipment, quality factors, versatility factors. Hydraulic systems. Selection, operation, adjustment of haying, harvesting, cultivating, spraying, and dusting equipment. For students majoring in Agricultural Engineering only. 1 lecture, 1 laboratory. Prerequisite: AE 221

AE 224 Rural Electrification
Fundamentals of wiring farm buildings and farmstead wiring layout. Materials, code regulations, electrical measurements and rates applicable to various farm uses. Basic concepts of electric circuits and units. 1 lecture, 1 laboratory. Prerequisite: Math 118 or 115 (concurrently).

AE 225 Rural Electrification
Electric motors and protective devices for farm use. Identification, selection, installation, and maintenance of various types. Operating characteristics and drives. 1 lecture, 1 laboratory. Prerequisite: AE 224
AE 230 Farm Blacksmithing (2)
Fundamentals of forging and its application to agriculture. New and repair work involving bending, shaping, hardening, tempering, and annealing. 1 lecture, 1 laboratory.

AE 231 Farm Structures (2)
Design and construction of farm buildings. Estimating farm building costs, construction specifications, and preparing materials lists. Typical farm buildings constructed by classes during laboratory periods. 1 lecture, 1 laboratory. Prerequisite: AE 122 or 128

AE 232 Farm Structures (2)
Basic requirements of farm buildings. Legal requirements. Building contracts. Selection of materials and equipment for farm buildings. Farm buildings constructed or modified by classes during laboratory period. 1 lecture, 1 laboratory. Prerequisite: AE 231

AE 236 Principles of Irrigation (4)
Plant-soil-water relationships. Measurement of water. Methods of application of irrigation water. Drainage. Water organizations and water law. For Agricultural Engineers. 3 lectures, 1 laboratory. Prerequisite: Math 118, AE 132

AE 240 Irrigation (4)
Fundamental principles and practices of irrigation. Soil-moisture relationships, water measurement, methods of irrigation, crop requirements, farm irrigation structures, pumps and pumping, and problems of the irrigation farmer. 3 lectures, 1 laboratory. Prerequisites: AE 131, SS121

AE 241 Farm Tractors (2)
Field and shop practice in the operation, service, and adjustment of the modern farm tractor; including both wheel and track types with gasoline, diesel, and butane power units. 1 lecture, 1 laboratory.

AE 244 Farm Equipment Projects (3)
Principles, materials and construction of specialized agricultural equipment. 1 lecture, 2 laboratories. Prerequisite: AE 122 or 128

AE 312 Hydraulics (3)
Static and dynamic characteristics of liquids in open and closed channels. 3 lectures. Prerequisite: Phys 132, Math 203

AE 315 Hydrology (3)
Collection, organization, and use of precipitation, evaporation, and run-off data. Principles of flood routing, stream flow, and ground water conservation. The hydrograph. 3 lectures. Prerequisite: SS 121

AE 321 Advanced Farm Machinery (3)
Management and operation of the farm machinery repair shop. Inspection, overhaul, and adjustment of all types of farm machinery. 1 lecture, 2 laboratories. Prerequisite: AE 221, 223

AE 322 Parts and Inventory Control (2)
Parts study and inventory controls of practical parts departments for farm equipment dealers. Administrative and operating functions of the parts department. 1 lecture, 1 laboratory.

AE 331 Agricultural Surveying III (2)
Land grading calculations. Mass diagram. Determination of desired grades for irrigation and drainage. Use and development of contour maps. 1 lecture, 1 laboratory. Prerequisite: AE 236

AE 334 Farm Power (2)
Fundamental principles of the gasoline engine and its application to agriculture. Trouble shooting, servicing, tune-up, and major overhaul of gasoline engines and their accessories. 1 lecture, 1 laboratory. Prerequisites: MS 142, AE 241
AE 335 Farm Power (2)
Fundamental principles of the diesel engine and its application to agriculture. Trouble shooting, servicing, tune-up, and major overhaul of high speed diesel engines and their accessories. Liquified petroleum equipment. Additional practice on gasoline engines. 1 lecture, 1 laboratory. Prerequisites: AE 220 or 334, or ME 103

AE 336 Farm Power (3)
Thermodynamic principles as applied to internal combustion engines. Theory of combustion. Fuels and lubricants. Power and its measurement. Factors affecting horsepower output and engine efficiency. Power transmission. Automotive electrical systems. 2 lectures, 1 laboratory. Prerequisites: AE 335, Phys 133

AE 414 Irrigation Engineering (3)
Hydraulic characteristics of open ditches, pipes, sprinklers, and pumps. 2 lectures, 1 laboratory. Prerequisites: AE 236, 312

AE 421 Equipment Engineering (3)
Design and construction of specialized farm equipment. 1 lecture, 2 laboratories. Prerequisites: ME 123, MS 143, Weld 156, Phys 202, ME 203

AE 422 Agricultural Machine Design (3)
Analysis and use of fundamental machine elements and their application to agricultural machinery. 2 lectures, 1 laboratory. Prerequisites: AE 221, 223, 421

AE 433 Farm Structures (3)
Farmstead planning and layout. Engineering factors to be considered in the design and construction of farm structures. Stresses and loads, ventilation, strength characteristics and thermal qualities of building materials. Reinforced concrete. 2 lectures, 1 laboratory. Prerequisites: AE 231, ME 203 or Arch 206

AE 437 Conservation Engineering (3)
The principles, practices, and application of engineering methods to soil and water conservation. 2 lectures, 1 laboratory. Prerequisites: AE 133, 315, 414, SS 202

AE 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

AE 463 Undergraduate Seminar (2)
Group discussion of current agricultural engineering topics presented by individual members of the class. Topics or papers presented by guest speakers. Placement opportunities and requirements. 2 lectures.

AE 581 Graduate Seminar in Agricultural Engineering (3)
Group study of current problems and recent developments in the field. Relationship of Agricultural Engineering to the teaching of vocational agriculture. 3 lectures.
Agricultural Division

ANIMAL HUSBANDRY DEPARTMENT
Department Head, Lyman L. Bennion

Emmett Bloom Russell Anderson Thomas Meyer
Thomas P. Brannum Harry B. McLachlin Richard Birkett
Spelman Collins Darren M. Nelson Richard Johnson
Roy M. Harris LaVern Bucy Robert Miller
Ralph Hoover

The objective of the Animal Husbandry Department is to train men for the occupation of farming where beef cattle, sheep, and swine enterprises are an important part of the industry. The majority of graduates from the department are engaged in the livestock and farming business or are employed as ranch foremen or managers.

Livestock feeding yards, feed mills, stockyard companies, meat packers, commission firms, and other organizations servicing the livestock industry are sources of employment for graduates. Other employment fields include agricultural teaching, agricultural extension work, and agricultural research.

Further aims and objectives of the Animal Husbandry Department are to give students practical training in livestock farming and range management. The department maintains herds of three breeds of beef cattle, four breeds of sheep, three breeds of swine, and Thoroughbred and quarter horses. These are used for laboratory and field study of management, feeding, breeding, and marketing.

Students are encouraged to carry on a project program of feeding, management, and marketing livestock through facilities furnished by the California State Polytechnic College Foundation. Approximately 900 hogs, 400 beef cattle, and 800 sheep are fed and marketed by students each year. An abattoir provides facilities for training in slaughtering of meat animals and cutting, curing, and grading of meats.

Students interested in the two-year technical certificates should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN ANIMAL HUSBANDRY

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeds and Feeding (AH 101, 102)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Market Beef Production (AH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements of Swine Production (AH 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elements of Sheep Production (AH 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Project Records (FM 100)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep Husbandry (AH 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Beef Production (AH 222)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Market Swine (AH 223)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 222)</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy and Physiology (VS 123)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Forage Crops (CP 123)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

16½ 16½ 16½

3—29798
<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Swine Husbandry (AH 321)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Specialized Sheep Enterprises (AH 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>* Beef Husbandry (AH 323)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Animal Breeding (AH 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Livestock Hygiene and Sanitation (VS 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Animal Parasitology (VS 203)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Range Management (SS 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Farm Record Keeping (FM 321)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (AH 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (AH 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Animal Nutrition (AH 402)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Management I (FM 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>† Economics Elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN ANIMAL HUSBANDRY

AH 101 Feeds and Feeding

Identification and classification of feeds; simple use of food nutrients, protein, fat, and carbohydrates; methods of preparing feeds; relative values of common feeds for each class of livestock; the use of by-product feeds. 2 lectures.

AH 102 Feeds and Feeding

The digestion and utilization of feeds; feeding standards and computation of standard rations for livestock; economy in feeding, and purchasing feeds by nutritive values; important vitamins and minerals and feed sources thereof. 2 lectures. Prerequisite: AH 101

AH 121 Market Beef Production

Breeds, market classes, and grades of beef cattle. Selection of feeder cattle. Management practices in purchasing and fattening cattle using farm grown feeds. Study of cattle feeding operations carried on at the college. Marketing of beef cattle. 3 lectures, 1 laboratory.

AH 122 Elements of Swine Production

History and development of swine industry. Types and breeds of swine. Hog production under California and Midwest conditions. Common feeds used to supply nutritional requirements. Practice in handling, feeding, and selecting correct type of hogs. 3 lectures, 1 laboratory.

AH 123 Elements of Sheep Production

Outline of western sheep operations. Fitting breeds to varying sheep enterprises and locations, basic requirements of successful management, judging the pure breeds. Budgeting for commercial operations. Practical knowledge of wool. Jobs in the industry. 3 lectures, 1 laboratory.
AH 210 Meats
Practice in the killing and processing of beef cattle, sheep, and hogs. A study of carcass grades, yield, and cut-out value. Comparison of live animals and carcasses from same animals. 1 lecture, 1 laboratory. Prerequisites: AH 121, 122, 123

AH 221 Sheep Husbandry
Detailed management through a sheep year. Breeding season, preparation of ewes and rams. Gestation, summer care. Preparations for lambing, lambing and lamb growing seasons, selling lambs and wool, buying replacements, culling, controlling disease. Equipment and barn details. 3 lectures, 1 laboratory. Prerequisite: AH 102, 123

AH 222 Commercial Beef Production
Care and management of a breeding herd of commercial cattle in California. Range and farm lands suited to beef production. Factors affecting cost of production. Improvement of breeding herd. Trends in the industry. 3 lectures, 1 laboratory. Prerequisite: AH 102

AH 223 Market Swine
Management of the swine herd and care of pigs till weaning. Selection of feeder pigs. Feeding and managerial practices involved in developing the finished product. Market channels, market cycles, production cost analysis, hog slaughter, carcass grading, and pork processing. 3 lectures, 1 laboratory. Prerequisite: AH 102, 122

AH 230 General Animal Husbandry
For non-animal husbandry majors. Selection, feeding, and management of sheep, swine, and cattle, and their uses on California farms. 3 lectures, 1 laboratory.

AH 232 Elements of Horse Production

AH 234 Horseshoeing
Fundamentals of horseshoeing, anatomy and physiology of the horse's foot, pastern, and legs. Trimming feet, fitting and nailing shoes. Normal shoeing, corrective shoeing. 1 lecture, 1 laboratory combined.

AH 304 Animal Breeding
Physiology of reproduction, application of genetics to animal breeding. Systems of mating animals, the use of inbreeding, crossbreeding, and selection as it applies to farm animals. 3 lectures. Prerequisites: Bio 303, VS 123

AH 320 Meats II
Slaughter and cutting yields. Chemical and physical composition of meat in relation to nutrition. Processing methods. Pricing and merchandising in the meat industry. 1 lecture, 1 laboratory. Prerequisite: AH 210

AH 321 Swine Husbandry
Care and management of the commercial and purebred breeding herd, pedigree study, herd records, and cost of production. Buildings and equipment necessary and their cost. Showing, selling, and buying purebred swine. Selection and judging of breeding stock. 3 lectures, 1 laboratory. Prerequisite: AH 223

AH 322 Specialized Sheep Enterprises
The purebred sheep industry including feeding, management, selection, breeding, and marketing. Production of range rams. Management of irrigated and native pastures. 3 lectures, 1 laboratory. Prerequisite: AH 221

AH 323 Beef Husbandry
Purebred cattle business including selection of foundation stock, herd bulls; breeding programs; pedigrees; facilities and equipment; feeding breeding herd, sale cattle, show cattle; marketing purebred cattle; and general management problems. 3 lectures, 1 laboratory. Prerequisite: AH 102, 121, 222
AH 326 Livestock Judging (3)
Selection of beef cattle, sheep, swine, and horses according to breed, type and use. 1 lecture, 2 laboratories. Prerequisites: 24 units of animal husbandry

AH 333 Horse Husbandry (3)
Horse breeding farm management. Care of stallion, mares, and offspring. Feeding and breeding schedules. Records and office procedure. Bloodlines, systems of mating. Extended equitation and fundamentals of horsemanship. 2 lectures, 1 laboratory. Prerequisite: AH 232

AH 334 Feed Mill Operation (3)
Study of general operation of a feed mill including a survey of the industry, buying, storing, grinding, weighing, mixing, packaging, handling, and delivery of formula feeds. Also a study of flow of materials, preventative maintenance and safety in a mill. 2 lectures, 1 laboratory. Prerequisites: AH 101 and 1 year production courses, or AH 230, PH 230 or DH 230

AH 402 Animal Nutrition (3)
The metabolism of proteins, carbohydrates, fats, minerals, and vitamins. Relationship of proper nutrition to livestock production. 3 lectures. Prerequisites: AH 102, Chem 328

AH 434 Specialized Horse Enterprises (3)
Training and gentling, driving and ground work with young horses. Training and advanced equitation on stock horse, high schooled horses, three-gaited saddle horses, and jumpers. 1 lecture, 2 laboratories. Prerequisites: AH 232 and AH 333 or the equivalent in experience.

AH 441 Advanced Livestock Judging (2)
Intensive practice in livestock judging in preparation for livestock judging team to compete in intercollegiate contests. 2 laboratories. Prerequisite: AH 326

AH 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

AH 463 Undergraduate Seminar (2)
Major developments in the chosen field of the student. Discussion of new developments, policies, practices, and procedures. Each individual is responsible for the development and presentation of a topic in his chosen field. 2 lectures.

AH 580 Advanced Animal Nutrition (3)
Current findings and problems in the field of animal nutrition. Effects of new experimental research on the livestock industry. 3 lectures.

AH 581 Graduate Seminar in Animal Production (3)
Current findings and research problems in the field and their application to the industry. 3 lectures.
Agricultural Division

DAIRY HUSBANDRY AND MANUFACTURING DEPARTMENT

Department Head, George Drumm

Kenneth D. Boyle Elmer D. McGlasson Russell Nelson

Instruction offered by the Dairy Husbandry and Manufacturing Department has two primary objectives:

1. To train students for the efficient and economical production of dairy products and the management, feeding, and breeding of dairy cattle.
2. To train students in the processing, distribution, and sale of the various dairy products.

Dairy husbandry and dairy manufacturing are closely related and many dairy enterprises combine the production, processing, and distribution phases of the industry. Although dairy majors elect to specialize either in husbandry or manufacturing, the curricula are so arranged that a student automatically receives considerable concentration in the other field.

Graduates who specialize in dairy production find employment as farmers, farm foremen, farm managers, feed salesmen, fieldmen, herdsmen, vocational agricultural teachers, and in numerous other positions related to dairy production. Graduates who major in dairy manufacturing find placement as dairy plant foremen, superintendents, salesmen, dairy inspectors, fieldmen, testers, etc.

The college dairy farm maintains an outstanding breeding herd of the Guernsey, Holstein, and Jersey breeds of approximately 175 head. It includes several national champion producing cows, leading show animals, and noted sires.

Dairy buildings, erected in 1953, for care and housing of the herd include a 24-stanchion milk barn, calf and cow shelter barns, bull pens, and an insemination laboratory. A large judging pavilion is provided for judging work. A 12-student housing unit is on the site to house the students working at the dairy. Modern equipment includes a pipeline milker unit and a bulk trailer tank. A dairy cattle farm of 400 acres provides facilities for students with dairy projects. This farm accommodates 100 head of project cattle owned and cared for by students.

A well-equipped dairy laboratory and college creamery is operated under commercial conditions with various dairy products tested, processed, and sold. Deliveries are made to the college cafeterias and student store.

Students interested in the two-year technical certificate should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN DAIRY HUSBANDRY

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of Dairying (DH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Milk (DM 132)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Dairy Cattle Judging (DH 142)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeds and Feeding (AH 101)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding Dairy Cattle (DH 102)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Language Communications (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>15½</td>
<td>17½</td>
</tr>
</tbody>
</table>
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Production (DH 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Dairy Herd Management (DH 222)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Dairy Cattle Judging (DH 243)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy Refrigeration (AC 238)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 222)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy and Physiology (VS 123)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forage Crops (CP 123)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>17½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Advanced Dairy Cattle Feeding (DH 301)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Dairy Breeds and Pedigrees (DH 323)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purebred Dairy Herd Management (DH 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Animal Breeding (AH 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dairy Inspection (DM 332)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Livestock Hygiene and Sanitation (VS 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Animal Parasitology (VS 203)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Record Keeping (FM 321)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Breeding and Selection of Dairy Cattle (DH 422)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (DH 461, 462)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (DH 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Animal Nutrition (AH 402)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Management I (FM 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>† Economics Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of Dairying (DH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding Dairy Cattle (DH 102)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Milk (DM 132)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ice Cream Making (DM 133)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Anatomy and Physiology (VS 123)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Feeds and Feeding (AH 101)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Machine Shop (MS 141, 142, 143)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

* Offered in alternate years.

† To be selected from FM 304, 310, 403, or 423.
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter Making (DM 231)</td>
<td>4</td>
</tr>
<tr>
<td>Cheese Making (DM 232)</td>
<td>4</td>
</tr>
<tr>
<td>Dairy Products Judging (DM 233)</td>
<td>2</td>
</tr>
<tr>
<td>Milk Production (DH 221)</td>
<td>4</td>
</tr>
<tr>
<td>Livestock Hygiene and Sanitation (VS 202)</td>
<td>3</td>
</tr>
<tr>
<td>Dairy Refrigeration (AC 238, 239)</td>
<td>2</td>
</tr>
<tr>
<td>Steam Boilers and Equipment (AC 237)</td>
<td>2</td>
</tr>
<tr>
<td>Welding (Weld 151)</td>
<td>1</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
</tr>
<tr>
<td>Dairy Bacteriology (Bact 222)</td>
<td>4</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Credits | 16½ | 17½ | 16½ |

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed and Dry Milk (DM 331)</td>
<td>4</td>
</tr>
<tr>
<td>Dairy Inspection (DM 332)</td>
<td>2</td>
</tr>
<tr>
<td>Creamery Records (DM 336)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Dairy Products Judging (DM 333)</td>
<td>2</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Marketing (FM 304)</td>
<td>3</td>
</tr>
<tr>
<td>Accounting (Ec 301, 302)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total Credits | 17 | 16 | 16 |

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creamery Management (DM 433)</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (DM 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (DM 463)</td>
<td>2</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Prices and Government Control (FM 403)</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Management (Ec 411)</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Relations (Ec 412)</td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>8</td>
</tr>
</tbody>
</table>

| Total Credits | 16 | 15 | 16 |

Descriptions of Courses in Dairy Husbandry

DH 102 Feeding Dairy Cattle

Balancing dairy cattle rations. Feeding practices and nutritional requirements. 2 lectures. Prerequisite: AH 101

DH 121 Elements of Dairying

General introductory dairy course. General information on statistics and opportunities in the dairy industry. Composition and food value of dairy products. Common tests to determine quality of products. Principles and practices of the feeding and management of dairy cattle. 3 lectures, 1 laboratory.

DH 142 Dairy Cattle Judging

Selection of dairy cattle with consideration to breed characteristics and conformation. Correlation between type and production. 2 laboratories.
DH 221 Milk Production (4)
Factors affecting milk production. Dairy production problems and methods. Practice in many of the frequently used dairy production skills. 3 lectures, 1 laboratory. Prerequisites: DH 102, 121, 142

DH 222 Commercial Dairy Herd Management (4)
Commercial dairy practices from the standpoint of cost of feeding and management. Visits are made to successful dairy farms. 3 lectures, 1 laboratory. Prerequisite: DH 221

DH 230 General Dairy Husbandry (4)
Selection, breeding, feeding, and management of dairy cattle. Composition and food value of dairy products. Dairy industry statistics and opportunities. Producing and handling products. A general course for other than dairy majors. 3 lectures, 1 laboratory.

DH 243 Advanced Dairy Cattle Judging (2)
Advanced practice in the comparative judging of dairy cattle. Detailed scoring and classifying cattle on conformation with extensive training on giving oral reasons. Visits to breeding establishments and shows. Judging teams may be selected in this class. 2 laboratories. Prerequisite: DH 142

DH 301 Advanced Dairy Cattle Feeding (2)
Nutrition requirements of dairy cattle. Successful, economical feeding practices. 2 lectures. Prerequisite: DH 102. Offered in even-numbered years.

DH 323 History of Breeds and Pedigrees (4)
Origin of modern dairy cattle breeds, organization of cattle clubs. Breed families and herds. Practice in compiling pedigrees. 3 lectures, 1 laboratory. Prerequisite: DH 221

DH 326 Purebred Dairy Herd Management (4)
Methods and problems in establishing, breeding, feeding, and management of a purebred dairy herd and farm. Visits are made to leading purebred dairy farms and to purebred cattle sales. 3 lectures, 1 laboratory. Prerequisites: DH 222, 243, 301, 323

DH 422 Breeding and Selection of Dairy Cattle (3)
Evaluation of inherited characters in dairy cattle from an economic standpoint. Proving and selecting sires and dams. 2 lectures, 1 laboratory. Prerequisites: Bio 303, AH 304, DH 142. Offered in even-numbered years.

DH 461, 462 Senior Project (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

DH 463 Undergraduate Seminar (2)
Reports on student papers, bulletins, periodical articles, and dairy research experiments. Sources of dairy husbandry information. Practice in oral reporting. Late developments and research work in the dairy industry. 2 lectures.

DH 581 Graduate Seminar in Dairy Production (3)
Current findings and research problems in the field and their application to the industry. 3 lectures.

DESCRIPTIONS OF COURSES IN DAIRY MANUFACTURING

DM 132 Market Milk (4)
Buildings, equipment, and methods used to handle, process, and distribute market milk. Judging and grading market milk. Practice in the college creamery and sales room as well as in commercial plants. 3 lectures, 1 laboratory.
DM 133 Ice Cream Making (4)
Calculating and processing ice cream mixes. Proper equipment and methods needed to manufacture, package, and distribute ice cream of numerous varieties. Practice in the college creamery and sales room as well as in commercial plants. 3 lectures, 1 laboratory. Offered in odd-numbered years.

DM 230 General Dairy Manufacturing (4)
Nontechnical presentation of the methods and problems involved in modern creamery operation. Testing, flavoring, and manufacturing butter, various cheeses, ice cream, market milk, and related products. Elective course for non-dairy students. Survey course for dairy husbandry majors. 3 lectures, 1 laboratory.

DM 231 Butter Making (4)
Equipment and methods needed to handle and process manufacturing cream. Churning, packaging, storing, and marketing butter. Practice in college creamery and commercial plants. 3 lectures, 1 laboratory. Prerequisites: DH 121, DM 132. Offered in even-numbered years.

DM 232 Cheese Making (4)
Equipment and methods needed to manufacture, package, cure, and market cheese. Practice in the college creamery and commercial plants. 3 lectures, 1 laboratory. Prerequisites: DH 121, Bact 221, DM 132. Offered in even-numbered years.

DM 233 Dairy Products Judging (2)
Theory and practice in the score card grading of butter, cheese, ice cream, and market milk. 1 lecture, 1 laboratory. Prerequisite: DM 232

DM 331 Condensed and Dry Milk (4)
Processing, packaging, and marketing of evaporated and condensed milk and dry milk powder. Field trips are made to study commercial plants and methods. 3 lectures, 1 laboratory. Prerequisites: DH 121, DM 132, Bact 222. Offered in odd-numbered years.

DM 332 Dairy Inspection (2)
State dairy codes and score cards used for dairy plants and farms. Quality tests of dairy products. Practice in inspecting and scoring dairy farms and factories. 1 lecture, 1 laboratory. Prerequisites: DH 121, DM 132, Bact 221

DM 333 Advanced Dairy Products Judging (2)
Advanced procedure in scoring and grading dairy products including milk, butter, ice cream, and cheese. 2 laboratories. Prerequisite: DM 233

DM 336 Creamery Records (3)
Product control within the plant. Department records, inventories, daily work sheets, load out and route return slips, checking, recapitulation, fat losses and their control and records on receipts, production and distribution as required by the State. 2 lectures, 1 laboratory. Prerequisites: DM 133, 231, 232

DM 433 Creamery Management (4)
Creamery management methods, applied accounting, cost analysis of various operations, advertising, marketing, collections, analysis of financial and operating statements. 3 lectures, 1 laboratory. Prerequisites: Required DM major courses prior to senior year. Offered in odd-numbered years.

DM 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

DM 463 Undergraduate Seminar (2)
Reports on student papers, bulletins, periodical articles, and dairy research experiments. Sources of dairy manufacturing information. Practice in oral reporting. Late developments and research work in the dairy industry. 2 lectures.
Few farmers today produce goods primarily for use on the farms. Agriculture involves large cash expenses and receipts and great sums of capital. Everything the farmer does has a bearing on the profits he may make.

The curriculum of this department places major emphasis on the management phases of agriculture. This does not mean production training is ignored since the student is required to take a liberal number of production courses which provide the essential foundation for management training. Production skills are emphasized in the first two years of the curriculum. At this time students are encouraged to participate in the project programs of production departments. The last two years bring a continuation of production training but primary emphasis is on management.

Actual ranch management problems are used liberally throughout the curriculum. Students participate in making, executing, and analyzing farm plans on the college farm during the senior year. The emphasis is on maximization of profits and not production skills which are obtained in the earlier years.

Students are prepared to operate and manage farms applying sound business principles. They are not prepared as institutional research workers although they take basic courses which will help them, should they choose to pursue this phase elsewhere.

CURRICULUM IN FARM MANAGEMENT

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Records (FM 100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Other Agricultural courses and electives</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

16½ 16½ 16½

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Marketing (FM 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Resources (FM 305)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soils Management (SS 122)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Modern Literature (Eng 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Descriptive Statistics (Math 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Other Agricultural Courses and electives</td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

16½ 16½ 16½

* Of the total "other agricultural courses and electives" units at least 40 shall be chosen with the approval of the adviser from other fields of agriculture.
Junior

- **Principles of Farm Management (FM 322)**: 4
- **Types of Farm Organization in Calif. (FM 325)**: 3
- **Farm Appraisal (FM 326)**: 3
- **Senior Project (FM 461)**: 2
- **Principles of Accounting (Ec 301, 302)**: 3
- **General Business Administration (Ec 306)**: 3
- **General Inorganic Chemistry (Chem 324, 325)**: 4
- **Organic Chemistry (Chem 326)**: 4
- **American Government (Pol Sc 301)**: 3
- **Growth of American Democracy (Hist 304)**: 3
- **The U. S. in World Affairs (Hist 305)**: 3
- ***Other Agricultural Courses and electives***: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Farm Management (FM 322)</td>
<td>4</td>
</tr>
<tr>
<td>Types of Farm Organization in Calif. (FM 325)</td>
<td>3</td>
</tr>
<tr>
<td>Farm Appraisal (FM 326)</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (FM 461)</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Accounting (Ec 301, 302)</td>
<td>3</td>
</tr>
<tr>
<td>General Business Administration (Ec 306)</td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Other Agricultural Courses and electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

- **Farm Credit (FM 310)**: 3
- **Agricultural Price and Government Control (FM 403)**: 3
- **Crop Farm Management Problems (FM 421)**: 3
- **Farm Management Problems (FM 424, or FM 425, or FM 426)**: 3
- **Large Farm Accounting (FM 431)**: 3
- **Management Participation on College Farm (FM 460)**: 2
- **Senior Project (FM 462)**: 2
- **Undergraduate Seminar (FM 463)**: 2
- **Statistical Method (Math 322)**: 3
- **Commercial Law (Ec 316)**: 3
- ***Other Agricultural Courses and electives***: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Credit (FM 310)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Price and Government Control (FM 403)</td>
<td>3</td>
</tr>
<tr>
<td>Crop Farm Management Problems (FM 421)</td>
<td>3</td>
</tr>
<tr>
<td>Farm Management Problems (FM 424, or FM 425, or FM 426)</td>
<td>3</td>
</tr>
<tr>
<td>Large Farm Accounting (FM 431)</td>
<td>3</td>
</tr>
<tr>
<td>Management Participation on College Farm (FM 460)</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project (FM 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (FM 463)</td>
<td>2</td>
</tr>
<tr>
<td>Statistical Method (Math 322)</td>
<td>3</td>
</tr>
<tr>
<td>Commercial Law (Ec 316)</td>
<td>3</td>
</tr>
<tr>
<td>Other Agricultural Courses and electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Farm Management

FM 100 Project Records

Organization of the Foundation, records needed to conduct a project, methods of keeping records, and their analysis. Adapted to student conducting a project under the supervision of the college. 1 lecture.

FM 101 Farm Records and Farm Management Practices

Farm record keeping for income tax purposes and study of farm business, measures of farm profits, factors affecting farm profits, reorganization of an actual farm. May not be substituted for FM 321 or 322. 3 lectures, 1 laboratory.

FM 300 Successful California Farms

Visits to successful California farms involving many types of farming. Study of farm resources and organization, techniques of operation, yields, problems. Different regions visited on different trips. Maximum credit is 3 units for 3 different trips. Prerequisite: Sophomore standing.

FM 304 Agricultural Marketing

Principles of marketing agricultural products, market functions, channels, market institutions, introduction to cooperative marketing, cost of marketing, marketing problems by commodities, marketing policy, government regulation. 3 lectures. Prerequisite: Ec 202

FM 305 Agricultural Resources

Survey of agricultural production areas of United States from standpoint of physical resource, markets, economic advantages, and problems. Appraisal of area problem from standpoint of land economic principles. 3 lectures.

FM 310 Farm Credit

Finance principles for farmers, farm credit needs, types of credit, credit sources, requirements, farm finance planning, discussion with credit representatives. 3 lectures. Prerequisite: Ec 301 or FM 321

* Of the total "other agricultural courses and electives" units at least 40 shall be chosen with the approval of the adviser from other fields of agriculture.
FM 321 Farm Records
Fundamentals of record keeping, kinds of records, inventory, depreciation, cash and accrued basis of income tax reporting, balance sheet, operating statement, analysis of statements. 2 lectures, 1 laboratory. Prerequisite: Ec 202

FM 322 Principles of Farm Management
The role of farm management, types of farming, problems of leasing and buying a farm, labor problems, measures of profits, factors affecting profits, budgeting of laboratory farms, independent analysis of farm for term report. 3 lectures, 1 laboratory. Prerequisite: FM 321 or Ec 301 and 302

FM 325 Types of Farm Operation in California
Agricultural regions of California considered from standpoint of physical resources, crops and livestock, size, tenure, water problems, relation to urban areas, land development. 2 lectures, 1 laboratory. Prerequisite: FM 322

FM 326 Farm Appraisal
Methods of farm appraisal, use of county records, appraisal practice on different types of farms, discussions with professional appraisers. 2 lectures, 1 laboratory. Prerequisite: FM 322

FM 403 Agricultural Prices and Government Control
Price making process, price variation and trends, reports and forecasting, governmental price control programs, price characteristics and problems of specific agricultural commodities. 3 lectures. Prerequisite: Ec 202

FM 421 Crop Farm Management Problems
Crop enterprise costing procedure, analysis of rotation systems, labor problems, irrigation plans, determination of most profitable rates of fertilization and irrigation, marketing crops, land development costs, effect of shifting cropping plan. 2 lectures, 1 laboratory. Prerequisite: FM 322

FM 424 Poultry Husbandry Farm Management Problems
Poultry enterprise costing procedure, economics of plant layout, analysis of labor saving equipment and procedure, determination of most profitable feed combination, credit for poultrymen, use of outlook reports, marketing methods. 2 lectures, 1 laboratory. Prerequisite: FM 322

FM 425 Animal Husbandry Farm Management Problems
Costing procedure for animal enterprises, types of beef operations compared, feed lot management problems, determination of most profitable feed rations, livestock marketing procedure, effect of feed resource changes on organization and profits. 2 lectures, 1 laboratory. Prerequisite: FM 322

FM 426 Dairy Farm Management Problems
Dairy enterprise costing procedure, relation of cropping plan to dairy organization, analysis of feed resource costs, determination of most profitable feed rations, costs and problems of shifting from grade B to grade A dairy, measuring economic effect of breed improvement. 2 lectures, 1 laboratory. Prerequisite: FM 322

FM 430 Orientation to California Agriculture
Study of California agriculture through visitation to major production areas of the State. Problems in connection with organization, management, production practices, marketing procedures, use of equipment, soils, climate, and irrigation are considered. Minimum of one week will be spent in evaluation and analysis of data gathered on the trip. Offered in summer only. Open only to agricultural majors. Prerequisite: Senior standing or permission of Dean of Agriculture.

FM 431 Large Farm Accounting
Application of commercial accounting process to large farm accounting problems. Special emphasis will be given to the problem of devising and executing an accounting system that will give necessary details on specific enterprises for analysis and control. 2 lectures, 1 laboratory. Prerequisite: Ec 301, 302
FM 460 Management Participation on College Farm (1-7)

Two areas considered: (1) Limited management and record keeping participation on resources presently used for production instruction. (2) Complete management participation on a small farm near the college. Where possible, students will live at farm. Prerequisite: Junior standing, seniors preferred.

FM 461, 462 Senior Project (2) (2)

Analysis of a farm management problem selected by student with approval of adviser. Project results are presented in a formal report. Minimum 120 hours total time.

FM 463 Undergraduate Seminar (2)

Student presentation and description of developments and problems in farm management. 2 lectures.
The Crops Department curricula are designed to prepare students for field, fruit, and truck crop production. Instruction in field crops qualifies students for placement in specialized crop production and for general farming involving combinations of both crops and livestock; for placement in such related fields as service and sales in seeds, weed and pest control, and fertilizers, as fieldmen in sugar beets and other crops; and for government employment as agronomists.

The truck crop curriculum prepares for specialized truck crop farm production and for employment with vegetable shipping firms, processing plants, pest control and fertilizer companies, seed distributing companies, and governmental employment.

The curriculum in fruit production is designed to train majors to manage and operate orchards and for such other production jobs in deciduous fruits and grapes and related activities as fieldmen for canneries and shipping companies, and as fruit inspectors.

Graduates in all three crop fields have entered agricultural teaching and agricultural extension work.

The department also offers general courses in field crops, truck crops, and fruit growing for other agricultural majors in the college.

The department operates 25 acres of orchard and vineyard, producing more than 150 varieties of fruit. Fifteen acres of land are used in truck crop farming and 75 acres are planted to field crop projects. The 400 acres of crop land operated by the college farming program are also used extensively in the instructional program. Field trips are also taken to the major areas where crops not common to San Luis Obispo are grown. Students are encouraged to undertake production projects in their respective majors.

Students interested in the two-year technical certificate should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN FIELD CROPS

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Crops (CP 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereal Crops (CP 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Forage Crops (CP 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botany (Bot 121, 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeds and Poisonous Plants (CP 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Crop Technology (CP 222)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Truck Crops (TC 230)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 222)</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant Pathology I (Bot 223)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>17½</td>
<td>16½</td>
</tr>
</tbody>
</table>
Agricultural Division

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Pest Control (CP 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigated Pastures (CP 330)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Fruit Growing (FP 322)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Seed Production (CP 331)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation (AE 240)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Record Keeping (FM 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Management I (FM 322)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and Fiber Crops (CP 421)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Breeding (CP 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (CP 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (CP 463)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Economics Elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

CURRICULUM IN FRUIT PRODUCTION

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomology (FP 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nut Crops and Small Fruits (FP 133)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entomology (Ent 126)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viticulture (FP 231)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit Plant Propagation (FP 232)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchard Management (FP 236)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Machinery (AE 221, 222)</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Pathology I (Bot 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>17½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Economics elective to be selected from FM 304, 310, 403, or 423.
CURRICULUM IN TRUCK CROPS

<table>
<thead>
<tr>
<th>Course</th>
<th>Freshman</th>
<th>Sophomore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Truck Crops Production (TC 124)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Winter Truck Crops Production (TC 125)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Warm Season Truck Crops Production (TC 126)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agriculture Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Surveying (AE 131)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½ ½ ½</td>
<td>4</td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16 16 16</td>
<td>17 ½ 16 ½ 17 ½</td>
</tr>
</tbody>
</table>

*Economics elective to be selected from FM 304, 310, 403, or 423.
† FP 250 or CP 250.
Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Crop Marketing (TC 325)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Irrigation (AE 240)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Crop Pest Control (CP 321)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Record Keeping (FM 321)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Management I (FM 322)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Crop Management (TC 424)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (CP 461, 462)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (CP 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Plant Breeding (CP 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>*Economics Elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Agriculture Biochemistry (Chem 328)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN CROPS PRODUCTION

CP 100 Principles of Crops, Pest and Disease Control

Symptoms, identification, and methods of control for the principal diseases and pests of field, truck, fruit, and nursery crops and ornamentals. Field practice in operation of spray equipment and dust machines. 4 lectures, 1 laboratory. To be taken only by technical students.

CP 121 Field Crops

Production, distribution, adaptation, and utilization of the major field crops in California, including cotton, potatoes, large seeded legumes, sugar crops, flax, and safflower. 3 lectures, 1 laboratory.

CP 122 Cereal Crops

Production, distribution, adaptation, and utilization of major cereal crops varieties; with field trips to major cereal producing areas of California. 3 lectures, 1 laboratory.

CP 123 Forage Crops

Production, harvesting, and utilization of principal California forage crops. Identification and utilization of range plants studied in the field. 3 lectures, 1 laboratory. Prerequisite: Bot 121

CP 221 Weeds and Poisonous Plants

Common and noxious weeds of California. Their identification, life histories, and control. Chemicals and equipment used for weed control in cultivated land and irrigation ditches, on the range and wasteland. Poisonous weeds, their effects and prevention. 3 lectures, 1 laboratory.

CP 222 Field Crop Technology

Grades and qualities of California field crops as they affect market values. Effects of harvesting and storage. Technological processes, especially as they affect demand and determine processing. 3 lectures, 1 laboratory. Prerequisites: CP 121, 122, 123

Economics elective to be selected from FM 304, 310, 403, or 423.
CP 230 General Field Crops (4)
Production, harvesting, and use of important California cereal and field crops. Production areas, crop rotations, disease and pest control. 3 lectures, 1 laboratory.

CP 303 Agricultural Code of California (3)
Services and procedures of the Agricultural Code of California. Provisions of the Agricultural Code and other laws affecting industries serving agriculture, with emphasis on plant industries. Grain warehouse inspection, seed inspection, county departments of agriculture, plant quarantine, and standardization. 3 lectures.

CP 304 Plant Breeding (3)
Application of principles of plant improvement through selection, hybridization, and use of hybrid vigor. 2 lectures, 1 laboratory. Prerequisite: Bio 303

CP 321 Crop Disease and Pest Control (3)
Methods of combating disease, insect pests, and rodents attacking important California crop plants. Sprays, dusts, fumigants, poisons; cultural and sanitary controls. 2 lectures, 1 laboratory.

CP 330 Irrigated Pastures (3)
Culture, management, fertilization, composition, and costs of irrigated pastures. Plants composing the pasture. Their identification, adaptation, growth season, and utilization. 2 lectures, 1 laboratory. Prerequisite: CP 123

CP 331 Seed Production (4)
California field vegetable and flower industry production. Location, methods of growing, harvesting, storing. Economic outlook for principal kinds. Growing disease-free seed for other states. Certified seed production. Seed laws. 3 lectures, 1 laboratory. Prerequisites: CP 121, 122, 123

CP 421 Oil and Fiber Crops (4)
Culture, fertilization, harvest, grading, and marketing of cotton, flax, safflower, castor beans, minor oil and fiber crops. Field trips to important centers of production. 3 lectures, 1 laboratory. Prerequisite: CP 121 or 230

CP 461, 462 Senior Project (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

CP 463 Undergraduate Seminar (2)
Student presentation and group leadership under faculty supervision on new developments in crop, fruit, and truck crop enterprises. 2 lectures.

CP 581 Graduate Seminar in Field Crop Production (3)
Group study of current problems of crop production; current experimental and research findings as applied to production and marketing. 3 lectures.

DESCRIPTIONS OF COURSES IN FRUIT PRODUCTION

FP 123 Beekeeping (3)
Elementary beekeeping, possibilities and problems of home and commercial beekeeping in California. Sources of nectar. Honey processing and marketing. Bee diseases and equipment. Pollination problems. 2 lectures, 1 laboratory.

FP 131 Pomology (4)
History of fruit growing; outlook; apple, peach, pear, and prune production; cover crop management. Field laboratories in harvesting, grading and storing of college orchard products. 3 lectures, 1 laboratory.

FP 132 Pomology (4)
Apricot, cherry, fig, olive and plum production. Establishing the orchard, pruning principles of young and bearing trees. Planting of deciduous trees. Practice in pruning young and bearing deciduous fruit trees and grapevines. 3 lectures, 1 laboratory.
FP 133 Nut Crops and Small Fruits (4)
Almond, walnut, filbert, pecan, and miscellaneous nuts identification, culture, harvesting, and processing. Field practice in thinning of deciduous fruits, spring cultural problems. Field trips to nut orchards, hulling and processing plants. Culture and harvesting of bush berries and strawberries. 3 lectures, 1 laboratory.

FP 230 General Deciduous Fruit Production (4)
Common orchard practices in producing deciduous fruits, nuts, and grapes. Varieties, areas, propagation, planting, pruning, pollination, disease and insect control for home and commercial plantings. For students other than crops majors. 3 lectures, 1 laboratory.

FP 231 Viticulture (4)
Establishment of vineyards. Identification and uses of varieties of table, raisin, and wine grapes. Vineyard operations, disease and pest control, harvesting, packing grapes, making and processing raisins, wine making. Field practice in pruning, propagation, harvesting and variety identification in college vineyard. 3 lectures, 1 laboratory.

FP 232 Fruit Plant Propagation (4)
Propagation by seed, cuttings, layering, grafting, and budding. Rootstocks for deciduous fruits, commercial nursery practices. 3 lectures, 1 laboratory. Prerequisite: FP 131 or 132 or 133 or 230

FP 234 Deciduous Disease and Pest Control (4)
Studies and field identification of diseases and insect pests of deciduous fruit trees. Field application of control materials. Operation of modern spraying and dusting equipment. 3 lectures, 1 laboratory.

FP 236 Orchard Management (4)
Management problems in orchard and packing house operations. Job instruction training. 3 lectures, 1 laboratory.

FP 322 California Fruit Growing (4)
Survey of citrus, deciduous, small fruit, and subtropical fruit production practices in California. Areas of production, propagation, harvesting, and marketing. 3 lectures, 1 laboratory.

FP 332 Citrus and Avocado Fruit Production (4)
Growing and marketing oranges, lemons, grapefruit, avocados and dates. Minor subtropical fruits also included. Orchard practice. For non-citrus majors. 3 lectures, 1 laboratory.

FP 421 Advanced Pomology (3)
Marketing, processing, and handling fruit and fruit products. Field trips to processing centers. 2 lectures, 1 laboratory.

FP 581 Graduate Seminar in Fruit Production (3)
Group study of current problems of fruit production; current experimental and research findings as applied to production and marketing. 3 lectures.

DESCRIPTIONS OF COURSES IN TRUCK CROPS PRODUCTION

TC 124 Commercial Truck Crops Production (4)
Principles involved in truck crops production. Soil preparation, seed and varieties, culture. Survey of industry, scope, value, and areas of production. 3 lectures, 1 laboratory.

TC 125 Winter Truck Crops Production (4)
Production principles and cultural practices applied to truck crops grown during cold weather periods. Scope, production costs, methods, varieties, for cauliflower, broccoli, etc. 3 lectures, 1 laboratory.
TC 126 **Warm Season Truck Crops Production** (4)
Production principles and cultural practices applied to tender vegetable crops. Scope, production costs, methods, varieties for lettuce, tomatoes, beans, carrots, etc. 3 lectures, 1 laboratory.

TC 224 **Harvesting and Packaging Truck Crops** (4)
Harvesting methods and procedures; current handling and packaging techniques; grades and grading, minimum standards, containers, storage; requirements of crops for processing. 3 lectures, 1 laboratory.

TC 230 **General Truck Crops** (4)
Principles involved in production, harvesting, packaging, and marketing of major truck crops grown in California; survey of vegetable industry. 3 lectures, 1 laboratory.

TC 232 **Vegetable Plant Propagation** (3)
Propagation of vegetable plants commonly developed in protected area before transplanting; cultural and management practices in open seed beds and protected plant growing structures. 2 lectures, 1 laboratory.

TC 325 **Truck Crops Marketing** (4)
Marketing methods of vegetable crops, sources of information, market news service operation, transportation, storage requirements, distribution system for handling of perishable products. 3 lectures, 1 laboratory.

TC 424 **Truck Crops Management** (4)
Organization, management, and operation of commercial size vegetable production acreages; advanced work in production, harvesting, marketing operations, and the varied aspects of the entire commercial vegetable production industry. 3 lectures, 1 laboratory.

TC 581 **Graduate Seminar in Truck Crop Production** (3)
Group study of current problems of vegetable production; current experimental and research findings as applied to production and marketing. 3 lectures.
The function of this department is to prepare students for the nursery and florist industries, landscaping, grounds management, secondary agricultural teaching, as well as other related branches of horticulture. The training stresses nursery management, propagation of nursery and greenhouse crops, nursery and greenhouse design and management, grounds management and supervision. Instruction is also given in the design and layout of landscape plans for small homes, suburban property, and public buildings.

Graduates of the Ornamental Horticulture Department qualify for managerial positions in nurseries, greenhouses, parks and grounds. They also find employment as propagators in nurseries, salesmen with seed and insecticide companies, landscape designers, and teachers.

The facilities of the department include two lath houses covering 3,000 square feet, 7,000 square feet of greenhouses, cloth houses, cold frames, hotbeds, and field growing grounds. Large well-equipped indoor laboratories are available for class work.

The entire 100 acres of landscaped campus area serves as an outdoor laboratory. The campus is planted with many interesting and unusual trees and shrubs from all over the world. The campus also contains a large number of native California trees and shrubs.

Equipment includes the latest models of power equipment necessary in nurseries, greenhouses, parks and grounds, and landscaping. An extensive list of periodicals covering the field of ornamental horticulture is subscribed to and available to students. Through the staff, affiliation in several national horticultural organizations is maintained.

Students interested in the two-year technical certificate should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN ORNAMENTAL HORTICULTURE

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursery Practices (OH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornamental Shrubs (OH 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Floriculture (OH 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Language Communications (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornamental Trees (OH 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suburban Home Planning (OH 223)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Propagation (OH 233)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Herbaceous Plants (OH 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Pathology (Bot 223)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>
Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Landscape Management (OH 337)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>*Advanced Plant Propagation (OH 338)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>*Landscape Design (OH 322)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Accounting (Ec 301, 302)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Inorganic Chemistry (Chem 324, 325)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

*Beginning with Junior year, students may elect to specialize in Nursery Management or Floriculture. Students electing to specialize in Floriculture must substitute:

- Cut Flower Production OH 334 (4)
- Flower Arrangement OH 325 (4)
- Greenhouse Design and Management OH 323 (4)

†Economics elective to be selected from FM 310, 403, or Ec 316.

†To be selected from FP 230, 322, or 332.

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseases and Pests (OH 327)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Arboriculture (OH 421)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (OH 461, 462)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Seminar (OH 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>†Economics Elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Native Plants (OH 336)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Plant Breeding (CP 304)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>‡Fruit Crops Elective</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN ORNAMENTAL HORTICULTURE

OH 121 Nursery Practices

Commercial nursery operations. Propagation, nursery layout, seed sowing, transplanting, potting, canning, fertilizing, irrigation, and pest control. Bedding plants, hot house plants, trees, and shrubs. 3 lectures, 1 laboratory.

OH 122 Ornamental Shrubs

Broadleaf shrubs and vines used in California. Identification, habits of growth, cultural requirements, and landscape use. 3 lectures, 1 laboratory.

OH 123 Floriculture

The operating of greenhouses and other forcing structures. A study of the relationship of light, heat, temperature, and moisture to plant growth. 3 lectures, 1 laboratory. Prerequisite: OH 121.

OH 220 Farm Home Planning

Landscape layouts for rural homes, farm yards, and buildings. Placing of roadways, drives, walks, trees, shrubs, and lawns. For students other than ornamental horticulture majors. 2 lectures, 1 laboratory.

OH 221 Ornamental Trees

Broadleaf trees grown and used in California. Identification, habits of growth, cultural requirements, and landscape use. 3 lectures, 1 laboratory.

†Beginning with Junior year, students may elect to specialize in Nursery Management or Floriculture. Students electing to specialize in Floriculture must substitute:

- Cut Flower Production OH 334 (4)
- Flower Arrangement OH 325 (4)
- Greenhouse Design and Management OH 323 (4)

†Economics elective to be selected from FM 310, 403, or Ec 316.

‡To be selected from FP 230, 322, or 332.
OH 223 Suburban Home Planning (4)
Principles of landscape design for residential properties. Designing of several small home properties. 3 lectures, 1 laboratory. Prerequisites: OH 122, 221

OH 230 General Nursery Practices (3)
For nonhorticulture majors. A general course in ornamental horticulture with emphasis upon nursery operations. Includes budding, potting, seed sowing, transplanting, pest control, and the planting of lawns, trees, shrubs, and flower beds. 2 lectures, 1 laboratory.

OH 233 Plant Propagation (4)
Principles of asexual propagation. Budding, cutting, layering, division, and separation. 3 lectures, 1 laboratory. Prerequisites: OH 121, 123

OH 321 Herbaceous Landscape Plants (4)
The identification, habits of growth, and landscaping uses of ornamental annuals and herbaceous perennials commonly grown for California landscape. 3 lectures, 1 laboratory. Prerequisites: OH 121, 122, 338

OH 322 Landscape Design (4)
Principles of landscape design and the application of these principles in solving landscape design problems. 3 lectures, 1 laboratory. Prerequisites: OH 122, 221, 223

OH 323 Greenhouse Management (4)
The production of major commercial potted plants under glass and lath. Preparation for sale and merchandising of greenhouse crops. 3 lectures, 1 laboratory. Prerequisites: OH 121, 123, 334, SS 121, 221

OH 325 Flower Arrangement (4)
A study of the principles of flower arrangement and corsage making. 3 lectures, 1 laboratory.

OH 327 Diseases and Pests of Ornamental Plants (3)
A detailed study of diseases and pests of ornamental plants, their effect on plants, their prevention and control. 2 lectures, 1 laboratory. Prerequisites: OH 122, Ent 126, Bot 223

OH 334 Cut Flower Production (4)
The production of cut flowers in the field, under cloth, and under glass. Preparation of cut flowers for market. 3 lectures, 1 laboratory. Prerequisites: OH 121, 123, SS 121, 221

OH 336 Native Plants (3)
The identification, use, and culture of native California landscape plants. 2 lectures, 1 laboratory. Prerequisites: OH 122, 221

OH 337 Landscape Management (4)
The preparation and planting of lawns and flower beds. Planting and care of shrubs. Maintenance of established plantings. 3 lectures, 1 laboratory. Prerequisites: OH 121, 122, 221

OH 338 Advanced Plant Propagation (4)
Advanced nursery and plant propagation practices. Grafting, dormant budding, lining out, balling out, bare rooting, and making hardwood cuttings. Construction and operation of forcing structures. 3 lectures, 1 laboratory. Prerequisites: OH 121, 233

OH 421 Arboriculture (4)
The care and management of large ornamental trees. The use of ropes and other safety equipment in tree climbing. Cavity work, bracing, cabling, and pruning. 3 lectures, 1 laboratory. Prerequisites: OH 221, 337
OH 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects
typical of problems which graduates must solve in their fields of employment.
Project results are presented in a formal report. Minimum 120 hours total time.

OH 463 Undergraduate Seminar (2)
An open forum of senior students in which the latest developments, practices,
and procedures are discussed. Each student is responsible for the development and
presentation of a topic in his chosen field. 2 lectures.

OH 581 Graduate Seminar in Ornamental Horticulture (3)
Group study of current problems of industry; current experimental and research
findings as applied to production and marketing. 3 lectures.
The poultry industry has developed rapidly in all its phases in California, creating an increasing demand for young men trained in the modern techniques of the industry. The function of this department is to prepare students for the various major fields of commercial poultry production, poultry allied services, and poultry marketing in California. Many graduates return to their home ranches or businesses, start their own poultry ranch or marketing organization; others find employment in egg-producing plants, turkey ranches, hatcheries, feed and supplies sales and services, or in processing plants, and in vocational agriculture teaching.

The college plant has facilities for more than 6,000 birds in the 12-acre poultry plant which maintains a commercially productive unit with six breeds of chickens, in addition to the turkey flock. The plant includes a modern 15,000 egg hatchery, poultry-dressing plant, and egg-handling facilities as well as most of the types of poultry-raising equipment commonly used in California.

Each poultry major has an opportunity to complete two or more commercially productive projects, which give him additional experience in the field in which he is most interested.

Students interested in the two-year technical certificate should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN POULTRY HUSBANDRY

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry Industry and Breeds (PH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry Brooding (PH 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Poultry Feeding (PH 123)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Feeds and Feeding (AH 101)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17 1/2</td>
<td>16 1/2</td>
<td>15 1/2</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry Selecting and Culling (PH 221)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry Products (PH 222)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Poultry Incubation (PH 223)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Poultry Anatomy and Physiology (VS 231)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry Housing (PH 233)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Livestock Hygiene and Sanitation (VS 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td></td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17 1/2</td>
<td>16 1/2</td>
<td>16 1/2</td>
</tr>
</tbody>
</table>
California State Polytechnic College

DESCRIPTIONS OF COURSES IN POULTRY HUSBANDRY

PH 121 Poultry Industry and Breeds
Scope and importance of the poultry industry as a part of California agriculture. Poultry organizations, publications, employment opportunities. Breeds and varieties of poultry and their commercial adaptations. 3 lectures, 1 laboratory.

PH 122 Poultry Brooding
Organization and planning of the replacement program on the commercial poultry ranch. Brooding and rearing techniques and practices, costs, and equipment. Growing stock care, feeding, diseases, and management. 3 lectures, 1 laboratory.

PH 123 Poultry Feeding
Poultry feeds, nutritional requirements, feeding principles and practices. Feed deficiency diseases, formulation of rations for specific purposes, and commercial economy practices. 3 lectures, 1 laboratory. Prerequisite: AH 101

PH 221 Poultry Selection and Culling
Biological and environmental factors that affect the number, size, and quality of eggs produced. Culling techniques, culling practices, and methods of selection for commercial purposes. 1 lecture, 1 laboratory.

PH 222 Poultry Products
Packaging, grading, storing, and selling of poultry products. Market grade standards and laws. Dressing, drawing, cutting, and grading of poultry. Egg grading and candling. 2 lectures, 1 laboratory.

PH 223 Poultry Incubation
Fundamentals of embryology and metabolism of the developing embryo. Principles and practices of artificial incubation. Environmental, nutritional, and breeding factors affecting the hatch. Selection and care of hatching eggs. 1 lecture, 1 laboratory.

* Economics elective to be selected from FM 304, 310, 403, or 423.
PH 230 General Poultry Production (4)
Problems of selecting stock, brooding, feeding, culling, judging, and marketing. Housing and equipment for general farm use. Not open to poultry majors. 3 lectures, 1 laboratory.

PH 233 Poultry Housing (2)
Planning and organizing the buildings and equipment for the poultry plant. Principles of construction, organization, and types of design. Balancing the brooding, growing, and laying house facilities. 1 lecture, 1 laboratory. Prerequisite: PH 122

PH 248 Hatchery Practice (1)
Care and operation of incubators, sanitation in the hatchery, grading and sorting chicks, wing banding and pedigreeing chicks, and hatchery records. 1 laboratory.

PH 321 Poultry Breeding (4)
Fundamental factors of genetics as applied to problems of poultry breeding, hereditary factors as applied to developing a strain. Sib-testing, progeny testing, experimental mating, and pedigrees. Analysis of breeding records. 3 lectures, 1 laboratory. Prerequisites: PH 221, Bio 303

PH 322 Hatchery Management (4)
Organization and layout for the operation of a breeder or multiplier hatchery. Breeding program and inter-relationship of the hatchery and cooperating egg-producers. Advertising and selling program, financing, chick deliveries, and record keeping. 3 lectures, 1 laboratory. Prerequisite: PH 321

PH 402 Advanced Poultry Plant Management (3)
General organization and coordination of the commercial poultry plant. Trends in efficiency of operations. Replacement program, marketing, and health of the flock. 3 lectures. Prerequisites: All required freshman and sophomore poultry courses and PH 321

PH 421 Turkey Production (3)
Commercial turkey production in California and its relationship to other poultry meat products. Turkey varieties, breeding, judging, and selection. Feeding, housing, and disease control program. Market grades and standards. 2 lectures, 1 laboratory. Prerequisites: PH 123, 321, VS 231

PH 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

PH 463 Undergraduate Seminar (2)
Preparing and presenting in an organized manner reports on new trends, research, and problems related to poultry husbandry. 2 lectures.

PH 581 Graduate Seminar in Poultry Production (3)
Current findings and research problems in the field and their application to the industry. 3 lectures.
The functions of this department are to provide training in soil science for students in the Agricultural Division enrolled in other graduation majors and to prepare students in the occupational fields of soils, conservation, range management, education, and farming. Courses in soil science have been developed with lecture, laboratory, and field coverage to provide fundamental knowledge of the subject and its application in agricultural production.

Completion of the four-year curriculum entitles the graduate to a bachelor of science degree in soil science. This curriculum has been designed to train individuals for employment in two major categories: namely, positions that require a wide knowledge of agriculture, such as vocational agricultural teachers, soil conservationists, land appraisers, fertilizer distributors, farm advisers, farm managers, or farm operators; and, secondly, highly specialized work, such as that of soil surveyors, laboratory technicians, college instructors, and soil specialists.

Students majoring in soil science may, by the proper selection of available courses in the senior year, specialize in one of two occupational areas: technical soils or soil conservation.

Facilities of the department have been expanded to provide sufficient laboratory and field house space and equipment to meet the needs of the program. Demonstration plots and the application of soil management practices on the college farm are utilized to the fullest possible extent in the study of methods for putting soil knowledge to work. Work of outstanding value on nearby ranches and that being carried on by public agencies is also widely utilized.

Students interested in the two-year technical certificate should refer to the introductory statement for the Agricultural Division which describes this program.

CURRICULUM IN SOIL SCIENCE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Field Crops (CP 230)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Botany I, II (Bot 121, 122)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Nursery Practices (OH 230)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizers (SS 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Conservation (SS 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Range Management (SS 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Fruit Production (FP 230)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying I (AE 131)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Plant Pathology (Bot 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics (Math 114, 115)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

 15½ 16½ 16½
Agricultural Division

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Classification (SS 321)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Fertility (SS 322)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Range Technology (SS 332)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Irrigation (AE 240)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Record Keeping (FM 321)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Animal Husbandry (AH 230)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Dairy Husbandry (DH 230)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>* Optional Courses</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Management I (FM 322)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Resources (FM 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>United States in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (SS 461, 462)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (SS 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Soil Microbiology (SS 422)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Soil Chemistry (SS 423)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Soil Physics (SS 432)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>* Optional Courses</td>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN SOIL SCIENCE

SS 121 Soils (4)
Physical, chemical, and biological properties of soils as related to agriculture. 3 lectures, 1 laboratory.

SS 122 Soil Management (4)
Effect of tillage, manuring, drainage, and irrigation practices on soil productivity. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 123 California Soils (3)
Origin, formation, and composition of California soils. Interpretation and utilization of soil survey and other data in crop production. 2 lectures, 1 laboratory. Prerequisite: SS 121

SS 202 Soil Conservation (3)
Climate, topography, soils and land use in relation to soil and water losses. Evaluation of soil and water conservation programs and practices. 3 lectures. Prerequisite: SS 121

SS 221 Fertilizers (4)
Composition, value, and use of fertilizer materials and soil correctives. Methods employed in the manufacture, distribution, and application of fertilizers. 3 lectures, 1 laboratory. Prerequisite: SS 121

* Students electing to specialize in Soil Conservation must select 12 units from the following courses: AE 132, 437, AH 101, 102, 402, Bot 343, Bio 433, Off 220, PH 230, and GP 221, 321.

Students electing to specialize in Technical Soils must select 12 units from the following courses: Zoo 131, Bio 225, Bot 322, Phys 131, Geol 209, Chem 331, 332, 403, Math 201, and Eng 301.
SS 223 Range Management (4)
Soil and plant characteristics of range lands. Management practices used to maintain range resources and increase production of forage and livestock. Identification of important range plants. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 321 Soil Classification (4)
Systems used in soil and land classification. Methods employed in soil surveying. Mapping of assigned areas and the preparation of survey reports. 3 lectures, 1 laboratory. Prerequisite: SS 122

SS 322 Soil Fertility (3)
Plant nutrient requirements of crops. Effect of soil and climatic conditions on the availability of nutrients in the soil. Diagnostic techniques in soils and crops. 2 lectures, 1 laboratory. Prerequisites: SS 321, Chem 325

SS 322 Range Technology (3)
Technical problems in range management. Development of plans for effective production and utilization of range forage. 2 lectures, 1 laboratory. Prerequisite: SS 223

SS 422 Soil Microbiology (4)
Biochemical activities of soil organisms. Effect of soil organisms on the formation, characteristics, and productivity of soils. Methods of studying soil organisms. 2 lectures, 2 laboratories. Prerequisites: Bact 221, SS 121

SS 423 Soil Chemistry (3)
Fundamental concepts and practices in soil chemistry. Methods of analysis and interpretation of significant investigations for the management of soils. 2 lectures, 1 laboratory. Prerequisites: Chem 328, SS 322

SS 432 Soil Physics (4)
Advanced study of the physical properties of soils. Application of physical-chemical soil relationships to farming and engineering practices. 2 lectures, 2 laboratories. Prerequisites: Chem 328, Math 115

SS 433 Land Use Planning (3)
Evaluation of land use capabilities. Development of plans and practices for the management of crop, range, and forest land. 2 lectures, 1 laboratory. Prerequisites: SS 332

SS 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

SS 463 Undergraduate Seminar (2)
Review of current research, experiments, and problems related to the students' major field of interest. Preparation and presentation of reports on problems or research activities. 2 lectures.

SS 581 Graduate Seminar in Soils (3)
A review of current research, experiments and problems related to soil science. Development of special demonstration and field trial plot areas for educational groups. 3 lectures.

SS 582 Graduate Seminar in Land Management (3)
Development of plans and practices for the management of crop, range, and woodland. 2 lectures, 1 laboratory.
Veterinary science courses are offered to supplement the major work provided in the animal science departments of the Agricultural Division. Keeping the college herds and flocks healthy provides the student with valuable laboratory opportunities in basic veterinary hygiene. Veterinary science courses are open as elective courses to students who have the proper prerequisites.

The department also supplies meat inspection service for animals butchered in the meats laboratory.

DESCRIPTIONS OF COURSES IN VETERINARY SCIENCE

VS 100 Principles of Livestock Hygiene and Sanitation (5)
Functional physiology, livestock disease control, and internal and external parasites causing economic loss in livestock. 4 lectures, 1 laboratory. To be taken by technical students only, in substitution for VS 123, 202, and 203

VS 123 Anatomy and Physiology (3)
Anatomy and the related physiological functions of farm animals. 2 lectures, 1 laboratory. Prerequisites: Zoo 131, 132

VS 202 Livestock Hygiene and Sanitation (3)
Animal health problems encountered on the farm. The livestock producer's part in disease control and animal health improvement programs. 3 lectures. Prerequisite: Bact 221

VS 203 Animal Parasitology (2)
External and internal parasites causing economic loss in livestock. Life cycles and control of parasites. 2 lectures. Prerequisites: Zoo 131, 132

VS 231 Poultry Anatomy and Physiology (3)
Introduction to the anatomy and related physiological functions of domestic poultry. Methods of poultry autopsy. 2 lectures, 1 laboratory. Prerequisite: Zoo 131 or Bio 100

VS 303 Poultry Hygiene and Diseases (3)
Flock health problems encountered by the poultryman. Methods of poultry parasite and disease control. 3 lectures. Prerequisite: VS 231
THE ENGINEERING DIVISION
THE ENGINEERING DIVISION

Engineering may be defined as the application of the laws of physical science, mathematics, and economics to structures, machines, processes, circuits, and systems. The objectives of the engineering program at California State Polytechnic College are:

1. To teach a thorough understanding of these laws.
2. To teach the application of these laws to engineering problems.
3. To teach good judgment in the application of these laws.

Emphasis is placed on the phases of engineering which are concerned with planning, product development, production, operation, management, service, and sales.*

There are four characteristics of the engineering program which help to meet the above objectives and to insure a well-rounded engineering graduate:

1. All freshmen have required courses in the shop and laboratory where they learn to use tools, instruments, and machines characteristic of their major. Initial emphasis is on skills and techniques which provide background for more advanced courses.
2. The student begins his major work early in his freshman year. Emphasis on the major continues throughout the entire four-year program together with the related work in mathematics, science, and general education courses.
3. Fundamentals and basic principles are taught in terms of typical problems encountered in industry. In this way, students learn general principles through practice in applying them to practical situations. Each student engages in constructive project work which results in an appreciation of the mechanical, analytical, and economic aspects of engineering.
4. All majors are required to take courses in economics and the social sciences because engineers work with men and money as well as materials and equipment. Students completing the full four-year program are awarded a degree of bachelor of science in engineering. The college Placement Office, in close cooperation with all departments, assists the graduate in finding suitable and appropriate employment.

The engineering curriculum is divided into four areas. Each area has a specific objective which is characterized by its name:

1. Courses in the technical group train in the use of procedures and operations for the development of manipulative skills and understandings which are basic to engineering, such as machine shop, welding, and drafting.
2. Courses in the engineering group train in the application of basic physical laws to problems in engineering.
3. Courses in the scientific group provide a foundation of scientific fact and train in the use of basic mathematical and scientific tools used in the practice of engineering.
4. Courses in the humanistic-social group provide the cultural background for successful participation in society.

The following chart of a typical curriculum shows the distribution of credit units, indicating both the emphasis and the balance through the four years. The entire program totals 210 quarter units of which 12 to 16 units are elective.

<table>
<thead>
<tr>
<th>Area</th>
<th>Freshman</th>
<th>Sophomore</th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>27</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Engineering</td>
<td>0</td>
<td>13</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Scientific</td>
<td>21</td>
<td>19</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Humanistic-Social</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Those students intending to specialize in design and research engineering may wish to plan to attend a school of engineering which emphasizes that type of program.
AERONAUTICAL ENGINEERING DEPARTMENT

Richard E. Hall, Roy F. Metz, Don W. Smith
M. C. Martinsen, Robert G. Rendall, William J. Werback

The four-year curriculum in Aeronautical Engineering is offered to train students in the basic principles and skills required in the design, manufacture, maintenance, and testing of aircraft and their components. These basic skills have a solid foundation in mathematics, physics, mechanics, thermodynamics, and drafting.

Graduates of the Aeronautical Engineering Department find employment in many of the varied fields associated with the manufacture of military and commercial aircraft such as: design drafting, aerodynamics, stress analysis, service engineering, flight test engineering, maintenance engineering, and laboratory testing. These graduates are employed by the various aircraft and aircraft component manufacturers, airlines, government test bases, and research laboratories.

The Aeronautical Engineering Department has well equipped shops, laboratories, and drafting rooms as well as a modern hangar and an airstrip.

Second, third, and fourth year aeronautical engineering students have the opportunity to join the student branch of the Institute of the Aeronautical Sciences, a national society organized for the advancement of aeronautical knowledge.

CURRICULUM IN AERONAUTICAL ENGINEERING

Freshman

- Aircraft Power Plant Fundamentals (Aero 121) 4
- Aircraft Construction Fundamentals (Aero 132) 4
- Aeronautical Engineering Fundamentals (Aero 133) 2
- Engineering Tests (Aero 136) 1
- Machine Shop (MS 141, 142, 143) 1
- Welding (Weld 151, 152, 153) 1
- Mathematics for Engineers (Math 117, 118) 5
- Calculus (Math 201) 3
- Engineering Drafting (ME 121, 122, 123) 2
- General Physics (Phys 131, 132) 4
- Biological Science (Bio 110) 3
- Health and Hygiene (PE 107) 3
- Physical Education (PE 141, 142, 143) **½** **½**
-

Sophomore

- Aircraft Drafting (Aero 244, 245, 246) 1
- Aircraft Materials and Processes (Aero 211) 3
- Aircraft Hydraulics (Aero 222) 3
- Electrical Engineering in Aircraft (EE 204) 3
- Aircraft Electrical Laboratory (EE 251) 1
- Aircraft Strength of Materials (Aero 205, 206) 3
- Aircraft Strength of Materials Laboratory (Aero 229) 2
- Language Communication (Eng 104, 105, 106) 3
- History of Aviation (Aero 208) 3
- Calculus (Math 202, 203) 3
- General Physics (Phys 133) 4
- Descriptive Geometry (ME 125) 3
- Engineering Statics (Phys 201) 3
- Engineering Dynamics (Phys 202) 3
- Sports Education (PE 241, 242, 243) **½** **½**
- Electives 2

Total

- 17½ 18½ 18½
DESCRIPTIONS OF COURSES IN AERONAUTICAL ENGINEERING

Aero 121 Aircraft Power Plant Fundamentals
Theory of operation and fundamental principles of the aircraft power plant and its parts. Nomenclature, types, functions and design features. Familiarization with laboratory equipment, tools, procedures and techniques. 2 lectures, 2 laboratories.

Aero 132 Airframe Construction Fundamentals
Tools, techniques, and procedures used in the manufacture and maintenance of aircraft structures. Practice in sheet metal forming and riveting and other manufacturing operations. Basic theory of flight. 2 lectures, 2 laboratories.

Aero 133 Aeronautical Engineering Fundamentals
Introduction to the graphical and analytical solution of aeronautical engineering problems. Tabulation of engineering data, slide rule computations, development of empirical equations. Emphasis on neatness and arrangement of computations. 1 lecture, 1 laboratory. Prerequisite: Math 117

Aero 136 Engineering Tests
Introduction to the methods and procedures used in testing of aircraft parts and components. Familiarization with various types of instruments used for testing purposes. 1 lecture, 1 laboratory.

Aero 205 Aircraft Strength of Materials
Loads, reactions, equilibrium and stability. Stress and strain in tension, compression and shear. Trusses and shear webs. Shear flow in airplanes. 3 lectures. Prerequisite: Math 201

Aero 206 Aircraft Strength of Materials
Torsion, bending. Shear, movement, slope and deflection of simple beams. Shear center and unsymmetrical bending in airplanes. 3 lectures. Prerequisite: Aero 205

Aero 208 History of Aviation
History of mechanical flight, historical flights, and personalities. Development of the science of aviation to its present state. 1 lecture.
Aero 211 Aircraft Materials and Processes (3)
Characteristics of metallic and nonmetallic materials used in aircraft construction. Heat treatment, corrosion prevention, finishing, fabrication methods, manufacturing processes. 3 lectures.

Aero 222 Aircraft Hydraulics (3)
Elementary principles of fluid flow. Viscosity, friction, laminar and turbulent flow. Analysis and functions of typical hydraulic units and systems. 2 lectures, 1 laboratory. Prerequisite: Phys 131

Aero 229 Aircraft Strength of Materials Laboratory (2)
Physical properties of metals used in aircraft. Tension, compression, bending, shear, and torsion tests of metal members. Tests of bolted and riveted connections. 1 lecture, 1 laboratory. Concurrent: Aero 206

Aero 240 Additional Engineering Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

Aero 244, 245, 246 Aircraft Drafting (1) (1) (1)
Execution of detail drawings of typical aircraft parts: sheet metal parts, machined parts, castings, forgings, extruded and rolled shapes, and assemblies. Includes dimensioning, notes, title blocks, and material, fastener and process call-outs used in the aircraft industry. Includes freehand pictorial sketching. 1 laboratory. Prerequisite: ME 122

Aero 301 Elementary Aerodynamics (3)
The atmosphere, dynamics, and thermodynamics of air, air speed determinations, types of fluid flow, fluid friction, airfoil theory, wing theory, lift, induced drag, parasite drag, power. 3 lectures. Prerequisite: Math 202

Aero 302 Elementary Aerodynamics (3)
Propeller theory, propeller selection methods, aircraft propulsion methods, basic performance problems. Special performance problems. 3 lectures. Prerequisite: Aero 301

Aero 316 Gas Thermodynamics (3)
Energy and continuity of fluids. Equations of state. Entropy. Gas processes. Ideal cycle applications to nozzles, compressors, engines, etc. 3 lectures. Prerequisites: Math 203, Phys 132

Aero 324, 325 Aircraft Stress Analysis (4) (4)
Design procedure layout, critical load conditions, influence lines, analysis of beams by moment area, successive integration, and moment distribution methods. Design of simple beams. Torsional combined stresses. Trusses and frames. 3 lectures, 1 laboratory. Prerequisite: Aero 206

Aero 344, 345, 346 Aircraft Detail Design (2) (2) (2)
Detail and assembly drawings of typical aircraft parts are drawn from data taken from layout drawings and sketches furnished by the designer. Parts include fuselage, wings, tail, landing gear, control systems, equipment, armament, electrical and hydraulic systems. Calculations and use of handbooks. 2 laboratories. Prerequisites: Aero 244, 245, 246

Aero 400 Special Problems for Advanced Undergraduates (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

Aero 402 Aircraft Propulsion Systems (3)
Analysis of reciprocating, turboprop, turbojet, pulsojet, athodyd, and rocket aircraft engines with respect to fuel burning, performance, gas turbine thermodynamic analysis, and structural and mechanical requirements. 3 lectures. Prerequisite: Aero 421
Aero 404 Aerodynamics
Longitudinal stability and control, static and dynamic stability, wing moments and balance, factors influencing the stability of the complete airplane, lateral and directional stability, design and operation of control surfaces, compressibility effects. 3 lectures. Prerequisite: Aero 302

Aero 405 Aerodynamics
Two-dimensional analysis of supersonic flow, flow in a duct, normal shocks, Prandtl-Meyer expansion and oblique shock, thin airfoils, transonic conditions, supersonic wind tunnels, and test methods. 3 lectures. Prerequisite: Aero 404

Aero 407 Introduction to Advanced Aerodynamics
Euler's equation of motion, use of potential and stream functions, circulation and vorticity, theory of the two-dimensional airfoil, lifting line theory of the finite wing. 3 lectures. Prerequisites: Math 316, Aero 302

Aero 408 Advanced Aircraft Structural Analysis
Indeterminate structures, frame analysis, treatment of plates and shells, shear lag and deformation, effect of skin cutouts, application of structural theory to the design of aircraft components. 3 lectures. Prerequisite: Aero 404

Aero 409 Aircraft Flight Testing
Flight test instrumentation, determination of airspeed, altitude, temperature, loads, stability and control, and engine performance characteristics of the airplane in flight, methods of analysis of flight test data. 3 lectures. Prerequisite: Aero 404

Aero 410 Mechanical Vibrations in Aircraft
Kinematics of harmonic motion, harmonic analysis, the linear single degree of freedom system, dynamic balancing, critical speed of shafts, seismic instruments, two degrees of freedom systems, dynamic vibration absorbers, self-excited vibrations, including an introduction to flutter theory. 3 lectures. Prerequisite: Math 316

Aero 411 Rotary Wing Aircraft
Introduction to the analysis of rotating wing aircraft; hovering, vertical, and translational flights; types of flight control mechanisms; performance and stability of the complete aircraft. 3 lectures. Prerequisite: Aero 302

Aero 412 Aircraft Heating and Cooling Systems
Applications of thermodynamics and heat transfer to heating and ventilation of crew spaces, engines and aircraft equipment. Includes a basic approach to heat transfer. 3 lectures. Prerequisites: Aero 316, 302

Aero 421 Aircraft Propulsion Systems
Analysis of reciprocating, turboprop, turbojet, pulsejet, athodyd, and rocket aircraft engines with respect to requirements, thrust, propeller characteristics, utilization of available energy, and charge handling. Aviation fuel characteristics: hydrocarbons, rocket propellants and atomic fuel. Laboratory tests, in performance, fuel consumption, and efficiencies of the above engines. 3 lectures, 1 laboratory. Prerequisite: Aero 316

Aero 444, 445, 446 Aircraft Design Layout
Layouts with preliminary design calculations, line drawings, diagrams, and layout of the airplane in general including its respective sections. Careful design investigation given to major fittings and installations. Experimental and production design. 3 laboratories. Prerequisite: Aero 346

Aero 457, 458, 459 Aeronautical Laboratory
Use of laboratory instruments to develop the technique of obtaining engineering measurements, special assigned problems in the field of aeronautics. 2 laboratories. Prerequisite: Aero 302

Aero 461, 462 Senior Project
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Aero 463 Undergraduate Seminar
Preparation, oral presentation, and discussion by students of technical papers on recent engineering developments. 2 lectures. Prerequisite: Senior standing.
Refrigeration is involved in installations from the size of the household refrigerator to the large cold storage warehouse and in applications from the simple chilling of food to the production of dry ice. Refrigeration and steam are a part of nearly all complete air conditioning systems. Air conditioning applications extend from simple comfort heating and cooling to complex industrial processing. Air conditioning is essential in all factories dealing with textiles, paper, tobacco, flour, bakery goods, explosives, and other hygroscopic materials. Suitable air conditions must be maintained in such widely differing applications as submarines, atmospheric test chambers, and airplanes. Refrigeration and air conditioning are essential industries both in time of peace and in time of national emergency.

This department prepares students for the planning, inspecting, testing, and selling of refrigerating, heating, and air conditioning equipment and systems. Graduates find employment in the fields of quick freezing, cold storage, steam heating, comfort air conditioning, industrial air conditioning, design and testing of air conditioning equipment for atmospheric test chambers, airplanes, submarines, etc.

This department has modern, well-equipped laboratories with a combined floor area of more than 8,000 square feet, with equipment valued conservatively at $100,000. Its two drafting rooms are well equipped and have a combined floor area of 2,000 square feet. The application aspect is emphasized in all laboratory and drafting work.

CURRICULUM IN AIR CONDITIONING AND REFRIGERATION ENGINEERING

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioning Drafting (AC 121, 122, 123)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sheet Metal (AC 125, 126)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Piping Assembly (AC 124)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding Survey (Weld 157)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>18½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating and Ventilation (AC 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Heating and Ventilating System Design (AC 242, 243)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Heating and Ventilation (AC 203)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering (EE 207, 208, 209)</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>General Electrical Laboratory (EE 253)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry (Chem 321, 322, 323)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics (Phys 306)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound (Phys 212)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>18½</td>
<td>18½</td>
</tr>
</tbody>
</table>
Engineering Division

<table>
<thead>
<tr>
<th>Junior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing and Building Sanitation (ME 331)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refrigeration System Design (AC 342, 343)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Strength of Materials (ME 202)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fluid Flow (ME 311, 312)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Industrial Heat Transfer (ME 313)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thermodynamics of Refrigeration (AC 301)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refrigeration Engineering (AC 302, 303)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Heating and Ventilating System Design (AC 341)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refrigeration Lab (AC 332, 333)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Heating and Ventilating Lab (AC 331)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Engineering Statics (Phys 201)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Engineering Dynamics (Phys 202)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamics of Air Conditioning (AC 401)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Air Conditioning Engineering (AC 402, 403)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Air Conditioning Engineering Practice (AC 441, 442, 443)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Senior Project (AC 461, 462)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (AC 463)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Literature</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Commercial Law (Ec 316)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Air Conditioning

AC 121, 122, 123 Air Conditioning Drafting
(3) (3) (3)
Principles and practice of mechanical and architectural drafting applied to the installation of equipment, piping, and sheet metal. 1 lecture, 2 laboratories.

AC 124 Piping Assembly
(2)
Materials and techniques used in refrigerant, steam, brine, and water piping. 1 lecture, 1 laboratory.

AC 125, 126 Air Conditioning Sheet Metal
(2) (2)
Materials and techniques of duct construction. 1 lecture, 1 laboratory. Prerequisite: AC 121. Concurrent: AC 122, 123

AC 129 Sheet Metal Shop Practice
(2)
Familiarization with basic sheet metal techniques, selection of materials, use and care of sheet metal tools and equipment. Design and construction of radio chassis, hoods, and cabinets. Primarily for electronic and electrical students. 1 lecture, 1 laboratory.

AC 201, 202, 203 Heating and Ventilating
(3) (3) (3)
Heating equipment and its application in homes, and in industrial and public buildings. 3 lectures. Prerequisite: Phys 132. Concurrent: Chem 321, 322, 323

AC 204 Heating and Ventilating
(4)
Survey of heating equipment and its application to homes, industrial and public buildings. For mechanical engineering students. 4 lectures.
AC 237 Steam Boilers and Equipment (2)
For dairy manufacturing and dairy husbandry majors. The operation, maintenance, and management of steam equipment as applied to the dairy industry. 2 lectures.

AC 238, 239 Dairy Refrigeration (2) (2)
For dairy manufacturing and dairy husbandry majors. The operation, maintenance, and management of refrigeration equipment as applied to the dairy industry. 2 lectures.

AC 240 Additional Engineering Laboratory (1-2)
Elective project work. Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories. Prerequisites: AC 123, 126

AC 242, 243 Heating and Ventilating System Design (2) (2)
Individual project work in the planning of heating and ventilating systems. 2 laboratories. Concurrent: AC 202, 203

AC 244 Heating System Maintenance (2)
Operation, maintenance, and management of steam heating systems. 1 lecture, 1 laboratory. Prerequisite: Phys 132

AC 245 Refrigerating System Maintenance (2)
Operation, maintenance, and management of refrigerating systems. 1 lecture, 1 laboratory. Prerequisite: Phys 132

AC 246 Air Conditioning System Maintenance (2)
Operation, maintenance, and management of air conditioning systems. 1 lecture, 1 laboratory. Prerequisite: AC 245

AC 301 Thermodynamics of Refrigeration (3)
The thermodynamic principles of single and multiple stage refrigerating systems. 3 lectures. Prerequisites: Math 203, Phys 133, 306

AC 302, 303 Refrigerating Engineering (3) (3)
The principles involved in the design of refrigerating equipment. Application to single and multiple stage systems. 3 lectures. Prerequisite: AC 301

AC 306 Survey of Heating and Air Conditioning (3)
Basic principles concerning comfort, health, load calculations and the space required for pipes, ducts, and equipment. For architectural engineering students. 3 lectures.

AC 331 Heating and Ventilating Laboratory (2)
The principles and practices of testing and operating steam equipment. 1 lecture, 1 laboratory. Prerequisite: Chem 323

AC 332, 333 Refrigeration Laboratory (2) (2)
Laboratory tests on refrigerating equipment. 1 lecture, 1 laboratory. Concurrent: AC 302, 303

AC 341 Heating and Ventilating System Design (2)
Individual project work in the planning of steam heating systems. 2 laboratories. Prerequisite: AC 203

AC 342, 343 Refrigerating System Design (2) (2)
Individual project work in the planning of refrigerating systems. 2 laboratories. Concurrent: AC 302, 303

AC 400 Special Problems for Advanced Undergraduates (1-2)
Total credit limited to 4 units with not more than 2 units in any one quarter. Individual project work for senior students. 1 or 2 laboratories.
AC 401 Air Conditioning Thermodynamics
The principles of psychometry and heat transfer involved in air conditioning. 3 lectures. Prerequisites: AC 203, 303

AC 402, 403 Air Conditioning Engineering
Analysis of the selection of equipment and design of systems used in industrial and public buildings. 3 lectures. Prerequisite: AC 401

AC 441, 442, 443 Air Conditioning System Design
Planning of an air conditioning system involving the year round control of temperature, humidity, and air purity in a public building. 3 laboratories. Concurrent: AC 401, 402, 403

AC 461, 462 Senior Project
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

AC 463 Undergraduate Seminar
Individual reports on important research in the refrigeration and air conditioning fields. 2 lectures.
The practice of architecture, structural engineering, and the many fields of the building industry provide a wide occupational choice. The curriculum in architectural engineering develops the background and design skills to make graduates employable in these fields.

Graduates find employment with architects, engineers, and construction firms as architectural or structural designers, draftsmen, and estimators.

Emphasis in the early part of the curriculum is on construction, working drawings, mathematics, and science. With this background, instruction progresses to more advanced work in architectural and structural design, planning, etc. In the senior year, the student may elect work in architectural or structural design.

The four-year curriculum leads to a bachelor of science degree in architectural engineering which the California State Board of Architectural Examiners recognizes as three of the seven years experience required for eligibility to take the examination for an architect’s license.

Scarab, honorary professional fraternity, and the American Institute of Architects, sponsor chapters in the department. The Los Angeles chapter of the Producer’s Council presents a year-long lecture series designed to introduce building products to the student. Lectures are also provided by visiting architects and engineers.

Field trips are taken to the Los Angeles and Bay area each year to inspect outstanding buildings and construction projects.

CURRICULUM IN ARCHITECTURAL ENGINEERING

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Drafting (Arch 141, 142, 143)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Materials of Construction (Arch 101)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive Geometry (ME 125)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Codes (Arch 103)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation (Arch 104)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>18½</td>
<td>18½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction and Working Drawings (Arch 241, 242, 243)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Architectural Delineation (Arch 245, 246)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quantity Survey and Estimating (Arch 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Surveying (ME 231, 232, 233)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Perspective (Arch 244)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials (Arch 205, 206)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Theory of Architectural Design (Arch 221, 222, 223)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>19½</td>
<td>16½</td>
</tr>
</tbody>
</table>
Engineering Division

Junior

<table>
<thead>
<tr>
<th>Course Title</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioning Systems (AC 306)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Plumbing and Building Sanitation (ME 333)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Wiring and Codes for Architects (EE 223)</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Architectural Design (Arch 341, 342, 343)</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Stress Analysis (Arch 314)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Steel and Timber Design (Arch 315)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Design (Arch 316)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>History of Architecture (Arch 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>The United States in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Commercial Law (Ec 316)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course Title</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural or Structural Design (Arch 441, 442, 443)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>* Structural Design (Arch 401, 402, 403)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Specifications and Contracts (Arch 404)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Senior Project (Arch 461, 462)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Arch 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Architectural Engineering

Arch 101 Materials of Construction

The use and application of building materials, structural make-up of buildings. 3 lectures.

Arch 103 Building Codes

Theory and application of laws and codes as they affect architectural construction. 2 lectures.

Arch 104 Orientation

Familiarization with the field of architectural engineering. Development of techniques useful to the student in his academic progress. 1 lecture.

Arch 141, 142, 143 Architectural Drafting

Architectural drafting techniques and standards. Progress from tracing to completing light-construction working drawings including the solving of detailing problems. 3 laboratories.

Arch 201 City Planning

Familiarization with the principles of planning. Study in community organization, growth, and guidance. 2 lectures.

Arch 202 Quantity Survey and Estimating

Methods and applications in estimating costs and quantities of materials, labor, and equipment. 3 lectures.

Arch 205, 206 Strength of Materials

Physical properties of construction materials. Moment and shear diagrams; axial and eccentric loading; deflection. Sizing of structural members of homogeneous and compound materials. 3 lectures. Prerequisite: Phys 131

Arch 221, 222, 223 Theory of Architectural Design

Studies in form, space, color, and materials, and their relation to architectural problems. 2 lectures, 1 laboratory.

* General Engineering (Arch 407, 408, 409) may be substituted for Structural Design (Arch 401, 402, 403) for those students electing structural design in Arch 441, 442, 443.
Arch 240 Additional Engineering Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

Arch 241, 242, 243 Construction and Working Drawings (3) (3) (3)
Development of architectural and structural working drawings of medium size buildings. Elementary member sizing. Simulated office conditions. 3 laboratories. Prerequisite: Arch 143

Arch 244 Perspective (2)
Mechanical perspective. 2 laboratories. Prerequisite: ME 125

Arch 245, 246 Delineation (2) (2)
Three dimensional representation with various drawing media which enable a student to express his architectural ideas. 2 laboratories. Prerequisite: Arch 244

Arch 304 History of Architecture (3)
Periods of architecture, philosophies, and conditions that influenced them. 3 lectures.

Arch 312 Home Design (2)
For students not majoring in architectural engineering. Home planning fundamentals; relation of house to lot and community. Furniture grouping. Landscape and economic considerations. 2 lectures.

Arch 314 Stress Analysis (3)
Stress analysis of statically determinate and indeterminate structures. 3 lectures. Prerequisite: Arch 206

Arch 315 Steel and Timber Design (3)
Design of steel and wood members and their connections. Design of steel and wood buildings for vertical and lateral loads. 3 lectures. Prerequisite: Arch 314

Arch 316 Reinforced Concrete Design (3)
Elements and design of reinforced concrete buildings for vertical and lateral loading. 3 lectures. Prerequisite: Arch 314

Arch 341, 342, 343 Architectural Design (5) (5) (5)
The development of the student's logic and creative abilities in the application of skills to the solution of planning problems. 5 laboratories. Prerequisites: Arch 223, 243, 246

Arch 400 Special Problems for Advanced Undergraduates (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

Arch 401 Structural Design (2)
Stress analysis of long-span structures. Haunched members. 2 lectures. Prerequisite: Arch 316

Arch 402 Structural Design (2)
Design of steel and wood structures continued. 2 lectures. Prerequisite: Arch 401

Arch 403 Structural Design (2)
Design of reinforced concrete structures continued. 2 lectures. Prerequisite: Arch 402

Arch 404 Specifications and Contracts (2)
The elements, structure, and writing of specifications. Legal aspects of architectural engineering. 2 lectures.

Arch 407, 408, 409 General Engineering (2) (2) (2)
Civil engineering applications of chemistry, hydraulics, and dynamics. 2 lectures. Prerequisite: Arch 316
Arch 411 Advanced Structural Design (2)
Theory and design of nonrectangular frames and arches. Influence lines. Moving loads on framed structures. 2 lectures. Prerequisite: Arch 316

Arch 412 Advanced Structural Design (2)

Arch 413 Advanced Structural Design (2)
Lightweight aggregates. Tilt-up and lift-slab construction. Light gage steel structures. Laminated glued wood arches. 2 lectures.

Arch 415 Current Practice in Related Fields (2)
Visiting practitioners provide instruction in topics related to the architectural engineering field: business methods; law; real estate; contracting; highway and bridge design; management, etc. 2 lectures.

Arch 441, 442, 443 Architectural or Structural Design (5) (5) (5)
For students electing architectural design: advanced problems relating the students' engineering skills with the social, economic, and aesthetic aspects of architectural design.

For students electing structural design: stress analysis of long-span structures, arches, influence lines, plate girders, multiple-storied rigid frame structures. Prestressed concrete, shells and domes. Introduction to dams and bridges. Theory and applications. 5 laboratories. Prerequisites: Arch 316, 343

Arch 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Arch 463 Undergraduate Seminar (2)
Discussion and lectures on problems of architectural firms and the building industry. Professional ethics. Students present organized material on some subject of interest in architectural engineering. 2 meetings.
The primary function of the department is to train electrical engineers. The department offers courses in electrical engineering for the other major departments. Graduates from the department will find employment opportunities in such fields as application, production, and sales engineering; in some phases of personnel work; or in management.

The laboratories are well equipped with machines and instruments. The shop facilities simulate conditions found in industry. Laboratory work in the department is designed to develop self-confidence and technical ability in the student, as well as to illustrate theory. It is in the laboratory that the "learning-by-doing" principle is most clearly exemplified. The principles and practice of mathematics and physical science are carefully integrated with the theory and practice of electrical engineering so that the graduate will have a quantitative understanding of the subject. Throughout the program stress is put on the teaching of the language of the engineer, visualization and physical concepts. The "upside-down" principle provides motivation for the student and provides a foundation for the advanced courses necessary to the electrical engineer.

CURRICULUM IN ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Technology (EE 101, 102, 103)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Electric Shop (EE 141, 142, 143)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Orientation (EE 151)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electric Laboratory (EE 152, 153)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Drafting (ME 121, 122)</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electrical Drafting (EE 146)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Machine Shop (MS 151, 152)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Welding (Weld 151, 154)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Drafting (ME 121, 122)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electrical Drafting (EE 146)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Machine Shop (MS 151, 152)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Welding (Weld 151, 154)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Machines (EE 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Current Machinery (EE 202, 203)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Electric Shop (EE 241, 242, 243)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fundamentals of Electrical Engineering (EE 212, 213)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Measurements (EE 245)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electrical Laboratory (EE 246)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electrical Laboratory (EE 249)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electrical Drafting (EE 247)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Elementary Engineering Problems (Math 213)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Differential Equations (Math 316)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physics of Electricity and Magnetism (Phys 204)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Statics (Phys 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering Dynamics (Phys 202)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language Communications (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>18½</td>
<td>16½</td>
<td>18½</td>
</tr>
</tbody>
</table>
Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Circuits (EE 301, 309)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Circuits Laboratory (EE 341, 353)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Power Transmission (EE 306)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electric Machines (EE 303)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electric Machine Laboratory (EE 342)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Industrial Electronics (EL 311, 312)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Industrial Electronics Laboratory (EL 352)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Surveying (ME 231)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Differential Equations (Math 317)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Matrix Analysis of Electric Networks (Math 312)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>General Chemistry (Chem 321, 322)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Strength of Materials (ME 202, 203)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Strength of Materials Laboratory (ME 249)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (EE 461, 462)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (EE 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electric Machines (EE 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Servomechanisms (EE 402)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineering Design (EE 423)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electric Machine Laboratory (EE 441)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electrical Laboratory (EE 442)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Industrial Electronics (EL 313)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Industrial Electronics Laboratory (EL 353)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Thermodynamics (Phys 306)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics (ME 402)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Power Plant Laboratory (ME 352)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fluid Flow (ME 311)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Industrial Relations (Ec 412)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Business Statements (Ec 416)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Electrical Engineering

EE 101, 102, 103 Electric Technology
(2) (2) (2)
Elements of electricity. Simple electric and magnetic circuits. Elements of D. C. machines, their application and operation. Elements of alternating current. 2 lectures.

EE 141 Electric Shop
(2)
Wiring materials and how to handle them. Use of hand tools. Shop practice. 2 laboratories.

EE 142, 143 Electric Shop
(1) (1)
Direct and alternating current machine windings. Machine construction. 1 laboratory.

EE 146 Electrical Drafting
(1)
Drawing of electric circuits and machines. Use of standard electrical symbols. 1 laboratory. Prerequisite: ME 122, EE 102

EE 151 Orientation
(1)
Familiarization with the field of electrical engineering. Development of techniques useful to the student in his academic progress. 1 laboratory.
EE 152, 153 Electric Laboratory (1) (1)
How to set up experiments, take laboratory notes, write reports. Elementary work with rheostats, potentiometers, resistances, meters. Common characteristics of direct current motors and generators. 1 laboratory. Prerequisite: EE 101, 102

EE 201 Electric Machines (2)
Elements of alternating current machines, their application and operation. 2 lectures. Prerequisite: EE 103

EE 202, 203 Direct Current Machinery (2) (2)
Theory and practice of direct current generators, motors, and special machines. 2 lectures. Prerequisite: EE 102

EE 204 Electrical Engineering in Aircraft (3)
Basic elements of electric circuits and machines. Emphasis on external characteristics of machines. Problems of aircraft electrical system operation. 3 lectures. Prerequisites: Math 201, Phys 133 (or concurrent)

EE 207, 208, 209 Principles and Practices of Electrical Engineering (3) (3) (3)
Electrical principles. Electric and magnetic circuits. Electrical machines. Machine controls and applications. Industrial wiring systems. Control and measurements including electronic devices. For non-electrical engineering majors. 3 lectures. Prerequisite: Math 201, concurrent Phys 133

EE 212, 213 Fundamentals of Electrical Engineering (3) (3)

EE 221 Electricity for Printers (2)
Fundamentals of operation, testing, and maintenance of electrical equipment used in small printing plants. Electrical machines and controls for slug and materials casting. 1 lecture, 1 laboratory.

EE 223 Wiring and Codes for Architects (3)

EE 240 Additional Engineering Laboratory (1-2)
Total credit limited to four units, with not more than two units in any one quarter. 1 or 2 laboratories.

EE 241 Electric Shop (1)
Trouble shooting. Repair, reconnection, etc., of motors. Winding transformer coils, armature coils. Use of growler in testing windings. Baking and treating coils. 1 laboratory.

EE 242 Electric Shop (1)

EE 243 Electric Shop (1)
Commercial steady state performance tests for direct current motors and generators. 1 laboratory. Concurrent: EE 203

EE 245 Fundamentals of Measurements (1)
Calibration and use of electrical measuring instruments. 1 laboratory. Prerequisite: EE 103
EE 246, 249 Electrical Laboratory
Selected laboratory exercises in electrical engineering. 1 laboratory.

EE 247 Electrical Drafting
Drawing of electric circuits and machines. Use of standard electrical symbols. 1 laboratory. Prerequisite: EE 146

EE 251 Aircraft Electrical Laboratory
Use of materials and electrical measuring instruments. Problems involved in aircraft installations. 1 laboratory. Concurrent: EE 204

EE 253 General Electrical Laboratory
Use of electric meters. Experiments and exercises involving direct and alternating current circuits and machines. 1 laboratory. Concurrent: EE 208

EE 254 General Electrical Laboratory
Experiments and exercises involving electric machines and their controls. Installation practices. 1 laboratory. Concurrent: EE 209

EE 301 Electric Circuits
Alternating current networks and network theorems. Coupled circuits. Impedance transformation. Nonsinusoidal waves. 3 lectures. Prerequisite: Phys 204

EE 303 Electric Machines
Extension of circuit theory to machines. Theory and operation of transformers. Induction machines. Single phase machines. 3 lectures. Prerequisite: EE 301

EE 305 Rotating and Magnetic Amplifiers
Characteristics of nonvacuum tube amplifiers. Application and analysis. 3 lectures. Prerequisites: EE 203 and EE 301; or EE 313 and EL 301

EE 306 Power Transmission
The power transmission line. Power systems. Stability problems. 3 lectures. Prerequisite: EE 309

EE 309 Electric Circuits
Transients. Circuits with distributed constants. Transmission line theory. 3 lectures. Prerequisites: EE 301, Math 317

EE 313 Electric Machines
Physical and electrical characteristics of the more common types of DC and AC machinery. Provides background facilitating selection of appropriate machine for a specific job. 3 lectures. Prerequisite: EE 213

EE 327 Illumination
Theory and practice of illumination. Mechanical and electrical problems in installation and control of lighting sources. Measurement of light. 2 lectures, 1 laboratory. Prerequisite: EE 213 or EE 208 or EE 223

EE 341 Circuits Laboratory
Study of electric circuits in the laboratory. 1 laboratory. Concurrent: EE 301

EE 342 Electric Machine Laboratory
Study of transformers and induction machines. 1 laboratory. Concurrent: EE 303

EE 353 Circuits Laboratory
Continued study of electric circuits in the laboratory. 1 laboratory. Prerequisite: EE 341

EE 400 Special Problems for Advanced Undergraduates
Arrangements to be made with department head. Limited to 4 units, with not more than 2 units in any one quarter.
EE 401 Electric Machines (3)
Salient and nonsalient pole synchronous machines. Operating problems of motors. Parallel operation of generators. Transients in alternating current machines. 3 lectures. Prerequisite: EE 303

EE 402 Servomechanisms (3)
Principles of closed loop control systems. Analysis of transfer functions. Corrective networks. Stability criteria. 3 lectures. Prerequisites: Math 317, a course in Electrical Machines, and a course in AC Electrical Circuits.

EE 407 Power System Analysis (3)
Components of a power transmission system. Equivalent circuits. Sequence impedance of transformers and transmission lines. Symmetrical components. Faults and sudden loads. 3 lectures. Prerequisites: EE 306, EE 303

EE 423 Electrical Engineering Design (4)
Application of engineering analysis to design problems. Creative thinking emphasized. Group and individual assignments. 2 lectures, 2 laboratories. Prerequisite: senior standing in Electrical Engineering.

EE 428 Dynamic Instrumentation (3)
Electrical measurement of nonelectrical phenomena. Transducers. Transmission systems. Recorders. Theory and operation. 2 lectures, 1 laboratory. Prerequisites: EE 309, EL 312

EE 441 Electric Machine Laboratory (1)
Advanced machine laboratory arranged for individual study. 1 laboratory. Concurrent: EE 401

EE 442 Electrical Laboratory (1)
Advanced servomechanisms laboratory arranged for individual study. 1 laboratory. Concurrent: EE 402

EE 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

EE 463 Undergraduate Seminar (2)
Special studies and recent technical developments in the field. Student presentation of topics, class panel discussion. Survey of recent publications. 2 meetings.
The program of the Electronic Engineering Department prepares students for that branch of engineering which is concerned with the transmission, reception, and utilization of information, and the electronic control of mechanical and electrical operations.

Graduates of this department are employed by manufacturing concerns, broadcast and television stations, oil companies, utilities, government laboratories and agencies, sales organizations, and schools. The work of these graduates is concerned chiefly with application engineering, product development, test and evaluation, technical operations, and engineering sales. The multiplicity of electronic devices in industry, business offices, military installations, and the home is rapidly increasing the opportunities for field engineering and self-employment in technical services.

The four-year course is planned so that the student starts in his freshman year with a series of courses in electronic technology. At the same time, the student is also preparing himself in mathematics and physics for the engineering courses which begin in the second year. This plan provides (1) an opportunity to explore the field before undertaking any engineering courses, (2) skills and techniques for early employment as a technician, (3) a descriptive background for engineering courses, and (4) strong motivation for the study of mathematics and physics.

The laboratory work is organized to parallel closely the type of work the young engineer is usually assigned during his first few years of employment after graduation. The student starts in the freshman year with very closely supervised jobs, proceeds from directed experiments in analysis to student planned investigations, and advances to some senior year projects which involve engineering synthesis.

It is recommended that the high school student planning a career in electronic engineering take a balanced program including mathematics, physical science, drawing, and shops. The junior college student planning to transfer into this department would do well to meet, insofar as possible, the requirements of this curriculum.

The department occupies five laboratories, a shop, several auxiliary rooms, and mobile facilities for antenna studies. A large number of commercial electronic and communications units, standard and precision laboratory measuring equipment, and an ample supply of electronic system components are available for experimental study. The very nature of the physical components and the characteristics of the instrumentation make possible a high degree of simulation of actual industrial set-ups in the department's laboratories and shops.

The department has two organized clubs: a student branch of the Institute of Radio Engineers, and an Amateur Radio Club which operates the college station, W6BHZ.

The West Coast Electronic Manufacturers' Association (WCEMA) sponsors two annual scholarships for freshman students.

CURRICULUM IN ELECTRONIC ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Technology (EL 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Radio Shop (EL 141, 142, 143)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Machine Shop (MS 151, 152)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Welding Survey (Weld 141, 142)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sheet Metal Shop (AC 129)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drafting (ME 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Drafting for Electronics (EL 146)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>17 ½</td>
<td>18 ½</td>
<td>18 ½</td>
</tr>
</tbody>
</table>
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Transmitter Technology (EL 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Television Technology (EL 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Technology (EL 203)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter Shop (EL 241)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Television Shop (EL 242)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics Shop (EL 243)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Electrical Engineering (EE 212, 213)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Tubes (EL 208, 209)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Laboratory (EE 245, 246)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Tube Laboratory (EL 249)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 316)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physics of Electricity and Magnetism (Phys 204)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Statics (Phys 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Dynamics (Phys 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>19½</td>
<td>17½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Analysis (EL 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Networks (EL 302)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Lines (EL 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Audio Frequency Amplifiers (EL 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Frequency Amplifiers and Oscillators (EL 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulators and Detectors (EL 306)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Networks Laboratory (EL 341, 342)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Lines Laboratory (EL 343)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Audio Engineering Laboratory (EL 344)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Engineering Laboratory (EL 345, 346)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Machines (EE 313)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Materials (ME 314)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 317)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry (Chem 321, 322)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (Phys 306)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Industrial Management (Ec 411)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave Components (EL 401)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Techniques (EL 404)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Techniques (EL 405)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electronic Systems Engineering (EL 406)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Electronic Laboratory (EL 441, 442, 443)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic System Synthesis (EL 451, 452, 453)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (EL 461, 462)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (EL 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Business Statements (Ec 416)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Electronic Engineering

EL 101, 102, 103 Radio Technology *(3) (3) (3)*

Fundamentals and applications of electricity to radio. Adapted to the needs of the radio service man, electronic technician, and commercial radio operator. Descriptive background for later engineering courses. 3 lectures.
EL 141, 142, 143 Radio Shop
Directed assignments facilitating an understanding of the operation and construction of radio receivers and amplifiers. Use of test equipment in the adjustments of these units. 2 laboratories.

EL 146 Drafting for Electronics
Schematic drafting. Electronic and industrial symbols. Symmetry and balance. Schematic delineation, projection. Graphic integration. 1 lecture, 1 laboratory. Prerequisite: ME 122

EL 201 Radio Transmitter Technology
Principles, operation, and maintenance of transmission equipment adapted to the needs of the commercial radio operator and field technician. 3 lectures. Prerequisite: EL 103

EL 202 Television Technology
Principles, operation, and maintenance of television system equipment. Detailed study of the television receiver. Adapted to the needs of the television service man and station technician. 3 lectures. Prerequisite: EL 103

EL 203 Electronic Technology
Operational study of some electronic control circuits such as used in resistance welding, photoelectric devices, motor speed controls. Induction and dielectric heating. Adapted to the needs of the electronic technician. 3 lectures. Prerequisite: EL 103

EL 208, 209 Electron Tubes
Physical and electrical characteristics and mathematical analysis of the more common types of electron tubes. Introduction to solid state electronics. 2 lectures. Prerequisites: Math 201, Phys 204

EL 240 Additional Engineering Laboratory
Total credit limited to 4 units, with not more than 2 units in any one quarter.

EL 241 Transmitter Shop
Practical studies in the operation, adjustment, and maintenance of transmission equipment adapted to the needs of the commercial radio operator and the field technician. 1 laboratory. Concurrent: EL 201

EL 242 Television Shop
Practical studies in the adjustment and maintenance of circuits used in television receivers. Television antenna systems. Adapted to the needs of the television technician. 1 laboratory. Concurrent: EL 202

EL 243 Electronics Shop
Practical studies in the operation, adjustment, and maintenance of electronic control circuits such as used in resistance welding, photoelectric devices, motor speed controls, induction and dielectric heaters. 1 laboratory. Concurrent: EL 203

EL 249 Electron Tube Laboratory
Fundamental experiments investigating the physical and electrical properties of the more common types of electron tubes and their equivalent circuits. 1 laboratory. Prerequisite: EL 208

EL 301 Network Analysis
Nonsinusoidal waves. Network solution and theorems. Impedance transformation and coupled circuits. 3 lectures. Prerequisites: EE 213, Math 316

EL 302 Communication Networks
Four-terminal networks. Analysis and synthesis of frequency selective networks and filters. Transient phenomena. 3 lectures. Prerequisites: EL 301, Math 317
EL 303 Communication Lines (3)
Circuits with distributed constants. The general transmission line equations. High frequency transmission lines. Artificial lines. Impedance charts. 3 lectures. Prerequisite: EL 302

EL 304 Audio Frequency Amplifiers (3)
Vacuum tubes and transistors as circuit elements. Rectifiers and power supply circuits. Audio voltage and power amplifiers. Feedback amplifiers. 3 lectures. Prerequisite: EL 209. Concurrent: EL 301

EL 305 Radio Frequency Amplifiers and Oscillators (3)
Single and double tuned radio frequency voltage amplifiers. Class C power amplifiers, loading and coupling networks. Radio frequency oscillators, frequency stability considerations. 3 lectures. Prerequisite: EL 304

EL 306 Modulators and Detectors (3)
Formulation and analysis of the modulation process. Amplitude, phase and frequency modulation systems. Detection and frequency conversion. Radio transmitter and receiver systems. 3 lectures. Prerequisite: EL 305

EL 311, 312, 313 Industrial Electronics (2) (2) (2)
Analysis of vacuum and gas-filled electron tubes with associate circuits with emphasis on control circuits. Course designed for electrical engineering majors. 2 lectures. Prerequisite: EE 213 or equivalent.

EL 321 Electronics in Engineering (4)
Theory, operation, and application of electronic instruments and controls. For nonelectronic majors. 3 lectures, 1 laboratory. Prerequisite: EE 208, 204, or equivalent.

EL 341, 342 Networks Laboratory (1) (1)
Experimental determination of communication network characteristics and behavior. Familiarization with the capabilities and limitations of laboratory equipment and instruments used. 1 laboratory. Concurrent: EL 301, 302

EL 343 Communication Lines Laboratory (1)
Experimental study of circuits with distributed parameters. Low frequency and radio frequency lines. Stub matching. Use of transmission line charts. 1 laboratory. Concurrent: EL 303

EL 344 Audio Engineering Laboratory (1)
Experimental determination of the important operating characteristics of power supplies and audio voltage and power amplifiers. Performance testing of audio amplifiers in accordance with standard IRE-IRETA procedures. 1 laboratory. Concurrent: EL 304

EL 345 Radio Engineering Laboratory (1)
Experimental determination of the important operating characteristics of tuned radio frequency voltage and power amplifiers and radio frequency oscillators. Performance testing of radio receivers in accordance with standard IRE-IRETA procedures. 1 laboratory. Concurrent: EL 305

EL 346 Radio Engineering Laboratory (1)
Experimental determination of the important operating characteristics of modulators, detectors, discriminators, and frequency converters circuits. Standard performance test. 1 laboratory. Concurrent: EL 306

EL 351, 352, 353 Industrial Electronics Laboratory (1) (1) (1)
Determination of characteristics of vacuum and gas-filled electron tubes. Analysis of amplifying and oscillating circuits. Operational study of commercial electronic sequence timers, motor speed control, and radio frequency heating equipment. 1 laboratory. Concurrent: EL 311, 312, 313
EL 400 Special Problems for Advanced Undergraduates (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories. Senior status required.

EL 401 Microwave Components (3)
Basic electromagnetic concepts as applied to specific components. Considered are types of EM waves; reflection, excitation, modes, and propagation frequencies in waveguides; impedance matching; the parallel strip; antennas; microwave tubes and components. Prerequisites: EL 303, Math 317

EL 402 Electromagnetic Fields (3)
Static and quasi-static fields; laws of Coulomb, Gauss, Ohm, Faraday, Ampere; equations of electrostatic and magnetic fields; boundary value problems; introduction to time varying fields. Vector analysis used throughout. 3 lectures. Prerequisites: EL 306, 401

EL 403 Electromagnetic Fields and Applications (3)
Dynamic fields; Maxwell's equations; waves in dielectric and conducting media; power flow in Poynting vector; electromagnetic fields in waveguides; equivalent circuits of waveguide obstacles; basic antenna systems; resonators. 3 lectures. Prerequisite: EL 402

EL 404 Pulse Techniques (3)
Graphic and quasi-analytical analysis of typical wave-shaping circuits, timing circuits, relaxation oscillators and elementary pulse generators. Wideband amplifiers. 3 lectures. Prerequisites: EL 303, 306

EL 405 Pulse Techniques (3)
Mathematical analysis of pulse circuits and systems, especially the pulse response of video amplifiers. The Laplace transform is used as an analytical tool. 3 lectures. Prerequisites: EL 404, Math 317

EL 406 Electronic Systems Engineering (3)
Analysis and synthesis of specific electronic systems such as pulsed circuits in television receivers, transmitters, and radar systems. Application of transistors to electronic systems such as digital computers. Theory and application of the DC analog computer. 3 lectures. Prerequisite: EL 404

EL 441, 442, 443 Advanced Electronic Laboratory (1) (1) (1)
Laboratory study of distributed circuits. Pulse generation, amplification and control. UHF and microwave generation, transmission and detection. Antenna characteristics and measurement. Tests on television camera chain, sync generator, and receiver. RF heating. Control system and servomechanism. 1 laboratory.

EL 451, 452, 453 Electronic System Synthesis (1) (1) (1)
Product engineering and product development through all stages from conception of plan to finished product. Commercial standards of performance and appearance. 1 laboratory.

EL 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Project results are presented in a formal report. Minimum 120 hours total time.

EL 463 Undergraduate Seminar (2)
Discussion of new developments in the fields of communications and industrial electronics, with particular reference to fields of employment. Job analysis. 2 lectures.
The industrial engineering program prepares students for employment with manufacturing firms in work related to planning, production, sales, and management. The curriculum aptly combines mechanical engineering and general business administration.

Emphasis is placed on planning the use of equipment rather than designing the equipment itself; on the production rate and quality of the product rather than on designing the product itself. Parallel emphasis is placed on the managerial and financial aspects of planning, production, and sales.

The program is intended for students who like engineering but who have talents for planning, management, and sales rather than technical design.

The department shares facilities with the Mechanical Engineering and Machine Shop Departments. Excellent production facilities are available to make the instruction realistic and characteristic of the requirements of industry.

CURRICULUM IN INDUSTRIAL ENGINEERING

<table>
<thead>
<tr>
<th>Level</th>
<th>Course Description</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Procedures (IE 101, 102, 103)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Machinery Analysis (IE 121, 122, 123)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sheet Metal (AC 129)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding (Weld 151, 154, 155)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Machine Shop (MS 151, 152)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Drafting (ME 121, 122, 123)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculus (Math 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Tooling (IE 221, 222)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Processes (IE 233)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Physics (Phys 131, 132, 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Engineering Statics (Phys 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Dynamics (Phys 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Writing (Eng 219)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of Accounting (Ec 301, 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Biology (Bio 110)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18½</td>
<td>18½</td>
<td>17½</td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Planning (IE 321, 322)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Control (IE 332, 333)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strength of Materials (ME 202, 203)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Machine Design (ME 323)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering (EE 207, 208, 209)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Electrical Laboratory (EE 253, 254)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General Chemistry (Chem 321, 322)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermodynamics (Phys 306)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>
DESCRIPTIONS OF COURSES IN INDUSTRIAL ENGINEERING

IE 101, 102, 103 Business Procedures
Principles of organization and functions of a business office; basic organization charts; fundamentals of office systems and equipment. Purchasing, receiving, and inventory procedures. 1 lecture, 1 laboratory.

IE 121, 122, 123 Machinery Analysis
A study of the materials and components of machines, mechanisms, and structures, including general principles of manufacture and assembly. Lab work consists of assembly of the machine to study the individual components. 1 lecture, 1 laboratory.

IE 204 Industrial Safety
History of industrial safety; fire prevention; personal protective equipment; health hazards; machinery safeguards; electrical hazards; plant inspection; accident insurance. 2 lectures.

IE 221, 222 Production Tooling
A study of equipment and special tools used in mass production including review of alternative methods of design, construction, and application of tooling for punch press, machine tool, forging, welding, and foundry operations. 2 lectures, 1 laboratory.

IE 233 Production Processes
Principles and technical fundamentals of processes that are a part of production and manufacturing. Surface conditioning, washing, degreasing, plating, heat treatment. 2 lectures, 1 laboratory.

IE 321, 322 Production Planning
Product development, production analysis, selection and utilization of plant equipment, material flow principles, material handling, plant layout. 2 lectures, 1 laboratory.

IE 332, 333 Production Control
Organization of control, sales forecasting; scheduling of production, routing of operations and processing, dispatching and expediting, reporting procedures. Materials planning procurement and control. Quality control organization for inspection raw materials, work-in-process and finished products. 2 lectures, 1 laboratory.

IE 401 Sales Engineering
Fundamentals and principles of engineering sales. Basic salesmanship; service functions related to sales engineering, management of a sales force, training, compensation, quotas, costs, and budgets. 3 lectures.

IE 421, 422, 423 Production Management
Principles of organization and administration; interdepartment relationships; cost and budgetary controls; personnel relations; job evaluations; wage incentives; plant maintenance, industrial safety; plant protection. 2 lectures, 2 laboratories.
IE 461, 462 Senior Project

Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours of total time.

IE 463 Undergraduate Seminar

Preparation, oral presentation, and discussion by students of technical papers on recent engineering developments. 2 lectures. Prerequisite: Senior standing.
Instruction in machine shop practice has two objectives: (1) to give the student a foundation in the basic skills and, (2) to give an understanding of the part machine tools play in present day engineering and manufacturing enterprises. It is not the intent of the machine shop department to teach machine shop courses on a vocational level, but rather to give the student a knowledge which will further his progress in the engineering fields. Operations, tools, and materials of the trade as well as shop safety are stressed in all departmental offerings.

The machine shop is unusually well-equipped with the latest machine tools and heat treating equipment such as might be found in the best commercial tool room. The shop is also equipped with all the necessary tools, attachments, and precision instruments for the construction of dies, tools, jigs, and fixtures such as are found in modern industry today. Punch presses, die casting machines, plastics presses, and die sinking machines are provided for engineering students taking advanced courses.

DESCRIPTIONS OF COURSES IN MACHINE SHOP

MS 141 Drill Press Work
Fundamentals of bench and drill press work. Offhand tool sharpening and elementary heat treating. 1 laboratory.

MS 142 Machine Shop
Fundamentals of lathe operation including turning between centers and thread cutting. Feeds, speeds, and tool grinding. 1 laboratory. Prerequisite: MS 141

MS 143 Machine Shop
Fundamentals of lathe operation including chuck work and internal thread cutting. Tool grinding. 1 laboratory. Prerequisites: MS 142 or 144 or 151

MS 144 Machine Shop
Combined content of MS 141 and MS 142. 2 laboratories.

MS 145 Machine Shop
Combined content of MS 143 and MS 241. 2 laboratories. Prerequisites: MS 142 or MS 144 or MS 151

MS 151 Machine Shop
Fundamentals of lathe operation including turning between centers, thread cutting, and chuck work. Also feeds, speeds, and tool grinding. 1 laboratory.

MS 152 Machine Shop
Fundamentals of shaping, milling, grinding, sawing, and drilling machines. 1 laboratory. Prerequisite: MS 143 or 151

MS 240 Tool Room Practice
Advanced instruction on machine tools and methods peculiar to the tool room: universal cylindrical, surface, and tool and cutter grinding, fundamentals of turret lathes, milling and engraving, use of precision instruments, and heat treating. Total credit limited to 2 units. 1 laboratory. Prerequisite: MS 243 or 245

MS 241 Machine Shop
Advanced lathe practice, lathe accessories, and carbide lathe tools. 1 laboratory. Prerequisite: MS 143

MS 242 Machine Shop
Operation of power hacksaw, radial drill, contour saw, shaper, and milling machine. 1 laboratory. Prerequisites: MS 145 or MS 241

MS 243 Machine Shop
Milling machine and shaper practice. 1 laboratory. Prerequisite: MS 242
MS 245 Machine Shop
Combined content of MS 242 and MS 243. 2 laboratories. Prerequisites: MS 145 or MS 241

MS 340 Machine Shop Practice
Advanced individual instruction on all machine tools. Construction and repair of laboratory equipment. Total credit limited to 4 units. 1 or 2 laboratories. Prerequisite: MS 243 or MS 245

MS 343 Printers Mechanics
Advanced benchwork instruction for printers. Special printers' tools, gauges, and jigs are constructed. 1 laboratory. Prerequisite: MS 141 or equivalent.

MS 421, 422, 423 Tool Design
Design of manufacturing tools such as jigs, fixtures, and dies. Materials, tolerance balancing, and tool room methods as design factors. 1 lecture, 1 laboratory. Prerequisite: ME 323 or Aero 346

MS 431 Tool Engineering
Design, construction, and use of punch press tools, jigs, and fixtures used in mass production. Elementary screw machine and turret lathe work. Field trips to manufacturing centers. 1 lecture, 2 laboratories. Prerequisite: MS 243 or MS 245

MS 432 Tool Engineering
Design, construction and use of plastic molds and products, and die-casting dies and products. Field trips to manufacturing centers. 1 lecture, 2 laboratories. Prerequisite: MS 431

MS 433 Tool Engineering
Design, construction, and application problems in milling, grinding, and related forming and shaping processes. Field trips to manufacturing centers. 1 lecture, 2 laboratories. Prerequisite: MS 432
MECHANICAL ENGINEERING DEPARTMENT
Department Head, Thomas J. Zilka

Robert W. Adam
Benjamin H. Brown
Richard T. Kombrink
Walter E. Holtz
Harry J. Jackson
R. Howell Reece
R. Wallace Reynolds
Joy O. Richardson
John P. Thomas

Mechanical engineering deals with equipment, machines, and products which are characterized by their utilization of the strength and rigidity of structural materials, the useful properties of fluids, the conversion of energy from fuels to useful work, and the interrelation of wheels, gears, and levers.

Graduates obtain employment with manufacturers, contractors, public utilities, and governmental agencies. Types of work performed by graduates include plant engineering, tool, machine, and pipe design, engineering testing, sales engineering, construction supervision, and maintenance planning.

Senior students have an opportunity to select senior elective courses which most closely follow their own field of major interest. Students are encouraged to take two of these elective sequences and thereby broaden their employment possibilities.

The Power Plant and Mechanical Engineering Laboratory contains modern laboratory equipment, and diesel, natural gas, and steam power units driving electric generators.

The Materials Testing Laboratory contains complete facilities for the determination of the strength, hardness, and other physical properties of engineering materials.

The Fluids Laboratory provides facilities for studying characteristics of fluids and hydraulic equipment.

CURRICULUM IN MECHANICAL ENGINEERING

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Power Plants (ME 101, 102)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Internal Combustion Engines (ME 103)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drafting (ME 121, 122, 123)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering Lab (ME 144, 145, 146)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oxyacetylene Welding (Weld 151, 152)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Metallic Arc Welding (Weld 154, 155)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total Credits</td>
<td>18½</td>
<td>18½</td>
<td>18½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Surveying (ME 231, 232)</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Plumbing and Building Sanitation (ME 331)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating and Ventilation (AC 204)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Descriptive Geometry (ME 125)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Machine Shop (MS 144, 145, 245)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Kinematics (ME 223)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering (EE 207, 208, 209)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Electrical Laboratory (EE 253, 254)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Statics (Phys 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Dynamics (Phys 202)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total Credits</td>
<td>17½</td>
<td>18½</td>
<td>16½</td>
</tr>
</tbody>
</table>
Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength of Materials (ME 202, 203)</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Strength of Materials Lab (ME 249)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Machine Design (ME 323)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fluid Flow (ME 311, 312)</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Fluid Flow Lab (ME 345)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (Phys 306)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics (ME 402, 403)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry (Chem 321, 322, 323)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (ME 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (ME 463)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Design (ME 427, 428, 429)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Senior Electives</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Relations (Ec 412)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

17 17 17

DESCRIPTORS OF COURSES IN MECHANICAL ENGINEERING

ME 101 Steam Power Plants

Discussion of modern steam plants. Problems involving heat, properties of steam, and power plant auxiliaries. Development of skills in setting up and solving problems in a neat and orderly manner. 2 lectures, 1 computation period.

ME 102 Steam Power Plants

Principles of the conversion of thermal energy to mechanical work applied to the modern steam plant. Problems involving turbines, engines, condensers, and heat balance. 2 lectures, 1 computation period. Prerequisite: ME 101

ME 103 Internal Combustion Engines

Construction and performance of diesel and gasoline engines and gas turbines. Problems in efficiencies, horsepower, and economy. 2 lectures, 1 computation period. Prerequisite: ME 101

ME 121 Engineering Drafting

ME 122 Engineering Drafting

Auxiliary views and section views. Dimensioning auxiliary views and section views. Relationship between engineering drawings and shop processes. Intersections of surfaces. Developments of surfaces. 1 lecture, 1 laboratory. Prerequisite: ME 121

* Senior Electives:
 - Machine Design (ME 421, 422, 423)
 - Tool Engineering (ME 431, 432, 433)
 - Industrial Piping and Process Equipment Design (ME 424, 425, 426)
 - Fabrication Methods and Design (Weld 434, 435, 436)

† Industrial Management (Ec 411) may be substituted.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 123</td>
<td>Engineering Drafting</td>
<td>2</td>
</tr>
<tr>
<td>ME 125</td>
<td>Descriptive Geometry</td>
<td>3</td>
</tr>
<tr>
<td>ME 126</td>
<td>Descriptive Geometry</td>
<td>3</td>
</tr>
<tr>
<td>ME 144, 145, 146</td>
<td>Mechanical Engineering Laboratory</td>
<td>3, 3, 3</td>
</tr>
<tr>
<td>ME 202, 203</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 207</td>
<td>Simplified Drafting Methods</td>
<td>1</td>
</tr>
<tr>
<td>ME 223</td>
<td>Kinematics</td>
<td>3</td>
</tr>
<tr>
<td>ME 231</td>
<td>Engineering Surveying</td>
<td>2</td>
</tr>
<tr>
<td>ME 232</td>
<td>Engineering Surveying</td>
<td>2</td>
</tr>
<tr>
<td>ME 233</td>
<td>Engineering Surveying</td>
<td>2</td>
</tr>
<tr>
<td>ME 236</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>ME 240</td>
<td>Additional Engineering Laboratory</td>
<td>1-2</td>
</tr>
</tbody>
</table>

ME 123 Engineering Drafting

ME 125 Descriptive Geometry

Solution of typical drafting room problems by graphical methods of multiview projection. Construction of fundamental views. Perpendicular, parallel and skew lines. Relationships of points, lines, and planes. Intersections of planes. Dihedral angles. 1 lecture, 2 laboratories. Prerequisite: ME 121

ME 126 Descriptive Geometry

Solutions to typical drafting room problems by graphical methods of multiview projection. Rotation method. Delineation, intersections, and development of curved surfaces: cylinders, cones, spheres, warped surfaces. 1 lecture, 2 laboratories. Prerequisite: ME 125

ME 144, 145, 146 Mechanical Engineering Laboratory

Basic mechanical engineering experiments. Pressure, temperature, weight, rotative speed, area, specific gravity, specific weight, density, steam quality, boiler flue gas analysis, boiler feed water analysis, boiler efficiency, diesel and gasoline engine performance, engine economy, and engine indicator cards. Maintenance work on the engines, boilers, and related equipment. 1 laboratory.

ME 202, 203 Strength of Materials

Relation between physical properties of materials and their use in engineering structures. Calculation of deflection and required size of basic structural and machine elements. 3 lectures. Prerequisite: Phys 201

ME 207 Simplified Drafting Methods

ME 223 Kinematics

The study of motion in machine parts. Displacements, velocities, and accelerations in linkage, cams, gears, and other mechanisms. 2 lectures, 1 drafting laboratory. Prerequisites: Phys 131, ME 123

ME 231 Engineering Surveying

Selection, care, testing, and use of tapes and levels. Keeping and calculating field notes; land measurement by tape; practice in differential, profile, and contour leveling, and the plotting of profiles. Earth volume by the borrow pit method. 1 lecture, 1 field period. Prerequisites: ME 121, Math 114 or 117

ME 232 Engineering Surveying

Care and use of transit; measurement of horizontal and vertical angles, distance by stadia, straight line and distance by offset, area by tape and transit traverse and topographic mapping. 1 lecture, 1 field period. Prerequisites: ME 231, Math 117

ME 233 Engineering Surveying

Parabolic curves, circular curves, cross sectioning, setting slope stakes, measuring earth volume, cuts and fills as applied to road beds; determination of true-North line. Public lands survey and county records. 1 lecture, 1 field period. Prerequisite: ME 232

ME 236 Surveying

Selection, care and use of tapes, levels and transits, land measurement by tape and stadia; practice in differential, profile, and contour leveling; topographic mapping. 1 lecture, 1 field period. Prerequisites: ME 121, Math 117

ME 240 Additional Engineering Laboratory

Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.
ME 249 Strength of Materials Laboratory (1)
Commercial tests of materials. Familiarity with physical properties of industrially useful materials. Elements of heat treatment. 1 laboratory. Prerequisite: ME 202

ME 311 Fluid Flow (3)
Properties and behavior of fluids at rest and in motion. Steady flow energy transformation, dynamic similarity, and fluid friction, with emphasis on both liquids and gases. Fluid measuring instruments. Theory of jets and rocket propulsion. 3 lectures. Prerequisites: Phys 131, 201, 202

ME 312 Fluid Flow (3)
Fluid resistance, dynamic lift, and propeller action. Compressible flow, subsonic and supersonic. Liquids in open channels. Pumps, turbines, fluid drive mechanisms. Fluid film lubrication. 3 lectures. Prerequisite: ME 311

ME 313 Industrial Heat Transfer (3)
Basic principles of heat transfer and their application to the design of industrial equipment. Steady state and transient problems of conduction by analytical and numerical methods. Free and forced convection. Transfer of radiant energy. 3 lectures. Prerequisite: ME 311

ME 314 Engineering Materials (3)
Structure, composition, and physical properties of commercially useful materials. Selection of materials for specific applications. Heat treatment. Corrosion of metals and alloys; protective coatings. 3 lectures.

ME 321 Instruments and Controls (3)
Operating principles of measuring and recording instruments. Fundamentals of control systems; control elements; control systems as used in industry. Laboratory work consists of study, repair, and calibration of various instruments and control elements. 2 lectures, 1 laboratory. Prerequisites: ME 311, 345

ME 323 Introduction to Machine Design (3)
Design of machine elements, including fastening devices, shafts, couplings, belts, pulleys, wire rope, and chain drives. Consideration of design factors such as material stress concentrations, tolerances, and allowances. 2 lectures, 1 computation period. Prerequisites: ME 202, 203, Phys 202

ME 331 Plumbing and Building Sanitation (4)
Application of the theory of hydraulics and pneumatics of the plumbing system to adequate design of the water supply and waste collection pipe layouts for buildings. Selection of mechanical equipment identified with control of hot water, illuminating gas, compressed air, and chilled drinking water. 3 lectures, 1 laboratory. Prerequisite: Phys 131

ME 333 Plumbing and Building Sanitation (3)
For architectural engineering students. Calculation of water supply and consumption. Fire protection and sprinkler systems. Plumbing and drainage. Gas services. Application of principles to specific elements of engineering structures. 3 lectures.

ME 345 Fluid Flow Laboratory (1)
Flow in pipes and open channels, measuring devices, pumps, and pump accessories. 1 laboratory. Prerequisite: ME 311

ME 348 Metallography (3)
Preparation, examination, and testing of metallic commercial specimens using microscope. Heat treatment and effect of microstructure on physical and mechanical properties. 2 lectures, 1 laboratory.

ME 349 Advanced Materials Testing Laboratory (1)
Advanced laboratory work in testing of materials and structures. Column and beam tests, fatigue tests, heat treatment, effect of microstructure on physical properties. 1 laboratory. Prerequisite: ME 249
ME 352, 353 Power Plant Laboratory

ME 400 Special Problems for Advanced Undergraduates
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

ME 402, 403 Thermodynamics

ME 405 Introduction to Plant Engineering
Familiarization with the scope of plant engineering including plant organization, design, construction, operation, and maintenance. 3 lectures.

ME 406 Techniques of Plant Engineering
A course covering good practice in specific phases of plant engineering. Building operation and maintenance, preventive maintenance, plant layout, materials handling, industrial safety, plant protection, equipment records, estimating. 3 lectures.

ME 411 Heat Power
Application of thermodynamics to actual power cycles. Turbine theory. Modern combustion gas and vapor power plants and auxiliaries. Economics of power generation. 3 lectures. Prerequisite: ME 403

ME 412 Heat Power
Fuels, fuel systems, aspiration, combustion, detonation; mechanism, lubrication, and performance of internal combustion engines. 3 lectures. Prerequisite: ME 403

ME 421, 422, 423 Machine Design
Combination of machine and structural elements. Design of machines, structures, and installations. Balancing, special linkages and cams, critical speeds, vibration prevention, and isolation. 3 lectures. Prerequisite: ME 323

ME 424, 425, 426 Industrial Piping and Process Equipment Design
A study of industrial piping systems. Fundamental theory and its practical application for determining stresses, reactions, and deflections. Design of ferrous and nonferrous pressure vessels, attachments and closures. Applied heat transmission. 2 lectures, 1 laboratory. Prerequisites: ME 203, ME 311

ME 427, 428, 429 Mechanical Design
Design of basic machine and structural elements such as gears, keys and couplings, shafts, bearings, brakes, clutches. Balancing of rotating masses and design of welded parts. Machine and assembly drawing organization. Methods of preparing contracts and specifications. 1 lecture, 1 laboratory. Prerequisites: Math 203, Phys 202, ME 323

ME 434 Fundamentals of Petroleum Production
Survey of the production of crude petroleum covering exploration, drilling, pumping, transportation, and storage. Observation of actual field operations and installations of major oil companies and oil equipment companies. Nomenclature, methods, and mechanical equipment. 1 lecture, 1 field trip. Prerequisites: ME 144, 145, 146, 311

ME 435 Petroleum Production—Drilling
Engineering factors governing modern deep-hole petroleum drilling. Problems attendant to the rotary rig and its auxiliary equipment. A comparison of steam, sparkplug, and electric rigs. Practical problems dealing with drilling mud, casing, cementing, and directional drilling. 1 lecture, 1 problem period. Prerequisites: Phys 201, ME 101, 102, 103
ME 436 Petroleum Production—Pumping
Engineering factors governing modern petroleum pumping. Sucker rod single and multiple systems, rodless systems, and other pumping systems. Calculations for a unit pumping installation including consideration of subsurface pressure, gas and water ratio, fluid level, and equipment cost. 1 lecture, 1 problem period. Prerequisites: Phys 201, ME 311

ME 437 Plant Layout
Application of step-by-step procedure in the development of a workable layout of the modern industrial plant. Coordination between plant layout, methods engineering and production control. Scale models are employed in the solution of a layout problem. 2 lectures, 1 laboratory.

ME 445 Heat Power Laboratory
Experimental evaluation of operating characteristics and performance of heat power apparatus such as compressors, engines, turbines, boilers, and their auxiliaries. Formal engineering reports. 1 laboratory. Prerequisite: ME 403

ME 461, 462 Senior Project
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

ME 463 Undergraduate Seminar
New developments, policies, practices, and procedures are discussed through regular seminar. Each individual is responsible for the development and presentation of a topic in his chosen field. 2 meetings.
The Printing Department offers a four-year curriculum in printing, leading to the bachelor of science degree. The curriculum is designed to prepare men for positions of responsibility in the allied trades of the printing industry, as well as to prepare them to be owners and operators of newspapers and printing plants. Majors not only must complete satisfactorily the printing curriculum requirements, but must show proper aptitude and progress to indicate they will become competent and skilled craftsmen in the printing industry.

A student successfully completing the four-year curriculum is qualified to hold a responsible position in most branches of the allied trades of the printing industry. A graduate has sufficient skill in all phases of printing and an adequate knowledge of management and production practices so that he may advance to positions of responsibility. A graduate is qualified to operate his own print shop, or to publish a newspaper in connection with a job printing plant. A student who terminates his formal education prior to graduation will have sufficient training to qualify him for a less responsible position in the printing industry.

The department is completely equipped with Intertype and Linotype typesetting machines, Elrod, Ludlow, platen presses, cylinder presses, folding machines, hand and power paper cutters, perforator, punching machine, foof and power stitchers, a wide assortment of new and modern type, stereotype equipment, bindery equipment, process camera, plate-making equipment, and offset presses.

Practical instruction in cost finding, plant organization, and layout are included in the senior year.

CURRICULUM IN PRINTING

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Printing (Pr 101)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proofreading (Pr 102)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elementary Typography (Pr 121)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Display (Pr 122)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Press and Composing Room Problems (Pr 123)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Fed Platen Presswork (Pr 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Platen Presswork (Pr 132)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Cylinder Press (Pr 133)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journalism (Jour 201, 202, 233)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Printers' Mathematics (Math 105)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Machine Shop (MS 141)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 1/2</td>
<td>17 1/2</td>
<td>17 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Composition and Layout (Pr 221)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imposition and Lockup (Pr 231)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Automatic Cylinder Presswork (Pr 232)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Automatic Cylinder Presswork (Pr 233)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composing Machine Operation (Pr 241, 242, 243)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bindery Operations (Pr 251)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Ps 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electricity for Printers (EE 221)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyacetylene Welding (Weld 151)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Electives</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>17 1/2</td>
<td>17 1/2</td>
<td>17 1/2</td>
</tr>
</tbody>
</table>
Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ludlow Operation and Maintenance (Pr 301)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elrod Operation and Maintenance (Pr 302)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Comp. Mach. Operation (Pr 321, 322, 323)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Comp. Mach. Maintenance (Pr 335, 336)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Typography and Layout (Pr 331)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newspaper Makeup and Markup (Pr 332)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printers Mechanics (MS 343)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Chemistry (Chem 321, 322, 323)</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology of Business and Industry (Psy 302)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 17 17 17

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing Office Management (Pr 401)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost and Estimating (Pr 426)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost and Estimating (Pr 411, 412, 413)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Production Problems (Pr 421, 422, 423)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Commercial Job Composition (Pr 431)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Organization and Layout (Pr 433)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Camera Work (Pr 434)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Platemaking (Pr 435)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Presswork (Pr 436)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Pr 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Pr 463)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Management (Ec 411)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Relations (Ec 412)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 18 18 18

Descriptions of Courses in Printing

Pr 101 History of Printing

Development of the historical background of printing from its origin to the time of Gutenberg, continuing through changes in materials and equipment to the highly developed industry of today. Analysis of trade requirements and job opportunities. 2 lectures.

Pr 102 Proofreading

Print Shop English, proofreading, spelling, punctuation, division of words, compounding, style. Practical experience on college paper. 1 lecture, 1 laboratory.

Pr 121 Elementary Typography

Elementary training in fundamentals of typesetting, spacing, ornamentation, typographic styles, composing room procedures, and practices. 1 lecture, 2 laboratories.

Pr 122 Elementary Display

Principles of display, study of various type classifications and their adaptation to typography, proper use of spacing and copy-fitting. 1 lecture, 2 laboratories. Prerequisite: Pr 121

Pr 123 Press and Composing Room Problems

Care and operation of stereotype equipment, including routers, saws, and production from mats, shell casts and type-high cuts, mortising. Proper use and operation of all print shop equipment, safety and accident prevention. Familiarization with cost and labor-saving devices. Metal content and care. 1 lecture, 2 laboratories. Prerequisite: Pr 121

Phys 131, 132, 133 may be substituted. Note prerequisites for these courses.
Pr 131 Hand-fed Platen Presswork (2)
Introduction to platen press. Instruction in care and maintenance, lockup of forms, makeready, and nomenclature of all types of platen presses. Practical experience in feeding and operation. 1 lecture, 1 laboratory.

Pr 132 Automatic Platen Presswork (3)
Operation and maintenance of automatic fed platen presses, proper positioning and lockup of type forms, makeready, and correct use of ink. 1 lecture, 2 laboratories. Prerequisite: Pr 131

Pr 133 Introduction to Cylinder Press (2)
Study of development and advantages of the cylinder press. Practical hand feeding and care of press, ink, and rollers in actual production of college newspapers and other projects. 1 lecture, 1 laboratory.

Pr 221 Advanced Composition and Layout (3)
Proper methods of newspaper display and makeup. Practical application of principles of hand display and layout. Appreciation of importance of markup, designing and preparation of harmonious and balanced ads, with emphasis on good typography. 1 lecture, 2 laboratories. Prerequisite: Pr 131, 132

Pr 231 Imposition and Lockup (2)
Planning and layout of type forms and locking them up for press. Planning of dummies and proper spacing of pages and forms for presses and folding machines. 1 lecture, 1 laboratory.

Pr 232 Automatic Cylinder Presswork (3)
Operation of automatic cylinder presses, with investigation of makeready, ink, paper, and other press problems. Study of color and process printing. 1 lecture, 2 laboratories. Prerequisite: Pr 133

Pr 233 Advanced Automatic Cylinder Presswork (3)
Continuation of Pr 232 with emphasis on production and maintenance. 3 laboratories. Prerequisite: Pr 232

Pr 240 Additional Printing Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter.

Pr 241 Composing Machine Operation (3)
Introduction to operation of Intertype and Linotype composing machines, Touch system and proper keyboard operation. Operational adjustments and care of machine. 1 lecture, 2 laboratories. Prerequisites: Pr 102, 122

Pr 242 Composing Machine Operation (3)
Advanced operation and care of the composing machine. Use of italics, caps and small caps, ligatures, and logotypes. Typography, proper established styles of market ads, classified ads, radio logs, etc. 3 laboratories. Prerequisite: Pr 241

Pr 243 Composing Machine Operation (3)
Book work, magazine, and commercial composition. 3 laboratories. Prerequisite: Pr 242

Pr 251 Bindery Operation (2)
Binding equipment, its maintenance and repair, manual operations, paper specifications, and handling. Actual practice on commercial binding work, publications, and books. 1 lecture, 1 laboratory.

Pr 301 Ludlow Operation and Maintenance (1)
Operation, maintenance, and repair of Ludlow slug-casting machine, surfacing machine, and special equipment. Use of type sticks, logotypes, special spacing material, and market composition. 1 laboratory.
Pr 302 Elrod Operation and Maintenance (1)
Operation, maintenance, and repair of Elrod material making and strip casting machine. Care of molds, pressure oiler, packing of diffusion tubes, maintenance of special equipment. 1 laboratory.

Pr 321, 322, 323 Advanced Composing Machine Operation (3) (3) (3)
Advanced mechanism, repair, maintenance, and operation of quadders and mixers. Field trips, use of visual aids, and lectures by men from industry. 1 lecture, 2 laboratories. Prerequisites: Pr 241, 242, 243

Pr 331 Advanced Typography and Layout (3)
Layout, designing, and composing of newspapers, magazines, and special advertising display. Designing good typography and harmonious use of types, borders, and ornaments in advertising production. 1 lecture, 2 laboratories. Prerequisite: Pr 221

Pr 332 Newspaper Makeup and Markup (3)
Study of styles in advertising and page makeup. Use of markup code system for markup of ads and commercial work. Practical experience in makeup of front pages, editorial, and classified, to enhance sales and reader interest. 1 lecture, 2 laboratories. Prerequisite: Pr 331

Pr 335 Composing Machine Maintenance (2)
Introduction to mechanism, maintenance, and repair of composing room equipment. Linotype, Intertype, Elrod, Ludlow, saws, surfacing machine, and mitering equipment. Development of maintenance and service charts. Field trips, pictures, and study of plant methods of maintenance. 1 lecture, 1 laboratory.

Pr 336 Composing Machine Maintenance (2)
Advanced methods of maintenance and repair. Lockup and pot adjustments. Intertype and Linotype quadders and mixers. 1 lecture, 1 laboratory.

Pr 400 Special Problems for Advanced Undergraduates (1-2)
Arrangements to be made with department head. Limited to 4 units, with not more than 2 units in any one quarter.

Pr 401 Printing Office Management (1)

Pr 411, 412, 413 Cost and Estimating (1) (1) (1)
Estimating and pricing all types of printing, office procedures, purchasing, writing instructions. 1 laboratory. Prerequisite: Pr 326

Pr 421, 422, 423 Production Problems (3) (3) (3)

Pr 426 Cost and Estimating (2)
Fundamentals of pricing and estimating. Composition, presswork, binding, paper, ink, halftones, line cuts, electro. Comparison and use of pricing systems. Trade customs and regulations. 1 lecture, 1 laboratory.

Pr 431 Commercial Job Composition (3)
Composition and design of letterheads, business cards, invoices, labels, blotters, direct mail advertising, and other representative business forms. Study of color, display, and efficiency of office forms. 1 lecture, 2 laboratories.

Pr 433 Plant Organization and Layout (2)
Planning, designing, and layout of printing equipment. Proper use of materials and equipment to cut costs and increase production. Emphasis on engineering skill and review of departmental management. 1 lecture, 1 laboratory.
Pr 434 Offset Camera Work (2)
Scaling copy for line and halftone negatives. Function of a process camera. Dark-
room techniques, mixing chemicals, and developing film. 1 lecture, 1 laboratory.
Prerequisites: Jour 321, Pr 233

Pr 435 Offset Platemaking (2)
Exposing and developing various types of plates used in offset printing. Stripping,
opaquing, and laying out of flats. 1 lecture, 1 laboratory. Prerequisite: Pr 434

Pr 436 Offset Presswork (2)
Operation and maintenance of offset presses, blankets, rollers, and plates. Study
of fountain solutions, offset papers and ink. 1 lecture, 1 laboratory. Prerequisite:
Pr 435

Pr 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects
typical of problems which graduates must solve in their fields of employment.
Project results are presented in a formal report. Minimum 120 hours total time.

Pr 463 Undergraduate Seminar (2)
Senior students become familiar with data gathered by other seniors in prepara-
tion of senior project. Each student is required to conduct the seminar class, under
supervision of instructor, at least twice during quarter. 1 lecture, 1 laboratory.
It is the aim of this department to give students in the engineering and agricultural divisions of the college an opportunity to gain both theoretical and practical knowledge of techniques and applications of the principal welding processes. For students who wish to enter the welding industry in design, sales production, or inspection, there is set up within the framework of the Mechanical Engineering Department a sequence of senior electives in welding engineering.

Facilities provided include general oxyacetylene welding equipment, automatic and manual flame cutting apparatus, general arc welding equipment, including both AC and DC types, automatic and manual inert-gas shielded arc welding equipment, seam and spot welding machines, and automatic submerged-melt arc welding equipment. A special engineering laboratory is provided for welding design problems and is adequately equipped with apparatus for study of physical properties and chemical analysis of steels and deposited weld metals. X-ray and gamma ray are used for inspection purposes.

DESCRIPTIONS OF COURSES IN WELDING

Weld 141 Welding Survey (1)
Basic oxyacetylene welding techniques designed for radio and electronic industry students. Deals with equipment used, applications, safety, and limitations. Includes fusion welding and brazing of light gauge sheet metal. 1 laboratory.

Weld 142 Welding Survey (1)
Continuation of Weld 141, theory and application of resistance welding, and further use of the oxyacetylene flame, including silver brazing, and flame cutting. 1 laboratory. Prerequisite: Weld 141

Weld 151 Fundamentals of Oxyacetylene Welding (1)
Introduction to oxyacetylene welding. Requirements for safe and competent welding of light-gauge steel sheet. 1 laboratory.

Weld 152 Fundamentals of Oxyacetylene Welding (1)
Familiarization with the commonly used welded joints. Use of the oxyacetylene flame in brazing and flame cutting. Procedures used for welding tubing and heavy-gauge steel. 1 laboratory. Prerequisite: Weld 151

Weld 153 Fundamentals of Oxyacetylene Welding (1)
Oxyacetylene welding of piping joints and connections. Techniques used for welding some nonferrous metals. Introduction of simple templet layouts for piping. 1 laboratory. Prerequisite: Weld 152

Weld 154 Fundamentals of Metallic Arc Welding (1)
Fundamentals of shielded metallic arc welding, flat and horizontal positions. Types, uses, and classifications of electrodes and equipment. Flame cutting of steel. 1 laboratory.

Weld 155 Fundamentals of Metallic Arc Welding (1)
Shielded metallic arc welding including vertical position. Lecture on expansion, contraction, distortion, and residual stresses as applied to welded structures. Various joint types including lap, fillets, and butt joints. 1 laboratory. Prerequisite: Weld 154

Weld 156 Fundamentals of Metallic Arc Welding (1)
Shielded metallic arc welding of heavy steel plates. Includes butt weld types, uses of backing materials, hard facing, cast iron, and overhead fillets. Basic weld tests. Arc welding of light-gauge steel sheets. 1 laboratory. Prerequisite: Weld 155
Engineering Division

Weld 157 Welding Survey (2)
Fundamental oxyacetylene and metallic arc welding, designed for air conditioning and refrigeration students. Equipment used, safety, basic technique, applications, and limitations of these important phases of welding. 1 lecture, 1 laboratory.

Weld 254 Advanced Welding (1)
Types and uses of various welding machines, their operating costs. The use of structural steel shapes for building machinery and farm equipment. Welding symbols, strength of welded joints, and basic cost estimating problems. 1 laboratory. Prerequisite: Weld 156

Weld 341 Special Problems in Welding by Arrangement (1-3)
Fundamentals of welding metallurgy, weldability of steels, steels and alloys for welded construction. Codes for construction of welded unfired pressure vessels. Design of pressure vessels according to the code used. 1, 2, or 3 laboratories. Prerequisite: Weld 156

Weld 359 Advanced Welding (1)
The application of the inert-gas shielded arc welding process to the hard-to-weld metals, including aluminum and stainless steel. Argon and helium as gas shields. 1 laboratory. Prerequisite: Weld 253

Weld 434 Fabrication Methods and Design (3)
Methods of forming, cutting, and joining steel and alloy plates and shapes as applied to structures and machinery. Jig and fixture design for mass-production fabrication. 3 lectures. Prerequisite: Weld 156

Weld 435 Fabrication Methods and Design (3)
Pressure vessel design and fabrication in accordance with governing codes, using steel, stainless steel, and aluminum. Cost estimating of steel fabrication and erection. 3 lectures. Prerequisite: Weld 434

Weld 436 Fabrication Methods and Design (3)
Inspection and quality control methods used in the metal working industry. Weldability of steels and metallurgical aspects of welded fabrication. Problems in the design and fabrication of large diameter transmission line pipe. 3 lectures. Prerequisite: Weld 435
THE ARTS AND SCIENCES DIVISION
THE ARTS AND SCIENCES DIVISION

The Arts and Sciences Division differs from the other instructional divisions in having as its main function the support of major curricula other than its own. It is a service division providing for students in agriculture and engineering those courses closely related to and directly complementing the areas of their majors. It also provides courses that are supplemental and broadening in the area of general education. These courses are planned both to meet requirements in general education and to educate all students of the college in their role as active citizens of their State and Nation. In addition to these functions, the division also prepares candidates for California teaching credentials and its own students who are working toward the Bachelor of Science degree in majors in arts and sciences.

In close cooperation with the Agricultural Division there is a program of teacher training leading to the Special Secondary Credential in Vocational Agriculture and the Special Secondary Limited Credential in Agriculture. The faculty of the Arts and Sciences Division recommends candidates for the Special Secondary Credential in Physical Education, the General Elementary Credential, and the General Secondary Credential with teaching majors and minors in English, Life Science and General Science, Mathematics, Physical Education, Physical Science and General Science, and Social Studies. Students enrolled in the Division may earn the Bachelor of Science degree from any major department or the Master of Arts in Education with concentrations in any of the teaching fields in which a credential may be earned.

The major departments of the Arts and Sciences Division are Agricultural Journalism, Biological Sciences, Education, English and Speech, Home Economics, Mathematics, Physical Education, Physical Sciences, and Social Sciences. Two additional departments which provide services to the entire student body are Military Science and Tactics and Music.

AGRICULTURAL CHEMISTRY
(See Physical Sciences)

AGRICULTURAL EDUCATION
(See Education)

AGRICULTURAL JOURNALISM DEPARTMENT
Department Head, Kenneth Kitch

John R. Healey Douglass W. Miller

The college offers the State's only major in agricultural and agricultural-community journalism. Major students train for jobs as writers, editors, advertising men (or combinations of these) on staffs of daily and weekly papers, consumer and trade magazines in agricultural or allied fields, radio stations with farm programs, advertising agencies, and departments merchandising agricultural products or services. They also train for jobs as direct-by-mail advertising and sales specialists, public relations directors, community or trade association organizers and secretaries, and free-lance writers.

While ordinary fields of journalism tend to be overcrowded, there is a definite shortage of journalists with an agricultural background.

The college's Agricultural Division and Printing Department give students in this department accessory training seldom found elsewhere. Students not only learn ordinary techniques but gain firsthand experience in publishing production methods and costs as well as broad, practical experience in modern applied agricultural ideas and processes.

Journalism major students will be expected to serve as staff members on the school newspaper, various school magazines, the student news bureau, news and photographic field teams requested by fairs and expositions, and will be given
opportunities to cover frequent assignments for trade and consumer publications, press associations, and newspapers.

In addition to completing the 198 units required for a degree, the student majoring in journalism will complete a minimum eight weeks' noncredit internship in a publishing, radio, advertising, or public relations organization under circumstances approved by the head of the Journalism Department and under supervision of the department's faculty. It is presumed that internships generally will take place during summer quarters.

Enrollment in journalism courses is open to qualified students of all other departments who wish to gain skills in the techniques and methods of advertising, publicity, public relations, publications, and photography.

CURRICULUM IN AGRICULTURAL JOURNALISM

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Biology (Bio 101, 102, 103) or equivalent</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elementary Typography (Pr 121)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Display (Pr 122)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Printers (Math 105)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture Electives</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Resources (FM 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physical Science (PSc 101, 102, 103) or equivalent</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Journalism (Jour 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting (Jour 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editing and Copy Desk (Jour 233)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture Electives</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. In World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Jour 461)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Literature (Eng 311, 312, 313)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elementary Photography (Jour 221)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press Photography (Jour 322)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editorial and Feature Writing (Jour 302)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio News (Jour 333)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture Electives</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless already acceptable typists, majors will be required to take Jour 140 and/or 141 during their freshman year.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| † In addition to 9 required units in Agriculture, FM 304, FM 305 and FM 403, the student shall elect a minimum of 36 additional units in agriculture with 12 from an approved major sequence. No more than 24 units will be taken in any one agricultural field, except with permission of the department head.
DESCRIPTIONS OF COURSES IN AGRICULTURAL JOURNALISM

Jour 140, 141 Typing (1) (1)
- Designed to teach the fundamentals of the touch system in the shortest time. Training is also given in making out business forms and writing business letters. 3 one-hour periods.

Jour 151, 152, 153 Journalism Practice (1-2) (1-2) (1-2)
- Credit arranged for students holding editorial or other positions on college publications or securing other similar supervised experience. 1-2 laboratories. Prerequisite: Journalism major or instructor's permission.

Jour 201 Introductory Journalism
- An introduction to journalism, survey of its history, and study of techniques of writing the news story. 3 lectures. Prerequisite: Eng 106

Jour 202 Reporting
- Application of news-writing principles to the reporting of news events. Study and practice in writing various types of news stories, including interviews and speeches. Ethical and legal problems in gathering and reporting news. Some attention to news features. 3 lectures.

Jour 221 Elementary Photography
- For those who have had limited experience in photography. Picture-taking techniques and darkroom practices. Student must have an approved camera. 1 lecture, 2 laboratories.

Jour 233 Editing and Copy Desk
- Copy desk work, head writing, page make-up, special rewrite and editing problems, handling of correspondents, etc. 2 lectures, 1 laboratory. Prerequisites: Jour 202, Pr 121, 122

Jour 251, 252, 253 Journalism Practice (1-2) (1-2) (1-2)
- Credit arranged for students holding editorial or other positions on college publications or securing other similar supervised experience. 1-2 laboratories. Prerequisite: Jour 141, 142, 143, or equivalent.

Jour 302 Editorial Feature Writing
- Editorial and feature writing techniques. Study of markets for nonfiction articles; practice in gathering material and preparation of articles for technical and trade journals, particularly agricultural magazines. 3 lectures. Prerequisite: Jour 233

Jour 303 Advanced Feature Writing
- Emphasis on market research and preparation of articles for publication. Special attention given to photographic tie-ins. 3 lectures. Prerequisite: Jour 302, 322 or 323

Jour 322 Press Photography
- Advanced picture-taking techniques and darkroom procedures applied directly to news and feature illustration for newspapers. 1 lecture, 2 laboratories. Prerequisites: Jour 201, 202. Student must have approved flash-equipped camera.
Jour 323 Free-lance Photography (3)

Technique of the picture story, magazine article illustration, livestock and industrial equipment photography, advertising photography. 1 lecture, 2 laboratories. Prerequisite: Jour 322

Jour 333 Radio News Writing (3)

Radio news programming, fundamentals of writing and editing for radio. Community interviews. Copy preparation. Commercial tie-ins. 1 lecture, 1 laboratory, and assigned field work. Prerequisite: Sp 201

Jour 351, 352, 353 Journalism Practice (1-2) (1-2) (1-2)

Credit arranged for students holding editorial or other positions on college publications or securing other similar supervised experience. Positions to be filled by the student are presumed to be of a more highly responsible nature than in preceding practice work. 1-2 laboratories. Prerequisites: Jour 141, 142, 143 and 241, 242, 243 or equivalent.

Jour 403 Newspaper Management (3)

Management problems in operation of smaller daily or weekly newspapers. Analysis of newspaper organization, circulation principles and practices, production problems, and industrial relations. 3 lectures. Prerequisites: Jour 233, 421

Jour 404 The Farm Feature (2)

Emphasis on presentation of agricultural news and farm life features to suit interests of rural readers. Recommended as an elective for all agricultural journalism majors and for all prospective agricultural teachers. 2 lectures.

Jour 412 Public Relations (3)

Methods employed in dissemination of public information by business, agricultural, industrial, educational, and government organizations. Survey of media used, techniques commonly employed, formation and measurement of public opinion. 3 lectures.

Jour 421 Newspaper and Magazine Advertising (3)

Advertising psychology, advertising salesmanship, copy, layout, and production. Required for majors; recommended for students from other departments needing to know how to advertise and merchandise their own or others' products or services. 2 lectures, 1 laboratory. Prerequisite: Jour 233 or instructor's permission.

Jour 425 Advertising Layout and Copywriting (2)

Study of advertising typography and illustration, application of production processes in making of layouts and writing of copy. Emphasis on local newspaper and trade magazine advertising. 1 lecture, 1 laboratory. Prerequisite: Jour 421

Jour 432 Radio Advertising (3)

Survey of radio research methods, listenership studies, national networks, local chains, independents, production and transcription services, contracts, writing of commercials, spot announcements, etc. 2 lectures, 1 laboratory. Prerequisite: Jour 421

Jour 461, 462 Senior Project (2) (2)

Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Jour 463 Undergraduate Seminar (2)

Discussion of major political, economic, and social developments that have public interest and significance to the journalist. Ethics of the press, its importance and responsibilities. Correlation of the various phases of journalism and relation of these to other fields. 2 lectures.

Jour 502 Supervision of School Publications (3)

Study of types of school publications with emphasis on student publications including the newspaper and yearbook; methods for organizing and supervising staff; production; integrating publications into the public relations picture; financing. 1 lecture, 2 laboratories. Prerequisite: instructor's approval.
The curriculum in the biological sciences is designed to fulfill the following objectives: to give students majoring in the various agriculture departments the necessary botanical and zoological background for an understanding of the biological principles underlying their practical work; to train students who plan to teach the life sciences in secondary schools; to provide the necessary basic course work for students who plan to enter such fields as biological survey, wild life management, conservation, entomology, plant pathology, laboratory work, agricultural inspection, museum work, pest control, and fish and game; and to give the courses which fulfill the general education requirements in biology.

The department laboratories are equipped with the most modern instruments and are well supplied with laboratory materials. Whenever possible, fresh specimens are used. The work is organized to make biology as meaningful as possible. San Luis Obispo County offers unusual opportunities for the study of a wide variety of plants and animals since in this county are found the flora and fauna of both Southern and Northern California.

CURRICULUM IN BIOLOGICAL SCIENCES

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1 Basic Mathematics for General Education (Math 111, 112)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132, 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2 General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 17½ 16½ 17½

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1 General Botany (Bot 121, 122, 123)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature, Art, or Music</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4 Group Electives</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total: 16½ 17½ 16½

1 Math 102, 103 or Math 117, 118 will substitute.
2 Chem 321, 322, 323 will substitute for Chem 324, 325.
3 Bot 235 will substitute for Bot 122.
4 See listing of group electives following this curriculum.
Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtechnique (Bio 225)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* General Physical Science (PSc 101, 102, 103)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (Bio 461)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>† Group Electives</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State and Local Government (Pol Sc 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Bio 462)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Bio 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>† Group Electives</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Group Electives

Thirty units will be selected from the following groups with a minimum of 6 units from each group:

Group I

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 329</td>
<td></td>
</tr>
<tr>
<td>Zoo 237, 238, 239</td>
<td></td>
</tr>
<tr>
<td>Zoo 323</td>
<td></td>
</tr>
<tr>
<td>Zoo 326</td>
<td></td>
</tr>
<tr>
<td>Bot 322</td>
<td></td>
</tr>
</tbody>
</table>

Group II

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bact 222</td>
<td></td>
</tr>
<tr>
<td>Bot 223</td>
<td></td>
</tr>
<tr>
<td>Bot 324</td>
<td></td>
</tr>
<tr>
<td>Ent 126</td>
<td></td>
</tr>
<tr>
<td>SS 422</td>
<td></td>
</tr>
<tr>
<td>VS 202</td>
<td></td>
</tr>
<tr>
<td>VS 203</td>
<td></td>
</tr>
<tr>
<td>Zoo 425</td>
<td></td>
</tr>
</tbody>
</table>

Group III

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio 127, 128, 129</td>
<td></td>
</tr>
<tr>
<td>Bio 325</td>
<td></td>
</tr>
<tr>
<td>Bot 235</td>
<td></td>
</tr>
<tr>
<td>Bot 343</td>
<td></td>
</tr>
<tr>
<td>Ent 331</td>
<td></td>
</tr>
<tr>
<td>SS 223</td>
<td></td>
</tr>
<tr>
<td>Zoo 225</td>
<td></td>
</tr>
<tr>
<td>Zoo 433</td>
<td></td>
</tr>
</tbody>
</table>

Phys 131, 132, 133 will substitute.

† See listing of group electives following this curriculum.
Arts and Sciences Division

Group IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH 101, 102</td>
<td>Feeds and Feeding</td>
<td>(2) (2)</td>
</tr>
<tr>
<td>AH 304</td>
<td>Animal Breeding</td>
<td>(3)</td>
</tr>
<tr>
<td>AH 402</td>
<td>Animal Nutrition</td>
<td>(3)</td>
</tr>
<tr>
<td>Bio 141, 142, 143</td>
<td>Biological Techniques</td>
<td>(2) (2) (2)</td>
</tr>
<tr>
<td>Bio 400</td>
<td>Special Problems for Advanced Undergraduates</td>
<td>(1-2)</td>
</tr>
<tr>
<td>Bot 238</td>
<td>Native Plant Materials</td>
<td>(3)</td>
</tr>
<tr>
<td>CP 123</td>
<td>Forage Crops</td>
<td>(3)</td>
</tr>
<tr>
<td>CP 304</td>
<td>Plant Breeding</td>
<td>(3)</td>
</tr>
<tr>
<td>CP 321</td>
<td>Crop Disease and Pest Control</td>
<td>(3)</td>
</tr>
<tr>
<td>DH 422</td>
<td>Breeding and Selection of Dairy Cattle</td>
<td>(3)</td>
</tr>
<tr>
<td>FP 234</td>
<td>Deciduous Disease and Pest Control</td>
<td>(4)</td>
</tr>
<tr>
<td>OH 327</td>
<td>Diseases and Pests of Ornamental Plants</td>
<td>(3)</td>
</tr>
<tr>
<td>VS 231</td>
<td>Poultry Anatomy and Physiology</td>
<td>(3)</td>
</tr>
<tr>
<td>VS 303</td>
<td>Poultry Hygiene and Disease</td>
<td>(3)</td>
</tr>
<tr>
<td>PH 321</td>
<td>Poultry Breeding</td>
<td>(4)</td>
</tr>
<tr>
<td>SS 123</td>
<td>California Soils</td>
<td>(3)</td>
</tr>
<tr>
<td>SS 202</td>
<td>Soil Conservation</td>
<td>(3)</td>
</tr>
<tr>
<td>SS 321</td>
<td>Soil Classification</td>
<td>(4)</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN BACTERIOLOGY

Bact 221 General Bacteriology

Morphology, metabolism, classification and identification; bacteriology of air, soil, water, and foods with applications to industry, agriculture, medicine, and public health. 2 lectures, 2 laboratories. Prerequisite: one quarter of college chemistry.

Bact 222 Dairy Bacteriology

Advanced course for practical work demonstrating the domestic and industrial importance of micro-organisms involved in milk and dairy products: milk, milk powders, fermented milks, evaporated and condensed milks, butter, cheese, cheese starters, and ice cream. 2 lectures, 2 laboratories. Prerequisite: Bact 221

DESCRIPTIONS OF COURSES IN BIOLOGY

Bio 100 Agricultural Biology

Basic biological principles applied to agriculture. This course may not be substituted for General Zoology or General Botany. 2 lectures, 1 demonstration and discussion hour.

Bio 101 General Biology

Characteristics of living things; cellular composition and organization; functional approach to organ systems of man. 3 lectures.

Bio 102 General Biology

Endocrine system; reproduction; heredity and environment; social implications of biological principles. 3 lectures. Prerequisite: Bio 101

Bio 103 General Biology

Disease; plants, animals and man; balance of nature; conservation of resources; history of man. 3 lectures. Prerequisite: Bio 102

Bio 110 Applied Biology

Biology of man with applications to engineering and industry. 3 lectures.

Bio 127 Nature Study

Introduction to the basic principles of astronomy, geology, biological classification, paleontology and conservation. Alcohol and narcotics. Field trips and laboratory emphasizing materials for elementary science. 2 lectures, 2 laboratories.

Bio 128 Nature Study

Identification, structure, adaptations, life history, habits, habitat, economic status and conservation of marine and fresh water organisms, land invertebrates, trees and shrubs. 2 lectures, 2 laboratories.
Bio 129 Nature Study
Identification, structure, adaptations, life history, habits, habitat, economic status and conservation of terrestrial plants and vertebrates. Local and California plant and animal communities. 2 lectures, 2 laboratories.

Bio 141, 142, 143 Biological Techniques (2) (2) (2)
Preparation of plant and animal specimens for display or study purposes. Sample techniques: Collecting, preserving, casting, molding, taxidermy, skeletons, herbaria, microtechnique. 2 laboratories. Prerequisites: Bot 121 or Zoo 131

Bio 225 Microtechnique (3)
Methods of preparing plant and animal tissues for microscopic study. 1 lecture, 2 laboratories. Prerequisite: Consent of instructor.

Bio 303 Genetics (3)
Principles of heredity and variation. 3 lectures. Prerequisite: one quarter of college biology and two quarters of college mathematics.

Bio 325 Plant and Animal Ecology (3)
Response of plants and animals to their environment. 2 lectures, 1 laboratory. Prerequisite: Bot 122 or Bot 236 or Zoo 132

Bio 400 Special Problems for Advanced Undergraduates (1-2)
Total credit limited to 4 units with not more than 2 units in any one quarter. 1 or 2 laboratories. Prerequisite: senior standing or permission of the instructor.

Bio 423 Plant and Animal Cytology (4)
Detailed study of animals and plant cells, structurally and functionally. 2 lectures, 2 laboratories. Prerequisite: Zoo 133

Bio 433 Wildlife Management (4)
General principles, problems, and techniques of wildlife management. Identification, distribution, and life histories of important species. 3 lectures, 1 laboratory. Prerequisite: Zoo 226 or SS 223

Bio 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Bio 463 Undergraduate Seminar (2)
Study and discussion of recent developments in the field of biology. 2 meetings. Prerequisite: Bio 462

Bio 521 Curriculum and Methods in the Biological Sciences (3)
Curricula, methods, devices, and procedures that may be used effectively in organizing and conducting high school biology courses. 2 lectures, 1 observation laboratory. Prerequisite: Graduate standing.

Bio 590 Seminar in Biology (1-3)
Arrangements to be made with department head. 1 to 3 units in one quarter, maximum of 6 units. Prerequisite: Graduate standing.

DESCRIPTIONS OF COURSES IN BOTANY

Bot 121 General Botany (4)
Introduction to structures and functions of seedbearing plants. 2 lectures, 2 laboratories.

Bot 122 General Botany (4)
Nature and relationships of plant groups from bacteria to angiosperms; emphasis on nonseedbearing plants of economic importance. 2 lectures, 2 laboratories. Prerequisite: Bot 121
Bot 123 General Botany (4)
Elementary plant genetics, paleobotany, organic evolution, plant ecology, and plant geography. 2 lectures, 2 laboratories. Prerequisite: Bot 122

Bot 223 Plant Pathology I (4)
Principal diseases of plants; symptoms, field identification, and control methods. 3 lectures, 1 laboratory. Prerequisite: Bot 122 or 235

Bot 235 Families of Agricultural Plants (4)
Recognition of the families of flowering plants which are of major agricultural importance in California. 2 lectures, 2 laboratories. Prerequisite: Bot 121

Bot 238 Native Plant Materials (3)
Identification, habits of growth, cultural requirements and landscape use of native California plants suitable for landscape purposes. 2 lectures, 1 laboratory. Prerequisite: Bot 121

Bot 322 Plant Physiology (4)
Functions of plants and plant organs. 3 lectures, 1 laboratory. Prerequisites: Bot 121 and Chem 321 or 324

Bot 324 Plant Pathology II (3)
Plant diseases of environmental, virus, bacterial, and fungus origin; systematic mycology applied to the identification of the principal diseases of major crops and ornamental plants. 2 lectures, 1 laboratory. Prerequisite: Bot 223

Bot 343 Taxonomy of Higher Plants (3)
General principles of classification of plants; procedure for identification of unknown plants; preparation and use of specimens. 2 lectures, 1 laboratory. Prerequisite: Bot 122 or Bot 236

Bot 590 Seminar in Botany (1-3)
Arrangements to be made with department head. 1 to 3 units in one quarter, maximum of 6 units. Prerequisite: Graduate standing.

DESCRIPTIONS OF COURSES IN ENTOMOLOGY

Ent 126 General Entomology (4)
Generalized study of insects; life histories; economic importance and control. Insect collection required. 3 lectures, 1 laboratory.

Ent 331 Insect Taxonomy (3)
Orders and principal families of insects. Systematic entomology applied to field and laboratory identification of major insect pests of the main crop and ornamental plants. 2 lectures, 1 laboratory. Prerequisite: Ent 126

DESCRIPTIONS OF COURSES IN ZOOLOGY

Zoo 131 General Zoology (4)
Cells, tissues, and organ systems of vertebrates; emphasis on man and domestic animals. 2 lectures, 2 laboratories.

Zoo 132 General Zoology (4)
Reproduction, embryology and genetics in vertebrate animals. General taxonomy, economic zoology, ecology and evolution. 2 lectures, 2 laboratories. Prerequisite: Zoo 131

Zoo 133 General Zoology (4)
Invertebrate animals from protozoa to chordates. A study of the variety and distribution of animal life with emphasis on those forms of economic and medical importance. 2 lectures, 2 laboratories. Prerequisite: Zoo 132
Zoo 226 **Vertebrate Field Zoology** (4)
Identification, life histories, and economic importance of vertebrates, especially birds and mammals. Field work emphasized. 2 lectures, 2 laboratories. Prerequisite: Zoo 132

Zoo 237 **Human Anatomy** (3)
Structural aspects of the organ systems of man. 2 lectures, 1 laboratory. Prerequisites: Zoo 132 and PSce 103 or Chem 326

Zoo 238 **Human Physiology** (3)
Human cellular organization and function. Functions of respiratory, circulatory, digestive, and excretory systems. Intermediary mechanisms. 2 lectures, 1 laboratory. Prerequisite: Zoo 237

Zoo 239 **Human Physiology** (3)
Functions of skeletal, muscular, and nervous systems. Endocrine glands and hormonal activity. Reproduction and development. Human body and defense against disease. 2 lectures, 1 laboratory. Prerequisite: Zoo 238

Zoo 323 **Embryology** (4)
Elementary embryology emphasizing the structural aspects of development in the frog, chick, pig, and in man. 2 lectures, 2 laboratories. Prerequisite: Zoo 133 and Bio 303

Zoo 326 **Comparative Anatomy of Vertebrates** (4)
Comparative structure of vertebrate organ systems. 2 lectures, 2 laboratories. Prerequisite: Zoo 133. Recommended: Zoo 323

Zoo 422 **Histology** (4)
Tissues, microscopic organology, and correlation of form with function. 2 lectures, 2 laboratories. Prerequisite: Zoo 133

Zoo 425 **Parasitology** (4)
External and internal parasites of man and animals; life history; control, distribution, and economic importance. 2 lectures, 2 laboratories. Prerequisite: Zoo 132. Recommended: Zoo 133

Zoo 590 **Seminar in Zoology** (1-3)
Arrangements to be made with department head. 1 to 3 units in one quarter, maximum of 6 units. Prerequisite: Graduate standing.

CHEMISTRY
(See Physical Science)
The courses and curricular offerings in education are planned to meet a wide variety of student needs. To direct students into learning experiences that will develop in them skills and techniques of basic value in the vocation of teaching there is a well-rounded program in education. To provide students with the ability to apply basic principles of human behavior in the areas of mental health, human relations, and learning methods, there are offerings in psychology. Work is offered in art and audio-visual methods and materials for all students who have need of skills in these areas.

The teacher training program in agricultural education provides for the preparation of teachers for two agriculture credentials, the Special Secondary Credential in Vocational Agriculture and the Special Secondary Limited Credential in Agriculture. The preparation of teachers in this field is cooperatively carried out by the departments of the Agricultural Division and by the Education Department.

The preparation of secondary school teachers in the various sciences and arts fields is a cooperative enterprise of the Education Department and the subject matter departments. The student is provided with a sound background in both major and minor teaching fields for the General Secondary Credential. The solution of immediate community, occupational, and personal problems receives major emphasis.

Instructors in teacher training courses have had extensive public school teaching experience, and the curricular offerings are organized for practical and direct service in the classroom. Many opportunities for the observation of public school classrooms are provided before the student enters student teaching. In the high school classroom as a student teacher, the student works under superior high school teachers and is supervised by college faculty members for the major and minor subject departments and by the coordinator of student teaching.

The curriculum for those who wish to work toward the General Elementary Credential is planned with the practical aim of producing competent teachers and good citizens. The beginning student has the opportunity to observe classes during his first year in college to help him decide whether he is suited to elementary teaching. During his second year he experiences additional supervised observation in the public schools and observes and participates in such groups as recreational organizations, the Boy Scouts, and Campfire Girls so that he may become acquainted with children on an informal basis and learn what their interests and needs are. In his third year, after having taken some basic courses in psychology and teaching methods, he does his supervised teaching. Laboratory experience is carried out under the best supervision and conditions that the college and public schools can provide. The student is expected not only to render professional service to the community but to use his laboratory experience as a means of determining the many skills and competencies that teachers need. The fourth year is devoted to a concentrated study of the methods and materials in the various areas of the elementary curriculum.

Required courses in other departments have the aim of informing the student as specifically as possible in the subjects taught in the elementary schools. These include the language arts, humanities, social studies, arithmetic, physical and life sciences, physical education, music, and arts and crafts. The course content in these areas, however, goes beyond that to be taught in the elementary school to give the student the background he needs as a contributing member of society. Rather than to pursue a minor in some field of general education, the student is expected to broaden his interests and background in several of the general education areas.

The student who is interested in teaching as a career should consult the section of this catalog which describes requirements and programs leading to the Special Secondary Credential in Vocational Agriculture, the Special Secondary Limited Credential in Agriculture, the Special Secondary Credential in Physical Education, the General Secondary Credential, and the General Elementary Credential.
CURRICULUM IN ELEMENTARY EDUCATION

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nature Study (Bio 127, 128, 129)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Orientation to Crafts (Art 233)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Historical Survey of Civilization (Hist 107)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic for Elementary Teachers (Math 121, 122)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>History of California (Hist 112)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to the Teaching Profession (Ed 101)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 16½ | 15½ | 17½ |

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Observation (Ed 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School Observation (Ed 232)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Work with Youth Groups (Ed 253)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Speech Electives</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Basic Music for Classroom Teachers (Mu 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation to Art Materials (Art 232)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical, Political and Industrial Geography (Geog 221)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Children's Literature (Eng 205)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature, Philosophy or Art or Music Appreciation</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>School and Community Health Education (PE 203)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Science Elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 16½ | 16½ | 17½ |

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Psychology (Ed 312)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Elementary Education (Ed 302)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety and First Aid (PE 121)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Geography (Geog 308)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Child Growth and Development (Ed 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Survey of Elementary School Methods (Ed 330)</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Student Teaching (Ed 331)</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Senior Project (Ed 461)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 17 | 17 | 14 |

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary School Methods (Ed 434, 435, 436)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>United States in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Ed 462)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Ed 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Problems in Elementary Curriculum Construction (Ed 478)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

| Total | 17 | 17 | 16 |

Major courses first offered in 1957-58
DESCRIPTIONS OF COURSES IN EDUCATION

Ed 1 Remedial Penmanship (1)
Development of skills in handwriting for education majors showing a deficiency. Cursive and manuscript styles. 2 laboratories.

Ed 101 Introduction to the Teaching Profession (2)
Qualifications of successful teachers; analysis of duties and amenities of elementary and secondary teaching; school law and certification requirements; opportunities in the teaching profession; observation of teaching. 2 lectures.

Ed 201 Introduction to Observation (2)
Preparation for observation of child behavior and teaching methods in the classroom; principles of child behavior; use of classroom equipment; techniques of observing; California public school child accounting system. 2 lectures.

Ed 232 School Observation (2)
Classroom observation in the public schools; one seminar a week for evaluating observation experiences. 1 lecture, 1 laboratory. Prerequisite: Ed 201

Ed 253 Field Work With Youth Groups (2)
Work with groups of children such as Boy Scouts, Campfire Girls, recreational groups. Leadership, human relations, adjusting to different personalities, skills in group management. Serves to appraise professional aptitude. 2 laboratories. Prerequisite: Ed 201

Ed 301 Principles of Secondary Education (3)
Introduction to the profession of secondary school teaching; analysis of teaching as a vocation; orientation in what is required of a good teacher; objectives, functions, and curricula of secondary schools. 3 lectures.

Ed 302 Principles of Elementary Education (3)
Brief history of elementary education; some philosophies of elementary education; aims and objectives of education for a democracy; elementary program in the California schools. 3 lectures.

Ed 304 Growth and Development of the Child (3)
Social, emotional, and intellectual development during childhood and adolescence, with particular applications to the school situation. Problems of mental hygiene. 3 lectures.

Ed 312 Educational Psychology (5)
Pupil-teacher relationships; promotion of learning, mental health, and motivation. Growth and development. Individual differences and group interaction. Group methods and classroom observation. 5 lectures. Prerequisite: Psy 202

Ed 330 Survey of Elementary School Methods (6)
Introduction to techniques and procedures used in elementary school teaching; observation in elementary schools at all levels; methods of teaching basic elementary school subjects with emphasis on reading and social studies; preparation for student teaching. 3 lectures, 3 laboratories. Prerequisite: Ed 312

Ed 331 Student Teaching (Elementary) (12)
Observation and teaching under direction of a selected regular teacher in an elementary school. Participation in a wide variety of representative public elementary school activities. Requires approval of candidate by Teacher Education Committee.

Ed 403 Secondary School Teaching Plans and Techniques (5)
Planning lessons, unit development, specific teaching skills, class management, and utilization of community resources and relationships. Demonstrations and observations in secondary schools. Classroom planning coordinated with public school practice. 5 lectures. Prerequisite: Ed 312
Ed 421 **Student Teaching (Special Secondary)** (9)

Observation and teaching under direction of a selected regular teacher in a secondary school. Participation in representative public school activities. Supervision by college teacher education staff following approval of candidate by Teacher Education Committee. For special secondary candidates in general agriculture and physical education.

*Ed 434 **Elementary School Methods** (6)

Methods and materials of teaching language arts, including reading, language, spelling, writing, speaking, and listening; includes the use of audio-visual aids and evaluation in these areas. 3 lectures, 3 laboratories. Prerequisite: Ed 304 and 330

Ed 434A **Teaching Language Arts in the Elementary School** (3)

Methods and materials for teaching language usage, spelling, dramatics, handwriting, listening and speaking. Includes instructional materials and audio-visual aids and evaluation. Prerequisite: Ed 304. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

Ed 434B **Teaching Reading in the Elementary School** (3)

Teaching reading; reading readiness; psychology of learning to read; instructional materials; evaluating growth; developing independent reading skills; recreational reading. Prerequisite: Ed 304. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

*Ed 435 **Elementary School Methods** (6)

Methods and materials for teaching social studies, science, and arithmetic; proper placement of content; handling individual differences. Includes the use of audio-visual aids and evaluation in these areas. 3 lectures, 3 laboratories. Prerequisite: Ed 304 and 330

Ed 435A **Teaching Social Studies in the Elementary School** (3)

Emphasizes the nature of social growth of children in a democracy; methods and materials; unit planning; child development approach to content; use of audio-visual aids; evaluation. Prerequisite: Ed 304. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

Ed 435B **Teaching Arithmetic in the Elementary School** (3)

Developing readiness for arithmetic; teaching number concepts; developing skills, appreciation, and understandings for arithmetical problems; evaluation. 2 lectures, 1 laboratory. Prerequisite: Ed 304. Offered only in summer quarter and evening classes.

Ed 435C **Teaching Science in the Elementary School** (3)

Methods of organizing the science program; teaching procedures; how to do experiments, make field trips, and prepare collections. Use of audio-visual aids. Prerequisite: Courses in natural science. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

*Ed 436 **Elementary School Methods** (6)

Methods and materials for teaching art, music, and physical education. Includes the use of audio-visual aids and evaluation in these areas. 3 lectures, 3 laboratories. Prerequisite: courses in the fundamentals of art, music, and physical education.

Ed 436A **Teaching Physical Education in the Elementary School** (3)

Modern trends in materials and methods for the elementary school program. The place of rhythms and dances, games, calisthenics, self-teaching activities, marching tactics, and miscellaneous activities. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

Ed 436B **Teaching Music in the Elementary School** (3)

Principles and techniques of conducting the teacher's own program. A study of activities suitable for elementary children; includes both skills and appreciation. Assumes a knowledge of music fundamentals. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

* First offered in 1957-58.
Ed 436C **Teaching Art in the Elementary School** (3)
Development of the creative artistic abilities of children; integration of art skills and appreciation in the total school curriculum. Use of audio-visual aids. Prerequisite: Art 232 or permission of the instructor. 2 lectures, 1 laboratory. Offered only in summer quarter and evening classes.

Ed 461, *462 **Senior Project** (2) (2)
Selection and completion of a project in elementary education under a minimum of supervision. Projects typical of problems which graduates must solve as professional elementary teachers. Results presented in a formal report. Minimum 120 hours total time.

*Ed 463 **Undergraduate Seminar** (2)
Study and discussion of recent and current developments in the field of elementary education; analysis of current literature in the field. 2 lecture-discussions.

*Ed 478 **Problems in Elementary Curriculum Construction** (3)
Advanced approach to the problems of elementary curriculum development. Public relations; people involved in building the curriculum; implementing the purposes of education through the curriculum; child development and the curriculum. 3 lectures. Prerequisite: Ed 331.

Ed 501 **Philosophy of Education** (3)
Function of philosophy; human nature, values, and ethics; the relationship of these concepts to educational methods and subject matter. 3 lectures.

Ed 503 **Counseling and Guidance** (3)
The philosophy, techniques, and administration of individual and group guidance programs. Individual counseling. The assessment of students' interests, abilities, and achievement with respect to educational and vocational choice, and school and life orientation. 3 lectures.

Ed 504 **Evaluation in Secondary Education** (3)
Preparation and use of tests; new objective tests; check lists and rating scales. Supplementary observational techniques. The use of all such devices in evaluation. Assigning grades and reporting results. 3 lectures.

Ed 507 **Teacher-administrator Relationships** (3)
Administrative problems associated with the operations of schools and school systems as they affect the teacher. Individual school, city, and state school systems, the Federal Government in education, and the California Education Code. Evaluation of administrative principles and practices. 3 lectures.

Ed 508 **Educational Sociology** (3)
Sociological backgrounds of school children; effects of social, economic, and political trends and issues on education; problems of leisure, recreation, and occupations; modern interpretations of democratic ideology. Sociological problems are utilized to define the social objectives of the school. 3 lectures.

Ed 510 **School Finance and Business Management** (3)
A consideration of the sources of public school support in California and the formulas by which funds are distributed to educational agencies. Budgets, audits, accounting, financial statements, salaries and retirement, purchasing and managing of plants, equipment, and supplies. 3 lectures. Prerequisite: Valid general credential. Offered only in summer quarter.

Ed 511 **School Law** (3)
The legal problems affecting schools, using as sources the California Administrative Code, Title 5, the Education Code, the Attorney General’s opinions, and interpretations of the state and federal courts. 3 lectures. Prerequisite: Valid general credential. Offered only in summer quarter.

* First offered in 1957-58.
Ed 512 Secondary School Administration (3)
The three major phases of the work of the secondary administrator; his function as a leader of people, his duties as a director of education, and his techniques as an organizer and manager. 3 lectures. Prerequisite: Valid general credential. Offered only in summer quarter.

Ed 513 Federal, State, County, and City School Administration (3)
Objectives of public school administration and an overview of all levels of organization; problems in state, county, and city school organization, particularly as related to California; federal government and education; issues involved in federal support. Prerequisite: Valid general credential. Offered only in summer quarter.

Ed 515 Administration of Secondary School Curriculum and Instruction (3)
The basis of sound administration in the secondary schools of California. The administrator's role in curriculum development. The upgrading of secondary school instruction through administrative guidance and leadership. 3 lectures. Prerequisite: Valid general credential. Offered only in summer quarter.

Ed 516 Secondary School Supervision (3)
The administrative organization of supervision. City and county supervisory methods and procedures in secondary schools. Evaluation of present practices. In-service improvement of instruction through supervision. 3 lectures. Prerequisite: Valid general credential. Offered only in summer quarter.

Ed 517 School-community Relationships (3)
The school and public relations. The administrator's relationship with community groups and organizations. The effect upon the public schools of community and patrons. Public administration as it affects the community's educational program. 3 lectures. Prerequisite: Valid general credential. Offered only in summer quarter.

Ed 530 Student Teaching (General Secondary) (9)
Observation and teaching under direction of a selected regular teacher in a secondary school. Participation in representative public school activities. Supervision by college teacher education staff following approval of candidate by Teacher Education Committee.

Ed 588 School Administration Field Work (3-6)
Supervised field work in school administration at the elementary or secondary level; specific assignments made to cover important aspects of school administration; periodic reports and final report required. Prerequisite: Valid general credential.

Ed 590 Seminar in Supervision of Student Teachers (3)
Organization, responsibilities, problems, and procedures in supervising, directing, and evaluating student teachers and student teaching activities. 3 lecture-discussions.

Ed 591 Seminar in School Administration (3)
Current problems in school administration; study of recent and current literature bearing on administration; development of problem-solving techniques for administrators. 3 discussion meetings. Prerequisite: Valid general credential. Offered only in summer quarter.

DESCRIPTIONS OF COURSES IN AGRICULTURAL EDUCATION

Ag Ed 203 The Teaching of Agriculture (2)
Agriculture teaching opportunities and problems; kinds of agriculture classes and purposes of each; qualifications essential to teaching agriculture. Method includes visitation of high school departments of agriculture. 2 lectures—school visits by arrangement.
Ag Ed 423 **Curriculum and Methods in General Agriculture** (3)
Survey methods; principles and practices in determining course objectives, content, and teaching calendar. Methods, devices, and materials particularly adapted for use by the beginning teacher in general agriculture classes on secondary level. 3 lectures.

Ag Ed 521A-B **Curriculum and Methods in Vocational Agriculture** (3) (2)
Community and pupil surveys; principles and methods in determining course objectives, content, and calendar. Methods, devices, and materials adaptable for use by the beginning teacher in classroom, shop, and field instruction and in organization of community activities. Concurrent with student teaching. 3 lectures.

Ag Ed 522 **Methods in Teaching Farm Mechanics** (5)
Farm mechanics in vocational agriculture program. Organizing a course of study. What to teach; how to teach it. Practice in developing lesson plans and materials. Demonstration teaching and analysis of teaching techniques. 6 lectures, 4 laboratories offered each half of winter quarter.

Ag Ed 523A-B **Adult and Continuation Education in Agriculture** (4) (2)
Organization, history, philosophy, administration, and teaching of public school classes for “out-of-school” youth and adults. Contributions of helpful agencies. Teaching of adult classes in agriculture under supervision. California urban and rural adult education programs. 3 lectures, 1 laboratory for 18 weeks.

Ag Ed 524 **Problems in Supervising Farm Programs** (5)
Practices, methods, and skills in supervising agricultural projects and farming programs in vocational agriculture. Required of all cadet teachers in vocational agriculture. 5 laboratories.

Ag Ed 525A-B **Student Teaching in Vocational Agriculture** (8) (4)
Observation and teaching under direction of selected regular teacher of vocational agriculture in a secondary school. Future Farmer, Young Farmer, adult class, and community activities. Five months off-campus assignment supervised by agriculture teacher-training staff. Prerequisite: Approval by the Teacher Education Committee and the State Bureau of Agricultural Education.

Ag Ed 526A-B **Vocational Agriculture Department Organization** (2) (1)
Principles and practices in organizing and providing facilities and materials for operating a secondary program in vocational agriculture. Part of the participating experience for cadet teachers during the student teaching period.

Ag Ed 580 **Special Problems in Agricultural Education** (3)
For graduate students in agricultural education. Contemporary problems in teaching agriculture in secondary schools. Trends, developments, individual problems. 3 lectures. Consent of instructor required.

Ag Ed 6215 **Agricultural and Professional Skills** (1 1/2)
Various agricultural and professional skills. Offered during a one-week summer period for teachers of agriculture. Designed to meet needs of teachers of vocational agriculture as determined by soliciting opinions of teachers in the field.

Ag Ed 6315 **Conference, Agriculture Teaching Problems** (1 1/2)
A series of lectures, seminars, demonstrations, and discussions of agriculture education teaching problems and developments in agriculture, led by specialists in the field. For professional improvement of teachers of vocational agriculture. Offered in a one-week summer period.
DESCRIPTIONS OF COURSES IN ART

Art 231 Art in Everyday Life (3)
Principles of art as expressed in our contemporary culture. Evaluating community planning, home design, industrial design, furnishing and decorating, and objects of everyday use. The influence of art expression in developing and expressing the personality of the individual. 2 lectures, 1 laboratory.

Art 232 Orientation to Art Materials (3)
The contribution which art can make to the democratic way of life. Consideration of the development of appreciative and creative skills. Emphasis on drawing and graphic work. The development of units and procedures. Problems in developing creative skills in selecting, organizing, guiding, and evaluating individual and group activities. 1 lecture, 2 laboratories.

Art 233 Orientation to Crafts (3)
Basic projects with various craft materials such as ceramics, metalwork, textile design, woodwork, and leatherwork. Emphasis on design as presented through materials and their properties. Lectures, discussion, demonstration projects, and evaluative criteria applied to craft materials. 1 lecture, 2 laboratories.

Art 321 Applied Color and Design (3)
Study of lines, planes, masses, textures, color, and aspects of space as elements in the structure of the plastic arts. Balance, rhythm, and proportion of any two or more of these elements as utilized in the fine and applied arts. Experience in simple media. 2 lectures, 1 laboratory. Prerequisites: Art 231 or permission of instructor.

Art 324 Materials and Methods (2)
Applied principles of general design and color theory in ceramics, metalwork, textile design, and simple woodworking. Emphasis on skill development, material handling, and current methods of applied design. Lecture-discussion, investigation, laboratory projects. 1 lecture, 1 laboratory. Prerequisite: Art 233, or 321, or permission of the instructor.

DESCRIPTIONS OF COURSES IN AUDIO-VISUAL EDUCATION

AV 431 Audio-Visual Instruction: Methods and Materials (3)
Visual and auditory methods and materials of value in classroom teaching in elementary and secondary schools. Lecture, lecture-demonstration, discussion, previewing, and laboratory work. Planning and correlating use of audio-visual techniques in the classroom. 2 lectures, 1 laboratory. Prerequisite: Ed 312 or permission of the instructor.

AV 432 Audio-Visual Methods in Agriculture and Engineering (3)
Industrial uses of visual and auditory materials in planning training aids, mass communication materials, demonstrations, mock-ups, models, and conference leading techniques. Planning, previewing, and skill development for business and industry. 2 lectures, 1 laboratory. Prerequisite: Psy 302 or permission of the instructor.

AV 433 Audio-Visual Production Workshop (2)
Analysis of advanced problems of instruction, production of materials in relation to these problems, using audio-visual materials and methods. Skill development in problem-solving through contact with materials, equipment, and methods employed in audio-visual communication. 1 lecture, 1 laboratory. Prerequisite: AV 431 or 432, or permission of the instructor.
DESCRIPTIONS OF COURSES IN PSYCHOLOGY

Psy 1, 2 Remedial Reading (2) (2)
Improvement of basic reading skills. Training in quick, accurate visual and auditory perception. Vocabulary development. Improvement of comprehension through analysis of author's purpose and techniques. 2 lectures.

Psy 104 Effective Study Techniques (2)
Designed to acquaint students with basic aims and objectives of going to college, and to provide adequate instruction and practice in specific study skills; effective study methods, note-taking, time-planning, memory, concentration, etc. 1 lecture, 1 quiz section.

Psy 202 General Psychology (3)
Biological individuality; heredity and environment; motives; emotions; sensory activity and its use by the individual; learning and remembering; thinking and creating; intelligence; abilities; personality; culture and the individual; oneself and others. 3 lectures.

Psy 206 Family Relations (3)
Family life education. Economic, psychological, and biological understanding necessary for successful family life and child rearing. Techniques for happy marriage. Interrelationships of marriage, family living, democratic life, and sound mental health. 3 lectures.

Psy 301 Personality and Mental Health (3)
Factors of mental health; achieving efficiency; personality development; emotional control; social adaptation; improvement of thinking; religion; program for mental health. 3 lectures.

Psy 302 Psychology of Business and Industry (3)
Psychological factors involved in sales approach, stimulating sales interest, clinching the sale, and followup. Selling that serves customers; gaining employment and promotion; hiring and promoting techniques in business and industry; leadership in industrial relations. 3 lectures.

Psy 401 Social Psychology (3)
Human behavior as a product of interaction and social process, nature of group life in relation to social groupings, social conflict, public opinion, group morale, social controls, leadership. 3 lectures. Prerequisite; Psy 202 or permission of instructor.
Courses in English are designed to serve three purposes: first, to help the student develop habits of sound thinking and logical organization of material; second, to provide opportunities for the student to use language accurately, clearly, and interestingly, both in speaking and in writing; and third, to develop the technique of reading to the point of understanding others' ideas and using those ideas in the solution of one's own problems.

The English 104, 105, 106 course sequence is required of all students except those who enter with credit in freshman composition. In addition, one of the following courses is required: English 211, 212, 213, 311, 312, 313. Other courses are offered for department patterns and as electives.

For the purpose of assigning students to the appropriate level of training in language communication, a placement test is given. The test measures acceptable proficiency in language communication as revealed in sentence structure, appropriate usage, spelling, and paragraph unity. Students who demonstrate considerable deficiency will be assigned to English 4, a preparatory course without credit toward a degree. A passing grade in this course entitles the student to advance to English 104.

The major in English fits in with Cal Poly's unique program of training teachers by means of practical and "learn by doing" experiences to take their places in schools and communities. Specifically, the integration of composition, literature, speech, and journalism provides a vital language communications core, for all are concerned with providing an understanding of how language has developed, how language is used, and how language may be used. Other vocational objectives of the English curriculum include industrial positions in the writing of training and expository materials, business and professional writing, and radio and television writing. Either as an adjunct to other majors or through careful choice of electives, the program in English will provide a variety of specific occupational opportunities.

CURRICULUM IN ENGLISH

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History of Civilization (Hist 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Natural Science</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Basic Mathematics (Math 111, 112)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journalism Practice (Jour 251, 252, 253)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Reporting (Jour 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Natural Science</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Editing and Copy Desk (Jour 233)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Family Relations (Psy 205)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>English, Speech, Journalism Electives</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>16½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

* Of the 15 units of Natural Science at least 3 units are to be taken in a Life Science and 3 units in a Physical Science.
Junior

<table>
<thead>
<tr>
<th>Course Description</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Literature (Eng 311, 312, 313)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Composition (Eng 314)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argumentation and Persuasion (Sp 304)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editorial and Feature Writing (Jour 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 303)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Radio and TV Programming (Sp 306)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (Eng 461)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>English, Speech, Journalism Electives</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course Description</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio and TV Laboratory (Sp 451, 452, 453)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Literature (Eng 411, 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy, Art, or Music</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Eng 462)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Eng 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Public Relations (Jour 412)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>State and Local Government (Pol Sc 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>English, Speech, Journalism Electives</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Descriptions of Courses in English

Eng 4 Preparatory English
For the student who needs additional work before entering English 104. The organization of ideas into logical, clear sentences and paragraphs, taught primarily through intensive writing based on the student's interests and experience. 3 lectures.

Eng 100 Applied English Composition
Concentrated work in English composition, letter writing, reports, and language uses. May not be substituted for Eng 104, 105, or 106. 3 lectures. Prerequisite: passing grade on placement examination or Eng 4

Eng 104 Language Communication
Oral and written communication skills. Use of reference materials. Planning and organizing short reports. Review of language skills. Training in reading improvement. 3 lectures. Prerequisite: Satisfactory score on placement examination or Eng 4

Eng 105 Language Communication
Oral and written communication skills. Development of the paragraph in written composition. Basic principles of organization. Methods and techniques of exposition. Training in reading improvement. 3 lectures. Prerequisite: Eng 104

Eng 106 Language Communication
Oral and written communication skills. Argumentation. Description. Narration. The research paper. Business letters. Writing informal essays. Training in reading improvement. 3 lectures. Prerequisite: Eng 105

Eng 205 Children's Literature
Survey of available stories, plays, and poems which are suitable for language instruction in the elementary grades. 3 lectures. Prerequisite: Eng 106 or permission of instructor.

Eng 211 Modern Literature
Study of modern literature—essays, short stories, poetry, plays—as the expression both of the common experiences of mankind and of the specific experiences of twentieth century man as he views his social world. 3 lectures. Prerequisite: Eng 106

* Teaching majors elect Educational Psychology (Ed 312), Principles of Secondary Education (Ed 301), and Teaching Plans and Techniques (Ed 403) in the Junior and Senior years.
Eng 212 Modern Literature
Study of modern literature—essays, short stories, poetry, plays—as the expression both of the common experiences of mankind and of the specific experiences of twentieth century man as he views his physical world. 3 lectures. Prerequisite: Eng 106

Eng 213 Modern Literature
Study of modern literature—essays, short stories, poetry, plays—as the expression both of the common experiences of mankind and of the specific experiences of twentieth century man as he views his inner and personal world. 3 lectures. Prerequisite: Eng 106

Eng 219 Technical Writing
Preparation of training materials; popular presentation of technical data and results; technical communication within industries; extensive experience in technical writing. 3 lectures. Prerequisite: Eng 106

Eng 301 Report Writing
Study of the engineering and research paper; extensive writing experience. 3 lectures. Prerequisite: Eng 106

Eng 311 American Literature
Readings from American literature to achieve a better understanding of democratic ideals and of the written forms in which they are presented. 3 lectures. Prerequisite: Eng 106

Eng 312 American Literature
Selections from American literature to reflect the ways that man looks at his physical and social environment. Study of the literary forms by which these ideas may be expressed. 3 lectures. Prerequisite: Eng 106

Eng 313 American Literature
Romanticism and realism in American literature. Study of the forms by which these movements and ideas have been expressed. 3 lectures. Prerequisite: Eng 106

Eng 314 Advanced Composition
Intensive study of modern English usage. Assignments and practice in written composition. 3 lectures. Prerequisite: Eng 106

Eng 402 Advanced Letter Writing
Advanced letter writing problems; letters of application, inquiries, questionnaires, and the psychology of modern business letters. 2 lectures. Prerequisite: Eng 106

*Eng 411 English Literature
Selected readings in English literature from the earliest times to the 18th century. 3 lectures. Prerequisite: Eng 106

*Eng 412 English Literature
Selected readings in English literature from the 18th century to the present day. 3 lectures. Prerequisite: Eng 411 or consent of instructor.

†Eng 415 The Modern Novel
Readings in representative contemporary novels with special emphasis on their origins, content, form, and style. 3 lectures. Prerequisite: 6 units of Modern, American, or English literature.

†Eng 433 The Short Story
Selected short stories to demonstrate characteristics of form, content, style, and plot. Assignments in the writing of the short story. 3 lectures, 1 laboratory. Prerequisite: 6 units of Modern, American, or English literature.

* Offered in odd-numbered years.
† Offered in even-numbered years.
Eng 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects are typical of problems which a graduate must solve in his field of employment. Project results are presented in a formal written report. Minimum of 120 hours total time.

Eng 463 Undergraduate Seminar (2)
Reports of senior projects, discussions of professional articles of an appropriate level. 2 lectures. Prerequisite: completion of Senior Project.

Eng 521 Curriculum and Methods in English and Journalism (3)
Curricula, methods, devices, and procedures that may be used effectively in organizing and conducting secondary school courses in English, speech and journalism. 2 lectures, 1 laboratory.

Eng 590 Graduate Seminar in English (1-3)
Special problems in selected areas of literature and language. Maximum of six units credit may be earned. 1 to 3 lecture-discussions.

DESCRIPTIONS OF COURSES IN SPEECH

Sp 201 Public Speaking (2)
Training and giving speeches before audiences. Experiences in practical speaking situations, such as business reports, sales talks, interviews, and parliamentary meetings. 2 lectures. Prerequisite: Eng 105

Sp 302 Speech for the Classroom Teacher (2)
Common and typical speech deviations usually found in the elementary grades; classroom procedures for the improvement and correction of speech; speech activities for the elementary grades. 2 lectures. Prerequisite: Sp 201

Sp 303 Advanced Public Speaking (2)
Problems in parliamentary law and formal discussion. Specialized speaking situations in business, engineering, and agriculture; attention will be given to individual problems and interests. 2 lectures. Prerequisite: Sp 201

*Sp 304 Argumentation and Persuasion (2)
Argumentation and persuasion as forms of oral discourse. Introduction to forensics, such as persuasive oratory and debate. 2 lectures. Prerequisite: Sp 201

*Sp 305 Techniques of Oral Reading (2)
Selection, preparation, and presentation of materials for oral reading. Individual instruction in problems of voice and diction. 2 lectures. Prerequisite: Sp 201

*Sp 306 Introduction to Radio and Television Programming (3)
Fundamentals of adapting materials for presentation on radio and television. Production of special types of programs. 3 lectures. Prerequisite: Sp 201

†Sp 403 Speech Techniques in Society (2)
Role of spoken discourse in the solution of social problems. Special concern with forms of discussion such as panels, forums, and symposia. 2 lectures. Prerequisite: Sp 201

†Sp 451, 452, 453 Radio and Television Laboratory (2) (2) (2)
Practical instruction and experience in the presentation of material on radio and television. 2 laboratories. Prerequisite: Sp 306

Sp 590 Graduate Seminar in Speech (1-3)
Special problems in selected areas of speech. Maximum of six units credit may be earned. 1 to 3 lecture-discussions.

* Offered in even-numbered years.
† Offered in odd-numbered years.
The objectives of the Home Economics Department are to provide training for persons interested in homemaking, in teaching homemaking in secondary schools, or in occupations closely related to homemaking, and to contribute to the general education of students.

For those who wish to broaden their general education the Home Economics Department offers courses which enrich personal and family life through the development of basic concepts and skills. Students are invited to consult with the department about their special interests in homemaking and family life education.

Considerable emphasis is placed upon practical courses in the first two years. These courses are designed to increase the employability of the student after the first two years of study and also to afford a substantial basis for successful marriage and family life.

In addition to preparing individuals for homemaking and teaching, the curriculum provides opportunity for education in occupational fields related to homemaking; such as, home economics journalism, experimental foods, home equipment demonstration, nursery school supervision, extension service, consumer education, public health and social service, consultation in home furnishings, and institutional management. Any one of these fields or any combination of them may be emphasized by careful choice of electives.

Since studies show that there will be a shortage of homemaking teachers in secondary schools for some time, the graduate who holds a teaching credential in homemaking education will have numerous employment opportunities. The student preparing for teaching should refer to the section of the catalog which gives information regarding preparation for credentials for public school service.

CURRICULUM IN HOME ECONOMICS

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to the Social Sciences (Soc Sc 101)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Household Physics (Phys 208)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Household Chemistry (Chem 206)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art in Everyday Life (Art 231)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Meals (HE 121)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothing Selection and Construction (HE 131)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Furnishings (HE 142)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing and Home Management (HE 123)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problems of the Beginning Family (HE 103)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Physiology (Zoo 238)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meals for Special Occasions (HE 221)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Clothing (HE 241)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Nursing (HE 242)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family and Personal Economics (HE 203)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Child and the Family (HE 233)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Major courses first offered in 1957-58

<table>
<thead>
<tr>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>
Arts and Sciences Division

Major courses first offered in 1957-58

Junior

<table>
<thead>
<tr>
<th>Literature</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Applied Color and Design (Art 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Nutrition (HE 321)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household Equipment (HE 331)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textiles (HE 322)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Design (Arch 312)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costume Design and Construction (HE 333)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (HE 461)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Major courses first offered in 1958-59

Senior

Senior Project (HE 462)	2		
Undergraduate Seminar (HE 463)	2		
Home Management (HE 423)	4		
Public Relations (Jour 412)	3		
Field Work with Family Groups (HE 433)	4		
Meal Management (HE 421)	3		
Electives	8	12	8

DESCRIPTIONS OF COURSES IN HOME ECONOMICS

HE 103 Problems of the Beginning Family (2)
Problems of the beginning family. Development and growth of the child during prenatal life and infancy; care and health of the mother; psychological and economic implications involved in adding children to the family. For both men and women. 2 lectures.

HE 121 Family Meals (3)
Preparation of economical, nutritious, and appetizing family meals with particular emphasis on time management for employed homemakers. Study of the association between family meals and family relationships. For both men and women. 2 lectures, 1 laboratory.

HE 123 Housing and Home Management (3)
Practical home management as it is affected by housing and family situations. Utilizes actual living arrangements of students. 2 lectures, 1 laboratory. Prerequisite or concurrent: HE 121 and 142 or permission of the instructor.

HE 131 Clothing Selection and Construction (3)
Personality expression through clothing selection. Fitting commercial patterns to figure problems; modern speed techniques of clothing construction. Alteration of ready-to-wear garments. 1 lecture, 2 laboratories.

HE 142 Home Furnishings (2)
Constructing and renovating home furnishings. Individual problems. Related to actual living situations of students. For both men and women. 2 laboratories.

HE 203 Family and Personal Economics (3)
Effective planning for use of personal and family incomes. Efficient consumer buying practices. 3 lectures.

* First offered in 1957-58.
*HE 221 Meals for Special Occasions
Planning, preparing, and serving meals for large family groups, community groups, or special occasions involving groups of medium size. Etiquette of proper table setting and service. 1 lecture, 1 laboratory.

*HE 222 Home Nursing
Care of the sick in the home as related to the welfare of the entire family. For both men and women. 1 lecture, 1 laboratory.

*HE 233 The Child and the Family
Study of children in the family-centered home including observation and participation in nursery school and conferences with parents for gaining insight into child development and competency in care of children. For both men and women. 2 lectures, 2 laboratories. Prerequisites: Psy 202 or 206 or HE 103 or permission of the instructor.

*HE 241 Family Clothing
Selection and construction of clothing for adults and children. 2 laboratories. Prerequisite: HE 131 or permission of instructor.

*HE 321 Family Nutrition
Chemical composition of foods and their utilization in the body. Relation of adequate diet to physical and mental health of various family members. 1 lecture, 1 laboratory. Prerequisite: HE 121

*HE 322 Textiles
Sources and characteristics of natural and synthetic fibers. Fabrics, weaves, and textile finishes. Design and production of modern textiles. Consumer approach to textile fabrics—selection, use, and care. 1 lecture, 1 laboratory. Prerequisite: Art 321

*HE 323 Home Decoration
Selection and arrangement of furnishings as they relate to family income, expression of personality, architectural design and setting. 1 lecture, 1 laboratory. Prerequisites: HE 142, Art 321, Arch 312

*HE 331 Household Equipment
Efficient selection, use, and maintenance of common types of household equipment. Simple repairs and adjustments. 2 lectures, 1 laboratory. Prerequisites: Phys 208, HE 123

*HE 333 Costume Design and Construction
Application of the theory of color and design to costume planning and construction. Special emphasis on suitability of fabric to pattern design. Fundamentals of tailoring applied to construction of individually designed costumes. 1 lecture, 2 laboratories. Prerequisites: Art 321, HE 241, 322

†HE 421 Meal Management
Practical experience in menu planning and meal service for small groups with emphasis on food buying, management, and catering. 1 lecture, 2 laboratories. Prerequisites: HE 221, 203

†HE 423 Home Management
Home management including counseling with students in HE 123 and analysis of case studies. 1 lecture, 3 laboratories. Prerequisites: Senior standing, permission of instructor.

†HE 425 Quantity Cookery
Economic principles and problems involved in planning, preparing and serving foods to large groups. 1 lecture, 2 laboratories. Prerequisite or concurrent: HE 421

* First offered in 1957-58.
† First offered in 1958-59.
Arts and Sciences Division

*HE 428 Dietetics (3)
Qualitative and quantitative laboratory studies of the normal diets for persons of various ages and occupations. 1 lecture, 2 laboratories. Prerequisites: HE 321, Chem 206.

*HE 433 Field Work With Family Groups (4)
Directed observation and participation in field work designed to reach families representing various socio-economic groups. Special emphasis on family values as they affect choices made by family members. 2 lectures, 2 laboratories. Prerequisite or concurrent: HE 423

*HE 442 Tailoring (2)
Selection and construction of garments requiring tailoring techniques. 2 laboratories. Prerequisite: HE 333 or permission of instructor.

*HE 461, 462 Senior Project (2)
Selection and completion of a project with a minimum of supervision, the project to be related to a probable field of employment. Results of the study to be presented in a formal report. Minimum of 120 hours to be used in making the study. 2 meetings.

*HE 463 Undergraduate Seminar (2)
Study and discussion of current developments in the field of home economics. 2 lectures. Prerequisite: HE 462

DESCRIPTIONS OF PROFESSIONAL COURSES FOR SCHOOL LUNCH PERSONNEL

HE 631 Nutrition (1½)
Role of nutrition in the diets of school-age children. For school lunch personnel. One-week summer course.

HE 632 Beginning Menu Planning (1½)
Planning, developing, and serving the type A lunch. For school lunch personnel. One-week summer course.

HE 633 Food Purchasing (1½)
Food characteristics and quantity purchasing procedures. For school lunch personnel. One-week summer course.

HE 634 Lunchroom Sanitation, Storage, and Safety (1½)
Personal hygiene for food handlers; kitchen sanitation; storage and handling of foodstuffs and equipment. Safety measures. For school lunch personnel. One-week summer course.

HE 635 Quantity Food Preparation and Service (3)
Preparing and serving foods in large quantities in the school lunch program. For school lunch personnel. Two-week summer course.

HE 636 Advanced Menu Planning (1½)
Nutritional standards for the Type A lunch; the Commodity Guide Sheet; budgeting, variety, and special meals. For school lunch personnel. One-week summer course.

HE 637 Food Cost Accounting and Record Keeping (1½)
School lunch costs and their sources; budgeting and record keeping; statements. For school lunch personnel. One-week summer course.

HE 638 Institution Organization and Management (1½)
Federal, state, and local laws related to the School Lunch Program; time and space management; supervision of personnel and equipment; the role of the school lunch manager. For school lunch personnel. One-week summer course.

* First offered in 1958-59.
The objectives of the Mathematics Department are to offer courses needed in the engineering and agricultural divisions for the purpose of developing vocational proficiency; to contribute to the general education of all students; to prepare secondary school mathematics teachers who are conscious of the uses of mathematics; and to prepare mathematicians for industrial and civil service employment.

It is recommended that the high school student planning a mathematics major include in his high school program three semesters of algebra, one of trigonometry, two of geometry, two of physics, and two of chemistry.

Tests are given to entering students to determine their facility and preparation in mathematics. The results of these tests are used to help in placing the new student in courses where he will most likely succeed. Students in mathematics, physical science, and engineering who have had adequate preparation will normally begin their college work in mathematics with Math 117. Other students in the Arts and Sciences Division will normally begin with Math 111. Students in the Agricultural Division will normally begin with Math 102.

CURRICULUM IN MATHEMATICS

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biological Science (Bio 101, Bio 110, Bot 121, or Zoo 131)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Science</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>* Electives</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Total: 17 ½ 17 ½ 17 ½

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Differential Equations (Math 316)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Physics (Phys 133 or 204)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Economics</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature, Art, or Music</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>* Mathematics Electives</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>* Electives</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Total: 17 ½ 17 ½ 16 ½

* Fifteen units must be selected from approved skills courses.
† Three of these units must be taken from Ec 202, 316, or 412.
‡ Fifteen units must be selected from approved applied mathematics courses.
Arts and Sciences Division

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Equations (Math 317)</td>
<td>2</td>
</tr>
<tr>
<td>Math. Analysis of Engineering Problems (Math 318 or 319)</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Theory of Equations (Math 307)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 311)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>General Chemistry (Chem 321)</td>
<td>4</td>
</tr>
</tbody>
</table>

* Mathematics Electives | 3 |
† Electives | 5 |

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (Math 461)</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project (Math 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Math 463)</td>
<td>2</td>
</tr>
</tbody>
</table>

* Math Electives | 3 |
† Electives | 5 |

DESCRIBITIONS OF COURSES IN MATHEMATICS

Math 1 Preparatory Mathematics

Fundamentals of fractions, ratios, decimals, percentage, linear measures, areas, volumes, and first principles of algebra, including linear equations. 3 lectures.

Math 7 Preparatory Algebra

Signed numbers, linear equations, literal equations, formula evaluation, functional relationships, graphing linear and quadratic equations, factoring algebraic functions, fractional equations. 5 lectures. Prerequisite: Satisfactory score on placement examination.

Math 102 Agricultural Mathematics I

Percentage problems in soils, dairy, horticulture, poultry, feeds; discounts, and interest. Pearson's Square, equations, formulas, linear measurements, areas, volumes, and proportion. Concrete, lumber, silo measurements. 3 lectures. Prerequisite: Satisfactory score on placement examination or Math 1

Math 103 Agricultural Mathematics II

Logarithms and elementary slide rule, exponents, trigonometric functions, with applications. Use of grouping symbols, linear equations including graphing, algebraic fractions, and fractional equations. 3 lectures. Prerequisite: Math 102

Math 104 Computations and Slide Rule

Operation of the slide rule and methods of computation used in engineering. 1 lecture. Prerequisite: Math 103 or 117

Math 105 Printer's Mathematics

Special fractions, percentage, compound numbers, point systems, spacing, ratio and proportion, margins, estimating, and slide rule. 3 lectures. Prerequisite: Math 1 or satisfactory score on placement examination.

Math 111 Basic Mathematics for General Education

Proportion, variation, units of measurement, slide rule, and probability as applied to biological sciences, physical education, and social sciences. 3 lectures. Prerequisite: Satisfactory score on placement examination or Math 7 or 103 or 121

Math 112 Basic Mathematics for General Education

Elements of trigonometry, analytic geometry, and statistics as applied to biological sciences, physical education, and social sciences. 3 lectures. Prerequisite: Math 111

* Fifteen units must be selected from approved applied mathematics courses.
† Fifteen units must be selected from approved skills courses.
Math 114 Agricultural Mathematics III
An abridged course covering selected topics from trigonometry and intermediate algebra designed for those students who take no mathematics beyond Math 201. 3 lectures. Prerequisite: Math 103

Math 115 Agricultural Mathematics IV
Inequalities and roots of equations. The geometry of the straight line, conic sections, and such higher plane curves as are needed in Math 201. 3 lectures. Prerequisite: Math 114

Math 117 Mathematics for Engineers
Factoring, algebraic fractions, linear equations, logarithms, right and oblique triangle problems, graphs of trigonometric functions, and trigonometric relationships needed in engineering. 5 lectures. Prerequisite: Math 7 or satisfactory score on placement examination.

Math 118 Mathematics for Engineers
An integrated course in college algebra and analytic geometry. Quadratic systems, conic sections, determinants, higher plane curves, complex numbers, and elementary theory of equations. 5 lectures. Prerequisite: Math 117

Math 121 Arithmetic for Elementary Teachers I
The idea of numbers, our number system, and number concept; the four fundamental operations with whole numbers, common fractions, and decimal fractions; the meaning of percent and its use. Achievement and remedial tests are used. 2 lectures, 1 activity period. Prerequisite: Satisfactory score on placement examination or Math 1

Math 122 Arithmetic for Elementary Teachers II
Universal arithmetic; measurements of lengths, angles, areas, volumes; expressing numbers by linear distances; measurement by liquid measures, dry measures, units of time, units of weight, and metric system. Actual use of these measurements. 2 lectures, 1 activity period. Prerequisite: Math 121

Math 201 Differential and Integral Calculus
Interpretation of derivative, limits, integration as process of summation. Definite integral. Differentiation and integration of polynomial functions with applied problems involving: moments, centroids, areas, volumes, velocity, acceleration, and maxima and minima. 3 lectures. Prerequisite: Math 201 or 118

Math 202 Differential and Integral Calculus
The derivative in the analysis of algebraic, exponential, trigonometric, and logarithmic functions. Related time-rate problems such as circular motion, velocity, and acceleration in parametric form, and projectile problems. 3 lectures. Prerequisites: Math 201 and 118

Math 203 Differential and Integral Calculus
Integration of algebraic and transcendental functions by formula, trigonometric substitution, parts, partial fractions, and tables. Methods used in approximate integration, evaluating indeterminate forms, infinite series, and improper integrals. Applied problems using algebraic and transcendental functions. 3 lectures. Prerequisite: Math 202

Math 211 Descriptive Statistics
Graphical representation of statistical data; calculation and uses of various averages, measures of variability, elementary probability and the normal probability curve, simple linear correlation. 3 lectures. Prerequisite: Math 103 or 117 or 112 or 122

Math 213 Elementary Engineering Problems
Selected problems from engineering fields which are solvable by the methods of elementary mathematics. Selection of topics from the following: polar coordinates, empirical equations, properties of determinants, infinite series, hyperbolic functions, multiple integration, partial derivatives. 2 lectures. Prerequisite: Math 203
Math 217 Mathematics of Digital Computers I (3)
Boolean algebras and number systems, with particular reference to the calculus of binary numbers. 3 lectures. Prerequisite: Math 118

Math 218 Mathematics of Digital Computers II (3)
Basic functions of digital computers, introduction to numerical methods and analysis, and an introduction to programming. 3 lectures. Prerequisite: Math 217

Math 307 Introduction to Theory of Equations (3)
Complex numbers, general theorems on algebraic equations, solution of the general cubic and quartic, methods of solution of algebraic equations. 3 lectures. Prerequisite: Math 201

Math 312 Matrix Analysis of Electric Networks (2)
Definition and fundamental operations with matrices. Application of matrix transformations and inversions to electric networks. 2 lectures. Prerequisite: Math 316

Math 316 Differential Equations (3)
An introduction to first order differential equations and simple linear equations with constant coefficients. Applications to dynamics, electric circuits, and heat flow. 3 lectures. Prerequisite: Math 203

Math 317 Differential Equations (2)
Linear differential equations with constant coefficients. Operational methods including an introduction to the Laplace transform. 2 lectures. Prerequisite: Math 316

Math 318 Mathematical Analysis of Engineering Problems (3)
Infinite series, gamma functions, Bessel functions, Laplace transforms, the Heaviside operator, and elliptic integrals. 3 lectures. Prerequisite: Math 317

Math 319 Mathematical Analysis of Engineering Problems (3)
Infinite series, Fourier series, Fourier integral, partial differential equations, and line integral. 3 lectures. Prerequisite: Math 317

Math 322 Statistical Method (3)
Elements of sampling theory, measures of reliability, testing of hypotheses, essentials of product control, linear and curvilinear correlation, multiple correlation. 2 lectures, 1 activity period. Prerequisite: Math 211

Math 400 Topics in Applied Mathematics (1-2)
Individual or group investigations of selected topics in applied mathematics. Total credit limited to four units. 1 or 2 lecture-conferences. Prerequisite: Permission of the instructor.

Math 402 Secondary School Mathematics (3)
Evaluation of content, texts, and supplementary material for seventh and eighth grade arithmetic, ninth and twelfth grade mathematics, and remedial mathematics with techniques for developing concepts. 3 lectures, 1 practice period. Prerequisite: Math 203

Math 403 Secondary School Mathematics (3)
Evaluation of content, texts, and supplementary materials for first and second year algebra, plane geometry, and trigonometry with techniques for developing the concepts. 3 lectures, 1 practice period. Prerequisite: Math 203

Math 404 Vector Analysis (2)
Algebra of free vectors with applications. Introduction to differential and integral calculus of vectors. 2 lectures. Prerequisite: Math 316

Math 405 Vector Analysis (2)
Calculus of scalar and vector functions. Derivation and properties of gradient, divergence, and curl. Applications of analytic vector methods to problems of physics and engineering. 2 lectures. Prerequisite: Math 404
Math 408 Functions of a Complex Variable
Fundamental properties of a complex variable. Conformal mapping and its applications to heat transfer, electric potential theory, and hydrostatics. 2 lectures. Prerequisite: Math 317

Math 409 Functions of a Complex Variable
Analysis of two-dimensional fields by use of conformal mapping. 2 lectures. Prerequisite: Math 408

Math 461, 462 Senior Project
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Math 463 Undergraduate Seminar
Discussions by students through seminar methods of new developments in the fields of their specific interests.

Math 501 Non-Euclidean Geometry
Introduction to geometries based upon postulates other than those of Euclid. Presents a viewpoint of geometry valuable to persons interested in mathematics, in teaching mathematics, and allied fields. 3 lectures. Prerequisite: Math 317

Math 509 Development of Mathematics
Correlation between the development of our society and the development of mathematics. Designed to aid the teacher of secondary mathematics to enrich the courses taught in secondary schools. 3 lectures. Prerequisite: Graduate standing.

Math 510 Survey of Modern Mathematics
Fundamental ideas underlying such fields of mathematics as theory of numbers, set theory, projective geometry, and topology. Ideas which are of particular significance to students and teachers of mathematics and physical science. 3 lectures. Prerequisite: Graduate standing.

Math 521 Curriculum and Methods in Mathematics
Modern tendencies and general aims of secondary school mathematics. Objectives of, and methods for effective teaching in general mathematics, algebra, geometry, and trigonometry. 3 lectures. Prerequisite: Graduate standing.

Math 580 Seminar
Built around topics in advanced mathematics chosen according to the common interests and needs of the students enrolled. Each seminar will have a sub-title according to the nature of the content. One, two, or three lectures. Prerequisite: Instructor's approval.
The purpose of the Reserve Officers' Training Corps (ROTC) is the training of students for officer positions in the Army in times of national emergency. Successful completion of the four-year course entitles the student to a commission as a second lieutenant, United States Army Reserve, under terms of the Reserve Forces Act of 1955. In addition, the program provides for selection of distinguished military graduates of college ROTC units for direct appointment as second lieutenants in the Regular Army or in the Marine Corps. The four-year program is divided into the basic course and the advanced course, each course covering a two-year period. Basic course students receive three class hours instruction per week. Advanced course students receive five hours. As in any other course, credits count toward college graduation. To be eligible for enrollment in ROTC a student must be:

a. A male citizen of the United States.
b. Qualified for appointment as a second lieutenant prior to reaching 28 years of age.
c. A regularly enrolled student of this institution.
d. Physically, mentally, and morally qualified.

ARMS, EQUIPMENT, AND UNIFORMS

The United States Government furnishes arms, equipment, uniforms, and textbooks for cadets. This property belongs to the United States Government and must be returned at the end of each school year.

DEFERMENTS

Under the provisions of the Universal Military Training and Service Act—June, 1951 (Public Law 51, 82d Congress), regularly enrolled ROTC students may be deferred from induction through the Selective Service System if qualified and selected for deferment. No student is deferred automatically by virtue of the fact that he is enrolled as an ROTC student, but must meet all of the following special criteria:

1. Have sufficient time remaining as a college student to permit completion of the ROTC course.
2. Meet the physical, mental, moral, and leadership qualities required for a commission in the Army.
3. Meet the college's minimum academic standards.
4. Apply to the head of the Department of Military Science and Tactics for deferment.
5. Sign a deferment agreement.

In signing the deferment agreement, a student pledges that he will complete the four-year ROTC course, that he will accept a commission if offered, that he will serve not less than two years if called and that he will remain a member of the Regular or Reserve component of the Army until the sixth anniversary of the receipt of his commission unless sooner terminated. If his services are not needed by the Army, he may be called for a six-month period. In this case, he then agrees to remain a member of the Regular or Reserve component of the Army until the eighth anniversary of his commission.

Generally, students may apply for deferment, if otherwise eligible, during any quarter of college studies except the first quarter of the freshman year. Deferment agreements remain in effect until the student ceases to be qualified, completes his college program, or withdraws from the college.

BASIC COURSE

The purpose of the basic course is to qualify the student as a citizen-leader in peace or in war.

Enrollment in the basic course is voluntary. After a student has enrolled in the course, completion of the course (2 years) becomes a prerequisite for graduation.
ROTC does not interfere with student participation in sports or other college activities.

Veterans with one year or more service in the armed forces may, upon proper certification, receive credit for the basic course and enroll directly in the advanced course. Veterans with less service will receive such credit as the president of the college and the head of the Department of Military Science and Tactics may jointly determine.

A student with previous training in ROTC, either junior or senior division, at another institution may be granted advanced standing in the course. A student who desires credit for previous ROTC training should secure from the high school or other institution concerned a transcript of such training. This transcript should be presented by the student at the time he enrolls or be filed with the college registrar.

ADVANCED COURSE

The major purpose of the advanced course is to produce college-trained junior officers to meet active Army and reserve requirements. Advanced course students are eligible for selection for a commission in the Regular Army through the Distinguished Military Graduate program upon fulfilling the following requirements: outstanding qualities of military leadership, high moral character, and definite aptitudes for the military service; distinguished academic accomplishment or demonstrated leadership in recognized campus activities; successful completion of all military science subjects or their equivalents; and completion of the full four-year curriculum at the college with a degree.

Enrollment in the advanced course is limited to selected students who are less than 26 years of age, have passed a qualifying examination, and have completed the basic course or received credit therefor. Upon entering the advanced course, a student must sign an agreement with the United States Government that he will complete the advanced course, that he will attend ROTC summer camp, that he will accept an appointment as a second lieutenant in the Army of the United States and that he will serve on active duty for two years, if so ordered. When a student enrolls in the advanced course, completion thereof becomes a prerequisite for graduation from the college unless relieved by competent authority. The Government agrees to defer the student from induction into the armed services until the student should normally graduate. In addition, the student receives about $27 per month during the course, plus pay at summer camp. This amounts to over $600 for the two-year period.

ROTC SUMMER CAMP

Advanced course students are required to attend one course of summer camp training for six weeks during the summer vacation period normally following completion of the first year of the advanced course. The United States Government furnishes uniforms, equipment, transportation expenses to and from camp, pays the student while at camp at the rate of pay of an Army private (now $78 per month). Five quarter units of credit are granted for successful completion of this camp.

DESCRIPTIONS OF COURSES IN MILITARY SCIENCE AND TACTICS

*MS&T 101-102-103 (MS I) Basic Course

American military history; organization of the Army and ROTC; individual weapons and marksmanship; school of the soldier (drill). May be substituted for PE 141, 142, 143. Two lectures. One hour and 20 minutes field instruction.

*MS&T 201-202-203 (MS II) Basic Course

Map and aerial photograph reading; crew-served weapons and gunnery; school of the soldier (drill). May be substituted for PE 241, 242, 243. Two lectures. One hour and 20 minutes field instruction. Prerequisite: MS I or equivalent.

*Enrollment in the basic course makes completion thereof a prerequisite to graduation from the college unless the student is sooner discharged by appropriate authority.
*MS&T 301-302-303 (MS III) Advanced Course
(3) (3) (3)
Leadership; military teaching methods; branches of the Army; small unit tactics and communication; exercise of command (drill). Four lectures. One hour and 20 minutes field instruction. Prerequisite: MS II or equivalent.

MS&T 400 ROTC Summer Camp
(5)
A concentrated laboratory course in military science and tactics. An application of the military theory learned in the classroom. Technical operation, maintenance, and tactical employment of the latest weapons and equipment. Required for a six-week period during the period normally following completion of MS&T 303.

*MS&T 401-402-403 (MS IV) Advanced Course
(3) (3) (3)
Command and staff; the military team; training management; estimate of the situation and combat orders; military intelligence; supply and evacuation; motor transportation; troop movements; military administration; military justice; the role of the United States in world affairs and the present world situation; leadership; officer indoctrination; exercise of command (drill). Four lectures. One hour and 20 minutes field instruction. Prerequisite: MS III or equivalent.

* Enrollment in the advanced course makes completion thereof a prerequisite to graduation from the college unless the student is sooner discharged by appropriate authority.
The purposes of the courses in the Music Department are to give all musically inclined students the opportunity to participate in college musical organizations and to further their proficiency both in singing and in playing instruments; to give all students interested in music a broader insight into the general field of music through courses in appreciation, theory, and harmony; and to provide the prospective teacher with basic skills and instructional techniques in music required for the general elementary credential.

It is necessary that the student have some previous experience with a musical instrument in order to try out for band, symphony orchestra, brass, string, and woodwind choirs, and dance orchestra. While previous experience in choral singing is helpful, it is not mandatory for the student trying out for the men's glee club, women's glee club, and a capella choir.

It is not possible for a student to major in Music, but there is ample opportunity for students to contribute to their own enjoyment and the enjoyment of others through solo work, and through participation in the many musical organizations.

DESCRIPTIONS OF COURSES IN MUSIC

M u 141, 142, 143, 241, 242, 243, 341, 342, 343, 441, 442, 443 Dance Orchestra

Limited to those who have had considerable experience playing musical instruments. Students in the dance orchestra have an opportunity to play for various college entertainments, dances, community programs, radio broadcasts, and the annual spring tour and Home Concert. 2 laboratories.

M u 144, 145, 146, 244, 245, 246, 344, 345, 346, 444, 445, 446 Symphony Orchestra

Open to any college student whose technique is adequate. Standard orchestral repertory. Several informal, public concerts each season. 1 laboratory. Prerequisite: Permission of the instructor.

M u 147, 148, 149, 247, 248, 249, 347, 348, 349, 447, 448, 449 Brass, String, or Woodwind Choir

Open to qualified players. Rehearsal and public performances in trios, quartets, and quintets. 1 laboratory. Prerequisite: Permission of the instructor.

M u 151, 152, 153, 251, 252, 253, 351, 352, 353, 451, 452, 453 Band

Limited to those students who have had experience with band instruments. The band plays for many college functions, assemblies, athletic games, and rallies, and makes at least one trip each year. Smaller groups are organized from the band for special functions. 1 laboratory.

M u 154, 155, 156, 254, 255, 256, 354, 355, 356, 454, 455, 456 Men's Glee Club

Four to eight-part vocal compositions; fundamentals of breathing, tone production, diction, and interpretation. Quartets, small groups, and soloists are developed, for which additional credit may be given. The club sponsors an annual tour and Home Concert. Tryouts in fall only. 1 or 2 laboratories.

M u 157, 158, 159, 257, 258, 259, 357, 358, 359, 457, 458, 459 Women's Glee Club

Choral literature for women's voices; independence and skill in part singing; care and development of the voice; choral interpretation; performances in public concerts and campus functions. Small groups and soloists may earn additional credit. 1 or 2 laboratories. Prerequisite: Permission of the instructor.

M u 161, 162, 163, 261, 262, 263, 361, 362, 363, 461, 462, 463 Choir

Largely a cappella singing for both men and women. Standard choir repertory. Several formal concerts each season. 1 laboratory. Prerequisite: Permission of the instructor.
Mu 201 Basic Music for Classroom Teachers (3)
Introduction to basic music skills necessary for the elementary school teacher; singing, theory, conducting, playing an instrument, listening, and creating music. 3 lectures.

Mu 202 Music Theory (3)
Elements of music theory; construction of major and minor scales, intervals, rhythms, sight singing, musical terms, syllable work. 3 lectures.

Mu 203 Elementary Harmony (3)
Melodic form; recognition, construction, and use of primary chords and inversions; cadences, enharmonic change, harmonization of simple melodies, and arranging for four-part men's voices. 3 lectures. Prerequisite: Mu 202

Mu 204, 205, 206 Appreciation (2) (2) (2)
Survey of forms, materials, and composers found in modern radio and concert programs presented through lectures and recordings. Study of choirs and instruments of symphony orchestra; development of folk songs into symphonic themes and treatment; study of contemporary artists. 2 lectures.

Mu 231, 232, 233 Elementary Instruments (1) (1) (1)
Mu 331, 332, 333 Intermediate Instruments (1) (1) (1)
Mu 431, 432, 433 Advanced Instruments (1) (1) (1)
Study of the fundamentals of playing and teaching woodwind, brass, string, and percussion instruments. Separate sections arranged with instructor. 1 laboratory.

Mu 237, 238, 239 Elementary Voice (1) (1) (1)
Mu 337, 338, 339 Intermediate Voice (1) (1) (1)
Mu 437, 438, 439 Advanced Voice (1) (1) (1)
Study of the fundamentals of singing: breathing, posture, diction, development of voice, and vocal interpretation. 1 laboratory.
The major function of the Department of Physical Education is to provide both required and elective courses in physical education and health to meet the general education needs of all students. To supplement this general education, the department administers an extensive intramural sports program for all students of the college. A second function of the department is to prepare both men and women as secondary teachers in the fields of physical education, health, safety education, and driver training.

Because of an ideal geographical location and outstanding physical education facilities, the college has become a center for workshops held by the health and physical education organizations of the State.

Extensive outdoor facilities include large turfed areas for physical education classes, intramural activities and varsity practice field. A modern football stadium, regulation baseball diamond, and quarter-mile track with a 220-yard straightaway provide complete facilities for intercollegiate athletic teams. Basketball, volleyball, handball, and tennis courts are also available for student use.

Indoor facilities include a regulation basketball court, areas for boxing, wrestling, gymnastics, adaptive physical education activities, and a 75-foot 5-lane competitive swimming pool.

CURRICULUM IN PHYSICAL EDUCATION

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Basic Mathematics for General Education (Math 111, 112)</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety and First Aid (PE 121)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Recreation (PE 126)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swimming and Water Sports (PE 123)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intramural Sports (PE 232)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td>16 1/2</td>
<td>16 1/2</td>
<td>16 1/2</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economic Problems (Ec 213)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physical Science (PSc 101, 102, 103) or equivalent</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Human Anatomy (Zoo 237)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Physiology (Zoo 238, 239)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Physical Education (PE 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparatus and Gymnastics (PE 255M or PE 255W)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 203)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 303)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17 1/2</td>
<td>17 1/2</td>
<td>15 1/2</td>
</tr>
</tbody>
</table>
Arts and Sciences Division

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature, Art, or Music</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Educational Psychology (Ed 312)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>† Football Coaching Theory and Practice (PE 321)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Track and Field Theory and Practice (PE 333)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>† Baseball Theory and Practice (PE 323)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Teaching Progression in Girls' Sports (PE 324W, 325W, 326W)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elementary Physical Education Activities (PE 332)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physiology of Exercise (PE 303)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Techniques of Officiating (PE 331)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education Activity (PE 341, 342, 343)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kinesiology (PE 302)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Senior Project (PE 461)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>‡ Electives (Men)</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>‡ Electives (Women)</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>State and Local Government (Pol Sc 401)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (PE 462)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (PE 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>United States in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Basketball Theory and Practice (PE 422)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Introduction to Dance (PE 334W)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Minor Sports Theory and Practice (PE 441, 442, 443)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Teaching Progression in Dance (PE 446W, 447W, 448W)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Organization and Administration of Physical Education (PE 401)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tests and Measurements in Physical Education (PE 425)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>School Health Administration (PE 405)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Athletic Training and Massage (PE 432M)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(Men majors only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrective Physical Education (PE 406)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Methods of Physical Education (PE 403)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>‡ Electives (Men)</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>‡ Electives (Women)</td>
<td>3</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Physical Education

PE 107 Health and Hygiene
Personal hygiene and health education; relation of exercise and nutrition; and application of the rules of hygiene in maintaining physical and mental health. Fire prevention and public safety; alcohol and other drugs. Required for freshmen and sophomores. 2 lectures.

PE 121 Safety and First Aid
A standard American Red Cross first aid course. Instruction and practice in the immediate and temporary care of injuries and sudden illness. 1 lecture, 1 laboratory.

PE 123 Swimming and Water Sports Theory and Practice
Supervision of pool activities. Swimming instruction and safety. 1 lecture, 1 laboratory.

* Social Science teaching minors should take History 301, 302, 303 in lieu of this course.
† Alternative requirements for men and women majoring in Physical Education.
‡ Teaching majors should elect the following courses: Art, Music, PE 300, PE 320, Ed 403, Ed 451.
PE 126 Community Recreation (3)
The supervision and administration of community recreation. Games and activities suitable for a community recreation program. 1 lecture, 2 laboratories.

PE 141 Physical Education (1/2)
Fundamentals of sports and games. 2 laboratories.

PE 142 Physical Education (1/2)
Tumbling and apparatus work; basic sports; gymnastics and calisthenics. 2 laboratories.

PE 143 Physical Education (1/2)
Sports activities; physical tests; progressive activities. 2 laboratories.

PE 144, 145 Beginning Swimming (1/2)
Beginning swimming for all who do not pass college swimming test. 2 laboratories.

PE 147, 148, 149 Adaptive Activities (1/2) (1/2) (1/2)
Group and individual exercise based upon individual needs in faulty posture, poor body mechanics, nutrition, post injury and illness, and cardiac cases. Students take these courses in lieu of PE 141, 142, 143 upon recommendation of the college physician. 2 laboratories.

PE 151M, 152M, 153M Competitive Athletics (1/2) (1/2) (1/2)
May be substituted for required physical training by those qualified to compete in intercollegiate sports program. 10 hours laboratory.

PE 201 Principles of Physical Education (3)
History of physical education and the concept of physical education as a profession. Correlation between principles and methods. 3 lectures.

PE 203 School and Community Health Education (2)
General school and community health problems of interest to students of physical education, teachers in service, and others. 2 lectures.

PE 224 Administration of Recreation (3)
Supervision and administration of recreation with consideration of facilities, budget, equipment maintenance, public relations, and special activities. 2 lectures, 1 laboratory.

PE 232 Intramural Sports (3)
Sports adapted to intramural use. Organization of intramural programs. 2 lectures, 1 laboratory.

PE 241 Sports Education (1/2)
Training and competition in seasonal sports such as speedball, touch football, golf, swimming, and tennis. 2 laboratories.

PE 242 Sports Education (1/2)
Training and competition in seasonal sports such as basketball, badminton, volleyball, boxing, and wrestling. 2 laboratories.

PE 243 Sports Education (1/2)
Training and competition in seasonal sports such as tennis, track, cross country running, softball, archery, and soccer. 2 laboratories.

PE 245 Advanced Swimming and Lifesaving (1/2)
Lifesaving techniques. Qualified students may obtain Red Cross Water Safety Instructor's cards. 2 laboratories.

PE 247, 248, 249 Adaptive Activities (1/2) (1/2) (1/2)
Group and individual exercise based upon individual needs in faulty posture, poor body mechanics, nutrition, post injury and illness, and cardiac cases. Students take these courses in lieu of PE 241, 242, 243 upon recommendation of the college physician. 2 laboratories.
PE 251M, 252M, 253M Competitive Athletics (½) (½) (½)
May be substituted for required physical training by those qualified to compete in intercollegiate sports program. 10 hours laboratory.

PE 255M Apparatus and Gymnastics (2)
Theoretical and practical work on light and heavy apparatus. Acquisition of proficiency in the performance of tumbling and gymnastic stunts. Progression and teaching technique. 2 laboratories.

PE 255W Apparatus and Gymnastics (2)
Progression and teaching techniques in tumbling and gymnastic stunts. 1 lecture, 1 laboratory.

PE 300 Safety Education (3)
Problems in home, fire, industrial, and traffic safety. Accident prevention. 3 lectures.

PE 302 Kinesiology (2)
Energy, leverage, angle positions, sequence, and efficiency applied to body movements in sports and working conditions. 2 lectures.

PE 303 Physiology of Exercise (2)
Effects of various forms of physical activity on the circulatory, respiratory, and other physiological processes; physiological problems in athletic competition. 2 lectures.

PE 320 Driver Education and Driver Training (3)
Recommended procedures used in training drivers of high school ages. Attitudes and practices; behind-the-wheel teaching techniques. 2 lectures, 1 laboratory.

PE 321M Football Coaching Theory and Practice (2)
Fundamentals and systems of offense and defense, rules of the game. 1 lecture, 1 laboratory.

PE 323M Baseball Coaching Theory and Practice (2)
Fundamentals of the sport; methods of teaching team play in these activities. 1 lecture, 1 laboratory.

PE 324W, 325W, 326W Teaching Progression in Girls' Sports (2) (2) (2)
Fundamentals and techniques of the following sports: Basketball, badminton, archery, tennis, soccer, speedball, hockey, volleyball, golf. 1 lecture, 1 laboratory.

PE 331M Techniques of Officiating (2)
Techniques of officiating men's sports. 1 lecture, 1 laboratory.

PE 331W Techniques of Officiating (2)
Techniques of officiating girls' sports. 1 lecture, 1 laboratory.

PE 332 Elementary Physical Education Activities (3)
Modern trend in materials and methods for the elementary school program in physical education. The place of rhythms and dances, games, calisthenics, self-testing activities, marching tactics, and miscellaneous activities. 1 lecture, 2 laboratories.

PE 333M Track and Field Coaching Theory and Practice (2)
Coaching techniques for various track and field events. Problems of team balance; study of rules. 1 lecture, 1 laboratory.

PE 334 Introduction to Dance (3)
Basic elements of music as applied to movement. 1 lecture, 2 laboratories.

PE 341, 342, 343 Physical Education Activity (1) (1) (1)
Required of all majors in physical education. Students conduct regular physical education classes under supervision of staff. 2 laboratories.
PE 401 Organization and Administration of Health and Physical Education (3)
Management and control of physical education and health education. Organizing programs in class work and athletics. Problems of control and maintenance of fields, floors, and locker rooms. 3 lectures.

PE 403 Curriculum and Methods in Health and Physical Education (3)
Methods of obtaining desirable objectives in physical education; motivation, class management, choice of activities, selection of teaching devices, and the measurement of results. 3 lectures.

PE 405 School Health Administration (2)
Current procedures and practices in the administration of the school health program. Problems analyzed and recommended procedures stressed. 2 lectures.

PE 406 Adaptive Physical Education (2)
Group procedure in the administration of individual exercise for the correction of various defects in body mechanics. 2 lectures.

PE 422M Basketball Coaching Theory and Practice (2)
Fundamental individual basketball skills. Theories of offensive and defensive team play. 1 lecture, 1 laboratory.

PE 425 Tests and Measurements in Physical Education (3)
Physical tests and measurements of skill, strength, speed, and endurance as a basis for grading and as a measure of progress in activities. 2 lectures, 1 laboratory.

PE 432M Athletic Training and Massage (1)
Modern principles and practice in conditioning and care of athletes. Theory and practice in the scientific manipulation of the muscles as related to therapeutic exercise. 1 combined lecture and laboratory.

PE 441M, 442M, 443M Minor Sports Theory and Practice (1) (1) (1)
Fundamentals and techniques of the following minor sports: boxing, wrestling, tennis, golf, gymnastics, badminton, and six-man football. 1 laboratory.

PE 446W, 447W, 448W Teaching Progression in Dance (2) (2) (2)
Teaching progression in dance: folk, contemporary, and social. 2 laboratories. Prerequisite: PE 334

PE 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

PE 463 Undergraduate Seminar (2)
Discussion of new developments in recreation, health, and physical education. 2 lectures.

PE 501 Advanced Adaptive Physical Education (3)
Advanced techniques in the detection of defective body mechanics and establishment of class procedures for prevention and elimination of these defects. 3 lectures.

PE 502 Advanced Seminar in Problems of Physical Education (3)
Practical problems in physical education and their solution in terms of desired objectives in this field. 3 lectures.

PE 511W Administration of Girls' Physical Education (3)
Organization and administration of women's physical education in public schools. 3 lectures.

PE 512 Advanced Personal Hygiene (3)
Rules of hygiene; problems of healthful living, and school hygiene. 3 lectures.

PE 513 Investigational Techniques in Physical Education (4)
Tools of research as applied to the field of physical education; measurement, surveys, job analysis, and testing. 4 lectures.
The Department of Physical Sciences serves the three divisions of the college by offering courses which help provide scientific explanations for work taken by students in the agricultural and engineering divisions. The department also contributes to the general education of all students by giving them a thorough foundation in the method and factual content of the physical sciences and the roles which they play in society. The two major curricula of the department lead to the Bachelor of Science degree in Physical Sciences or in Agricultural Chemistry.

The occupational objectives of the curriculum in physical sciences are to qualify students for entry at the bachelor's level into positions in civil service, industry and agriculture, and to help prepare secondary teachers of the physical sciences.

Graduate courses are offered which help to complete the requirements for the general secondary credential and for the master of arts degree in education with a field of concentration in the physical sciences.

It is recommended that the high school student planning to major in physical sciences include in his high school program three semesters of algebra, one of trigonometry, two of geometry, two of physics, and two of chemistry.

Proper selection of electives in the curriculum in agricultural chemistry permits specialization in nutritional food, feed, pesticide, or fertilizer chemistry. Students find employment in the laboratories of those companies devoted to the processing of agricultural products and the production of agricultural chemicals.

Positions for which the student may qualify include vitamin assay biochemist, food and drug chemist, feed analyst, meat technologist, fertilizer chemist, insecticide formulator, insecticide residue analyst, and public health chemist. It is recommended that the high school student planning to major in agricultural chemistry include two semesters of chemistry in his high school program.

Students enrolling in General Chemistry or General Inorganic Chemistry are required to pass a placement test, or Chem 4, or the equivalent.

CURRICULUM IN PHYSICAL SCIENCES

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117, 118)</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Science (Bio 101 or 110)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drafting (ME 121) or other elective</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Shop (MS 151, 152)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Electricity and Magnetism (Phys 204)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Calculus (Math 202, 203)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 321, 322, 323)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Differential equations (Math 316)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering Statics (Phys 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sound (Phys 212)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Light (Phys 223)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electrical Circuits (Phys 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering Dynamics (Phys 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electrical Measurements Laboratory (Phys 256)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 17½ | 16½ | 17½ |

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quantitative Analysis (Chem 331, 332)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Heat (Phys 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature, Art, Music, or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geology or Astronomy (PSc 209 or 216)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Construction of Laboratory Glassware (Chem 342)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Senior Project (Phys 461 or Chem 461)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 | 16 |

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology or Astronomy (PSc 209 or 216)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Modern Physics (Phys 401, 402)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry (Chem 432)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Senior Project (Phys 462 or Chem 462)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Phys 463 or Chem 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Commercial Law (Ec 316)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>*Social Sciences</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 | 16 |

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry (Chem 324, 325, 323, or 321, 322, 323)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Machine Shop (MS 144)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Language Communications (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>†Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132) or General Botany (Bot 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total | 16½ | 16½ | 16½ |

To be selected from Ec 202, 411, 412, or Pol Sc 401.
†Math 117 and 118 may be substituted for Math 102, 103, 114, and 115.
Arts and Sciences Division

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Analysis (Chem 331, 332)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Construction of Laboratory Glassware (Chem 342)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Math 114, 115, 201)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Drafting (ME 121)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physics (Phys 133)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328, 329)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 327)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry (Chem 432, 433)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Qualitative Organic Analysis (Chem 343)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Sciences</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Chem 461)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Agricultural Biochemistry (Chem 434)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Analysis (Chem 435)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Chemicals (Chem 436)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Chem 462)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Chem 463)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Problems for Advanced Undergraduates (Chem 400)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Senior</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

AGRICULTURAL CHEMISTRY RESTRICTED ELECTIVES

Students will elect courses, upon consultation with their adviser, for specialization in one of the general areas of agricultural chemistry. At least 24 units of electives must be selected from the following courses.

Foods, Feeds, and Nutrition

- General Zoology (Zoo 133)
- General Bacteriology (Bact 221)
- Human Anatomy (Zoo 237)
- Human Physiology (Zoo 238, 239)
- Industrial Microbiology (Bact 322)

Agricultural Chemistry

- Histology (Bio 522)
- Anatomy and Physiology (VS 123)
- Feeds and Feeding (AH 101, 102)
- Animal Nutrition (AH 402)
- Advanced Animal Nutrition (AH 580)

1. Math 117 and 118 may be substituted for Math 102, 103, 114, and 115.
2. See list of restricted electives.
3. To be selected from Ec 202, 316, 411, 412, or Pol Sc 401.
4. Offered in 1957-58.
Descriptions of Courses in Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 4</td>
<td>Preparatory Chemistry</td>
<td>For students whose background is deficient in chemistry and mathematics. Symbols, nomenclature, molecular theory, problems dealing with the metric system, density, formulas, percentage composition, and chemical equations. 3 lectures. Prerequisite: Math 103 or equivalent.</td>
<td></td>
</tr>
<tr>
<td>Chem 206</td>
<td>General Household Chemistry</td>
<td>For Home Economics majors. Principles of chemistry with applications to the home and everyday living, including some organic chemistry as applied to foods, fabrics, and other common materials. 3 lectures, 1 recitation. Prerequisite: Satisfactory score on mathematics placement examination or Math 1</td>
<td></td>
</tr>
<tr>
<td>Chem 321</td>
<td>General Chemistry</td>
<td>General principles including atomic structure, acids and bases, ions, solutions, types of chemical reactions, properties of gases, liquids, and solids, and elementary equilibria. For engineering, physical science, and mathematics majors. 3 lectures, 1 laboratory. Prerequisite: Chem 4 or the passing of a placement test.</td>
<td></td>
</tr>
<tr>
<td>Chem 322</td>
<td>General Chemistry</td>
<td>Electrochemistry and the chemistry of the alkali metals and the commoner nonmetals. 3 lectures, 1 laboratory. Prerequisite: Chem 321</td>
<td></td>
</tr>
<tr>
<td>Chem 323</td>
<td>General Chemistry</td>
<td>The metals, nuclear chemistry, fuels including the hydrocarbons, and some of the important hydrocarbon derivatives. Qualitative analysis in the laboratory. 3 lectures, 1 laboratory. Prerequisite: Chem 322</td>
<td></td>
</tr>
<tr>
<td>Chem 324</td>
<td>General Inorganic Chemistry</td>
<td>Fundamental principles including gas laws, valence, equations, and chemical calculations. Elementary atomic theory and periodic classification of the elements. For agricultural majors. 3 lectures, 1 laboratory. Prerequisite: Chem 4 or the passing of a placement test.</td>
<td></td>
</tr>
<tr>
<td>Chem 325</td>
<td>General Inorganic Chemistry</td>
<td>Basic principles of solution, equilibrium, and colloids. Properties of the common elements and their compounds with applications to agriculture. 3 lectures, 1 laboratory. Prerequisite: Chem 324</td>
<td></td>
</tr>
<tr>
<td>Chem 326</td>
<td>Organic Chemistry</td>
<td>The fundamental concepts of organic chemistry with applications to agricultural and industrial processes. 3 lectures, 1 laboratory. Prerequisites: Chem 322 or 325</td>
<td></td>
</tr>
<tr>
<td>Chem 327</td>
<td>Organic Chemistry</td>
<td>Continuation of Chem 326 to include a further study of the types of compounds important to agricultural and industrial processes. 3 lectures, 1 laboratory. Prerequisite: Chem 326 or its equivalent.</td>
<td></td>
</tr>
</tbody>
</table>
Chem 328 Agricultural Biochemistry
Fundamental chemistry of carbohydrates, proteins, fats, vitamins, enzymes, and hormones as applied to their function in plant and animal metabolism. Special reference to the chemistry involved in the use, analysis, and manufacture of feeds, foods, and other agricultural products. 3 lectures, 1 laboratory. Prerequisite: Chem 326

Chem 329 Agricultural Biochemistry
Chemistry and physiology of the vitamins as applied to their function in plant and animal metabolism. Manufacture, stabilization, effect of food processing operations, laboratory animal technique, feed and food enrichment. 3 lectures, 1 laboratory. Prerequisite: Chem 328

Chem 331 Quantitative Analysis
Volumetric industrial analytical procedures based upon precipitometry, redoximetry, alkalimetry, and acidimetry. The laboratory work is the focal point, with class discussion supplying supporting theory. 2 lectures, 2 laboratories. Prerequisite: Chem 323 or 325

Chem 332 Quantitative Analysis
Principles of gravimetric analysis applied to industrial methods for metals, with less work on determination of anions. Basic theory of the laboratory procedure is considered in class discussions. 2 lectures, 2 laboratories. Prerequisite: Chem 331

Chem 342 Construction of Laboratory Glassware
Techniques of glassblowing applied to the making of simple laboratory apparatus. 1 laboratory. Prerequisite: Chem 321 or 324

Chem 343 Qualitative Organic Analysis
The experimental determination of the identity of organic compounds. Special reference to those compounds used in agriculture. 1 lecture, 3 laboratories. Prerequisite: Chem 327

Chem 400 Special Problems for Advanced Undergraduates
Total credit limited to 4 units in Chem 400 and Phys 400 with not more than 2 units in any one quarter. Individual or group investigations for advanced students. 1 or 2 laboratories.

Chem 432 Physical Chemistry
Physical properties and molecular constitution of gases, liquids, and solids. Elementary chemical thermodynamics and kinetic theory. Thermochemistry, colloids, phase rule, and reaction rates. 3 lectures, 1 laboratory. Prerequisite: Chem 323

Chem 433 Physical Chemistry
The relationship between thermodynamics and chemical equilibrium. The liquid state; solutions and colloids; phase diagrams and the phase rule. Electrochemistry including application to routine analyses. Reaction rates and applications to commercial processes. 3 lectures, 1 laboratory. Prerequisite: Chem 432

*Chem 434 Advanced Agricultural Biochemistry
Intermediary metabolism in plants and animals. Special reference to enzymes, hormones, pigments, biological oxidation, and their relationship to agricultural production. 3 lectures, 1 laboratory. Prerequisite: Chem 329

*Chem 435 Food Analysis
Techniques used commercially in the chemical analysis of seed and cereal crops, fruit and vegetable crops, forage crops, meat and meat products, milk and dairy products, eggs and poultry products. Vitamin determinations, microbiological assay, quality control, taste testing, legal specifications, grading and labeling. 3 lectures, 1 laboratory. Prerequisite: Chem 328

* Offered in 1957-58.
*Chem 436 Agricultural Chemicals (4)
Chemistry of fungicides, insecticides, rodenticides, plant growth regulators, soil conditioners, and fertilizers. Special reference to the analysis, manufacture, toxicology, legal specification, and regulations. 3 lectures, 1 laboratory. Prerequisite: Chem 328

Chem 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Chem 463 Undergraduate Seminar (2)
A study of current developments in chemistry and a discussion of periodical literature at an appropriate level. 2 meetings.

Chem 513 Advanced Inorganic Chemistry (3)
Selected topics concerning the preparation and uses of commercially important materials. 3 lectures. Prerequisite: graduate standing.

DESCRIPTIONS OF COURSES IN PHYSICS

Phys 131 General Physics (4)
Fundamental principles of mechanics. Vectors, statics, uniform motion, accelerated motion, work and energy, rotational motion, elasticity, impact, and harmonic motion. 3 lectures, 1 recitation, 1 laboratory. Prerequisite: Concurrent Math 115, 118, or higher.

Phys 132 General Physics (4)
Fundamental principles of hydraulics, heat, sound, and light. Fluids at rest and in motion, temperature, expansion, quantity of heat, heat transfer, thermodynamics, thermal properties of matter, wave motion, vibrating bodies, acoustical phenomena, nature and propagation of light, geometric optics. 3 lectures, 1 recitation, 1 laboratory. Prerequisite: Phys 131

Phys 133 General Physics (4)
Fundamental principles of magnetostatics, electrostatics, and current electricity. Coulomb's law, electric field, potential, properties of dielectrics, capacitance, Ohm's law, electrochemistry, magnetism and magnetic fields, measuring instruments, magnetic field of a moving charge, induced emf, ac circuits, electronics. 3 lectures, 1 recitation, 1 laboratory. Prerequisite: Phys 132

Phys 201 Engineering Statics (3)
Resolution and composition of forces. Equilibrium. Stresses and reactions in simple structures. Friction. Centroids and centers of gravity. Moments of inertia of area and mass. Introduction to dynamics. 3 lectures. Prerequisites: Phys 131, Math 201

Phys 202 Engineering Dynamics (3)
Rectilinear and curvilinear motion and the forces involved. Rotation. Work, energy, and power. Plane motion. Impulse, momentum, and impact. 3 lectures. Prerequisite: Phys 201

Phys 204 Physics of Electricity and Magnetism (4)
Coulomb's law, the electrostatic field, potential, properties of dielectrics, capacitance and capacitors, the magnetostatic field, the magnetic field of a current, induced electromotive force, inductance, magnetic properties of matter. 4 lectures. Prerequisites: Phys 131, Math 201

Phys 206 Electrical Circuits (3)
Direct current, alternating current, and electronic circuits. 3 lectures. Prerequisite: Phys 133 or 204

* Offered in 1957-58.
Phys 208 General Household Physics (3)
For Home Economics majors. Basic principles of physics in the field of mechanics, heat, electricity, and light. Applications and practical problems closely related to situations in the experience of the student. Prerequisite: satisfactory score on mathematics placement examination or Math 1.

Phys 212 Sound (3)
Vibratory motion. Transverse waves, longitudinal waves, vibration of bars. Velocity of sound, vibrating air columns. Interference. Intensity and intensity level, loudness and loudness level. 3 lectures. Prerequisite: Phys 133 or 204.

Phys 223 Light (3)
The physical nature of light. Reflection, refraction, diffraction, interference, polarization, and absorption of light. 2 lectures, 1 laboratory. Prerequisite: Phys 133 or 204. Math 201 is strongly recommended.

Phys 256 Electrical Measurements Laboratory (1)
Selected experiments in electricity and magnetism. 1 laboratory. Concurrent: Phys 206.

Phys 301 Heat (3)

Phys 306 Thermodynamics (3)
Solution of basic problems dealing with forms of energy, thermodynamic coordinates, first and second laws of thermodynamics, gas laws, energy equations, reversible non-flow processes of gases, Carnot cycle. 3 lectures. Prerequisites: Phys 132, Math 201.

Phys 400 Special Problems for Advanced Undergraduates (1-2)
Total credit limited to 4 units in Phys 400 and Chem 400 with not more than 2 units in any one quarter. Individual or group investigations for advanced students. 1 or 2 laboratories.

Phys 401 Modern Physics (3)
Determination of “e/m” and “e,” photoelectric effect, atomic spectra and the Bohr atom, elementary quantum mechanics. Preliminary consideration of the special theory of relativity. 3 lectures. Prerequisites: Phys 133 or 204, Math 203.

Phys 402 Modern Physics (3)
X-rays, radioactivity, particle accelerators, nuclear reactions, fission and fusion, cosmic rays, low temperature phenomena. 3 lectures. Prerequisite: Phys 401.

Phys 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Phys 463 Undergraduate Seminar (2)
Study of current developments in physics and discussion of periodicals of an appropriate level. 2 meetings.

Phys 501 Selected Topics in Advanced Physics (3)
Electromagnetic theory of radiation, and special theory of relativity. 3 lectures. Prerequisite: graduate standing.

Phys 502 Nuclear Physics (3)
Fundamental observations. Theory of nuclear structure. Nuclear reactions and nuclear reactors. 3 lectures. Prerequisite: graduate standing.
DESCRIPTIONS OF COURSES IN PHYSICAL SCIENCE

PSc 101 General Physical Science (4)
For liberal arts students not majoring in mathematics or a natural science. Geologi-
cal features and processes. Astronomical phenomena and concepts. The develop-
ment of a better understanding of man's physical environment. The scientific
method of working and thinking. 3 lectures, 1 recitation. Prerequisite: Math 103
or 112

PSc 102 General Physical Science (4)
Fundamental principles of physics. Various theories of matter and energy and the
principles and laws that describe their behavior and application. Some special
knowledge of modern science that will function in a socially desirable manner in
the lives of students. 3 lectures, 1 recitation. Prerequisite: PSc 101

PSc 103 General Physical Science (4)
Fundamental principles of chemistry. Chemical changes and their uses. A num-
ber of recent advances. Objective observation and experimentation in the solution
of problems relating to natural phenomena. 3 lectures, 1 recitation. Prerequisite:
PSc 102

PSc 209 Geology (3)
Fundamental geologic processes. General surface features of the earth. Rocks
and minerals. 3 lectures. Given in odd numbered years.

PSc 216 Astronomy (3)
Astronomical properties of the earth, solar system, stars, and galaxies. Principles
and methods of astronomical investigation. 3 lectures. Given in even numbered
years.

PSc 512 Philosophy of Science (3)
The relationship of philosophy and science. A presentation of problems in the
logic of science and in the analysis of the concepts of science. 3 lectures. Pre-
requisite: graduate standing.

PSc 521 Curriculum and Methods in the Physical Sciences (3)
Techniques, aims, and objectives in the teaching of physics, chemistry, physical
science, and general science at the secondary school level. Selection and organiza-
tion of teaching material. Evaluation of results. 3 lectures. Prerequisite: graduate
standing.
Arts and Sciences Division

SOCIAL SCIENCES DEPARTMENT
Department Head, A. Norman Cruikshanks
Roy E. Anderson Ralph W. Dilts Eugene A. Rittenhouse
J. D. Avary Thomas F. Nolan Edward P. Rogers
J. Philip Bromley Dominic B. Perello M. Eugene Smith
Michael J. O'Leary

The Department of Social Sciences serves the three divisions of the college in the area of general education for citizenship. Stated in terms of general objectives, the department seeks to provide the student with an understanding of the society in which he lives; to develop in the student those skills which are prerequisite for effective citizenship in a democracy; and to prepare and encourage the individual toward intelligent social action.

The occupational objectives of the department are: to train students for those numerous entry jobs in civil service which require a bachelor's degree with a major in the social sciences; to train those who expect to teach the social studies in the secondary schools; and to provide those students with majors in other fields sufficient background to allow them to qualify for a variety of civil service positions.

Additional graduate courses are offered which will permit the student to qualify for a master of arts degree in education, with concentration in the field of the social sciences.

There are no special requirements for entrance in this major. Prerequisites for certain courses are stated in the catalog description of courses.

CURRICULUM IN SOCIAL SCIENCES

<table>
<thead>
<tr>
<th>Freshman</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Basic Mathematics for General Education (Math 111, 112)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Biology (Bio 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History of Civilization (Hist 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Typing (Jour 140, 141)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*Electives</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>16% 17% 16%</td>
<td>16% 17% 16%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economic Problems (Ec 213)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Physical Science (PSc 101, 102, 103) or equivalent</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Sociology (Soc 201, 202, 203)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201, 303)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>*Electives</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16% 17% 15%</td>
<td>16% 17% 15%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Of the 52 units of electives, 24 will require approval of department head.
California State Polytechnic College

Junior

*History of the United States (Hist 301, 302, 303) .. 3 3 3
Inter-American Relations (Pol Sc 311) ... 3
The U. S. in World Affairs (Hist 305) ... 3
International Relations (Pol Sc 312) ... 3
Comparative Government (Pol Sc 313) ... 3
Family Relations (Psy 206) ... 3
Literature ... 3 3 3
Global Geography (Geo 308) ... 3
Commercial Law (Ec 316) ... 3
Descriptive Statistics (Math 211) ... 3
Senior Project (Soc Sc 461) ... 2
†Electives ... 2 3 1

Senior

History of Pacific Area (Hist 411, 412) ... 3 3
State and Local Government (Pol Sc 401) ... 3
Senior Project (Soc Sc 462) ... 2 2
Undergraduate Seminar (Soc Sc 463) ... 3
Literature ... 3
Social Psychology (Psy 401) ... 3
‡Accounting (Ec 301, 302) ... 3 3
†Electives ... 6 9 11

DESCRIPTIONS OF COURSES IN ECONOMICS

Ec 105 Consumer Economics

Consumer-producer relationships; money management, buying methods; investments, insurance, and housing; agencies that help the consumer. 3 lectures.

Ec 201 Principles of Economics

The financial, market, agricultural, and industrial structure of the American economy; immediate problems facing the individual living therein. 3 lectures. Prerequisite: Sophomore standing.

Ec 202 Principles of Economics

Introductory analytical economics. Price determination under free competition, imperfect competition, partial monopoly, and complete monopoly. Costs of the factors of production; effective combination of the factors of production. 3 lectures. Prerequisite: Ec 201

Ec 213 Economic Problems

The relationship between the consumption and production of goods and the satisfaction of human wants. Problems of exchange, national and international. Public regulation. Comparative economic systems and the problem of reform. 3 lectures. Prerequisite: Ec 201

Ec 301, 302 Principles of Accounting

Principles and practices of fundamental accounting theory. Problem approach to the subject with illustrations taken from real business situations. Provides information for analysis and allocation purposes. 2 lectures, 1 laboratory.

Ec 306 General Business Administration

Forms and structure of business enterprises; techniques of office organization and administration. Business and personnel relationships with emphasis on commerce and agriculture. 3 lectures.

* Hist 304 will not substitute for any part of this requirement.
† Of the 52 units of electives, 24 will require approval of department head.
‡ Ec 411, 412 will substitute.
Ec 316 Commercial Law (3)
The principles of contracts, the sale of personal property, negotiable instruments, and the sale of real property. 3 lectures. Prerequisite: Ec 201

Ec 317 Commercial Law (3)
Mortgages, bailments, partnerships, insurance, agency, employment. 3 lectures. Prerequisites: Ec 201, 316

Ec 411 Industrial Management (3)
Organization and functioning of management in industry. Planning, direction, and control of the business enterprise in terms of problems of policy formation, organizational structure, finance, sales, procurement, plant location, facilities, and production processes. 3 lectures. Prerequisite: Ec 201

Ec 412 Industrial Relations (3)
Employer-employee relationships in the area of labor relations and personnel administration; the foreman, employee, and “human relations” in industry. Background of U. S. labor movement; current labor legislation. The employment process; job application techniques; personal adjustment to job situations. 3 lectures. Prerequisite: Ec 201

Ec 416 Business Statements (1)
Business statements examined from the standpoint of their use as a managerial tool in the operation of a business enterprise in industry or agriculture. Interpretation of the balance sheet; the profit and loss statement; supplementary financial statements. 1 lecture.

Ec 582 Seminar in Economic Problems (3)
Selected problems at an advanced level; distribution of income, private and public finance, economic mobilization, and international trade. 3 meetings. Prerequisites: 9 units of economics and graduate standing.

DESCRIPTIONS OF COURSES IN HISTORY

Hist 101, 102, 103 History of Civilization (3) (3) (3)
Development of civilization from earliest times to the present. Political, economic, social, intellectual, and religious contributions of the various peoples to contemporary life. 3 lectures.

Hist 107 Historical Survey of Civilization (3)
Study of civilizations which have made significant contributions to the development of various aspects of contemporary life. 3 lectures.

Hist 112 History of California (3)
Development of California; early explorations, colonization; organization, government, and economy from beginning to the present; development of culture, industry, agriculture, government, and population. 3 lectures.

Hist 301, 302, 303 United States History (3) (3) (3)
A comprehensive survey of the development of the United States from the fifteenth century to the present. 3 lectures.

Hist 304 Growth of American Democracy (3)
The historic backgrounds of present day economic, political, and social problems. Development of American institutions and ideals. 3 lectures. Prerequisite: Pol Sc 301.

Hist 305 The United States in World Affairs (3)
The origin, forms, and forces of international relations. Current problems of security since World War II. American ideals. Development of United States influence in world affairs. Finding and evaluating authoritative source material on world affairs. 3 lectures. Prerequisites: Eng 105, Pol Sc 301, Hist 304
Hist 411, 412 History of the Pacific Area

General survey of international policies and international relations of lands of Pacific Basin from 1750 to present. Development of Japan and China and their present day problems. Growth of United States interests and responsibilities in Pacific area. 3 lectures.

Hist 583 Contemporary Problems of the Pacific Area

Internal and international problems of the countries of the Pacific area since 1945. Conducted as seminar. 3 lectures. Prerequisite: Graduate standing; social science major.

DESCRIPTIONS OF COURSES IN POLITICAL SCIENCE

Pol Sc 100 U.S. History and Government

Basic structure and operation of the federal government. The constitution as a modern regulatory instrument; bases of American ideals. Function of state and local government. This course may not be substituted for Hist 304, 305, Pol Sc 301 or 401. 3 lectures.

Pol Sc 301 American Government

Pol Sc 311 Inter-American Relations

Inter-American affairs. Political, economic, and social problems; forces motivating cultural behavior, industrial development, trade techniques, agriculture methods. Opportunities for employment in agriculture, engineering, and business. Finding and evaluating authoritative source materials on Latin American affairs. 3 lectures. Prerequisites: Pol Sc 301, Hist 304.

Pol Sc 312 International Relations

Analysis of international organizations, including political and economic types. Problems of security, the League of Nations, the United Nations and its special agencies. 3 lectures. Prerequisites: Pol Sc 301 and Hist 304 or equivalent.

Pol Sc 313 Comparative Government

Contemporary political situation in Britain, France, Soviet Union, Germany, Italy, and Japan. Policies and problems; forces making for conflict and adjustment. Constitutional, economic, communal, and sovereignty bases. 3 lectures. Prerequisite: Pol Sc 312 or permission of instructor.

Pol Sc 401 State and Local Government

The structure, function, and problems of state, county, and city governments. 3 lectures. Prerequisites: Pol Sc 301, Hist 304.

Pol Sc 586 Contemporary Problems in International Relations

Intensive study of selected current problems in international relations. Geopolitical factors; contributory causes of international conflict, and analyses of proposed solutions. 3 meetings. Prerequisites: Graduate standing and major in social sciences.

DESCRIPTIONS OF COURSES IN GEOGRAPHY

Geo 221 Political and Industrial Geography

Elements of geography primarily for the elementary school teacher; map reading and making; the effect of geography upon industry and agriculture. 2 lectures, 1 laboratory.

Geog 308 Global Geography

Survey of man's utilization and occupation of the earth. Inter-relations of human life and elements of natural dependence of nations, and world trade. Supporting power of geographical environment. 3 lectures.
DESCRIPTION OF COURSE IN PHILOSOPHY

Phil 201 Introduction to Philosophy (3)
The relationships among the sciences and between science and philosophy. The principal types of philosophy in their relation to science. How philosophy has influenced the growth of ideas in the sciences and how present scientific developments are related to basic philosophical ideas. 3 lectures.

DESCRIPTIONS OF COURSES IN SOCIOLOGY

Soc 201, 202, 203 Principles of Sociology (3) (3) (3)
Sources of materials and methods of sociological study; concepts and principles; structure and process of group life; social institutions. Applications of techniques in field study. 3 lectures. Prerequisites: Social science major or permission of instructor.

Soc 251, 252, 253 Laboratory in Group Activities (1) (1) (1)
Skills and techniques of solving problems in large and small groups; conducting and reporting meetings; analyses of leadership dynamics in campus organizations. 1 laboratory.

DESCRIPTIONS OF COURSES IN THE SOCIAL SCIENCES

Soc Sc 101 Introduction to the Social Sciences (3)
The social sciences in their relationship to modern living; an overview of the contributions of social sciences to cultural, social, and economic development. 3 lectures.

Soc Sc 400 Special Problems for Advanced Undergraduates (1-2)
Independent and group study of selected problems in the social sciences. Total credit limited to 4 units. 1 or 2 meetings. Prerequisites: Permission of the department head and junior standing.

Soc Sc 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Soc Sc 463 Undergraduate Seminar (2)
Intensive study of selected social problems with application of techniques for analysis. 2 meetings. Prerequisite: Completion of thesis.

Soc Sc 511 Sources in Social Science (3)
Methods of finding and adapting authoritative source materials in the social sciences to the elementary, junior, and senior classroom situation. 3 lectures. Prerequisite: Graduate standing.

Soc Sc 521 Curriculum and Methods in Secondary Social Studies (3)
Content, organization, and scope of social science curriculum in secondary schools. Methods of teaching. Evaluation of procedures. Observation of classroom practices in local schools. 3 meetings. Prerequisites: Admission to teacher education program and graduate standing.

SPEECH
(See English)
KELLOGG UNIT
POMONA

VOORHIS UNIT
SAN DIMAS
INTRODUCTION

Instruction is offered at the Kellogg-Voorhis Campus in the Departments of Animal Husbandry, Horticultural Services and Inspection, Fruit Production, Ornamental Horticulture, General Crops Production, Soil Science, Agricultural Management and Sales; in general agricultural subjects; and in related arts and sciences fields.

The educational philosophy and pattern of courses followed are the same as those of the Agricultural Division at San Luis Obispo.

Full four-year programs are offered in all majors except Agricultural Management and Sales, Animal Husbandry, and Soil Science. The first year of the new program in Agricultural Management and Sales is offered currently, the second, third, and fourth years to follow year by year. The Bachelor of Science degree in that major will be granted for the first time in June, 1960. Two years of the Animal Husbandry program are offered at the present time. The third and fourth years will be added in 1957-58. The first two years of a four-year program are offered in Soil Science, the third and fourth years to be taken at San Luis Obispo.

HISTORY

The Kellogg-Voorhis Campus of California State Polytechnic College is composed of two practically adjacent units—the Voorhis Unit, acquired in 1938, and the Kellogg Unit, acquired in 1949.

In 1938 the Voorhis Unit became a part of the California State Polytechnic College when this completely-equipped school and farm near San Dimas was deeded to the college by Charles B. Voorhis of Pasadena and his son, former Congressman Jerry Voorhis. This branch of the college, representing an investment of more than a million dollars, was put into operation as a branch of the main institution, specializing in Fruit Production, Ornamental Horticulture, General Crops Production, and Horticultural Services and Inspection.

The Kellogg Unit was given to the people of the State of California in 1949 by the W. K. Kellogg Foundation of Battle Creek, Michigan. It was founded by W. K. Kellogg in 1925 as the Kellogg Arabian Horse Ranch and became famous as one of the outstanding Arabian horse breeding farms in the world. This property was deeded to the State to be used for occupational training consistent with the philosophy and educational objectives of the California State Polytechnic College. A condition of the deed provides that the college maintain an Arabian horse breeding program.

GENERAL INFORMATION

LANDS AND LOCATION

The Kellogg-Voorhis Campus of California State Polytechnic College is about 20 miles east of Los Angeles near the communities of Covina, Pomona, and San Dimas. The campus of the Voorhis Unit includes 157 acres climatically suited for specialization in citrus fruits and ornamental horticulture. Approximately 30 acres are used for citrus, avocados, and deciduous fruits, demonstrating the utilization of land for each agricultural field.

The 816 acres available at the Kellogg Unit provide practical learning opportunities for students enrolled in Animal Husbandry, Ornamental Horticulture, General Crops Production, Fruit Production, Soil Science, Horticultural Services and Inspection, and Agricultural Management and Sales.
BUILDINGS AND EQUIPMENT

General

The Kellogg Unit and the Voorhis Unit are operated as one campus; college activities involve both units. Laboratories in agricultural production make use of both facilities. Classroom instruction in agriculture and basic science, and the arts and sciences is concentrated in the new Science Building on the Kellogg Unit. Physical education and agricultural engineering courses are taught at the Voorhis Unit. Administrative offices are located in the Science Building.

Library

Library services are available on both campuses. The main library is in the Science Building on the Kellogg Unit. A reading and reserve room is maintained on the Voorhis Unit. The library collection emphasizes specialized documentary, periodical, and book materials in support of the majors offered while maintaining a selected basic collection in the biological, physical, and social sciences and other related subjects.

Classrooms

The Science Building on the Kellogg Unit contains eight general purpose or lecture rooms, 27 special purpose or laboratory rooms, faculty offices, administrative offices, the library, and space for audio-visual services. On the Voorhis Unit the Classroom Building provides additional classroom facilities. Description of agricultural instruction facilities may be found under the heading, Agricultural Division.

Athletic Plant

New physical education facilities are now being constructed on the Kellogg Unit. The present athletic plant, covering about five acres at the extreme east end of the Voorhis Unit, includes facilities for track and field events; a football field; two baseball diamonds; basketball, tennis, badminton, and handball courts; a portable boxing ring; a field house; and a spacious outdoor swimming pool.

Cafeteria

A dining hall on the Voorhis Unit serves students residing on campus. Noon-time meals also are served on the Kellogg Unit. A new cafeteria is now being constructed near the Science Building.

Dormitories

Eight stucco buildings designed in the traditional early California mission style and one two-story frame structure serve as residence halls. These dormitories, located on the Voorhis Unit, are modern, well-lighted, and arranged for student use. Each dormitory has a lounge which serves to facilitate student recreation. The residence halls are Oak Knoll, Sunset, Rose, Smith, Jerry, Magnolia, Uncle Charlie, and Aunt Nell. The latter two are named after the principal donor and his wife, Mr. and Mrs. Charles B. Voorhis.

Housing Project

The housing unit for married students and their families also is located on the Voorhis Unit. It consists of one double-story building and three single-floor structures equipped with all the necessary conveniences for family life. It houses a total of 30 families. Fourteen units have one bedroom, living room, kitchenette, and bath. Sixteen have two bedrooms, living room, kitchenette, and bath. The housing project is equipped with electric washing machines, gas ranges, refrigerators, double and single beds. It also is completely landscaped, including a fenced-in play area for children.

Chapel

Occasional nonsectarian services are held in the Voorhis Chapel, and many student and community weddings take place there during the school year. The architectural style of the chapel was patterned after the old Spanish missions.
THE FOUNDATION

The California State Polytechnic College Foundation, a nonprofit corporation established by the college, maintains a revolving fund to finance a unique project system for students to aid in the development of techniques and skills essential for success in agricultural production.

This system provides for supervised projects, individually owned or leased and operated by students in such a way as to make it possible for them to gain knowledge and experience in the production and marketing of agricultural products on a commercial scale. This combination of the practical "learn by doing" and "earn while you learn" philosophies not only enables a student to earn money while doing work directly related to his major interest, but also creates an added incentive for the acquisition of further skills and knowledge.

For more complete information see under the heading The Foundation in the General Information section, San Luis Obispo, of this catalog.

STUDENT ORGANIZATIONS AND ACTIVITIES

STUDENT BODY GOVERNMENT

Student body government functions under the jurisdiction of the elected student body officers and the Student Affairs Council, made up of elected representatives of the various campus organizations. All students are members of the Associated Student Body. The membership fee totals $15 per year and entitles the student to admission to all athletic and most social events. Membership also includes a subscription to the weekly newspaper, Poly Views, and the privilege of purchasing at a reduced price the college yearbook, Madre Tierra.

PUBLICATIONS

Poly Views is the official publication of the Associated Students and is published weekly during the school year. Madre Tierra is the yearbook record of student activities carried on during the year at the Kellogg-Voorhis Campus.

CAMPUS CLUBS

All students are encouraged to engage in the social and recreational activities sponsored by the college. The following clubs and organizations are designed to appeal to a variety of student interests: Block "P" Association, Young Farmers, Services and Inspection Club, Ornamental Horticulture Club—"Los Robles," Citrus Club—"Caldimas," Crops Club—"Los Rancheros," Animal Husbandry Club—"Los Ganaderos," Soil Science Club, Gamma Pi Delta, Rodeo Club, Science Club, International Relations Club, Cal Poly Christian Fellowship, and dormitory clubs.

POLY VUE AND EDUCATIONAL FIELD DAY

Poly Vue is the name given to the annual open house day of the Kellogg-Voorhis Campus. It is designed to show parents and friends the yearly activities and progress of the institution, as well as to provide a time for friendly social activities. The entire affair is organized and sponsored by the students. Each year a coeducational college in the area is selected by the student body to provide a queen and her court.

The Educational Field Day, sponsored by the Young Farmer Chapter on the Kellogg-Voorhis Campus, provides an opportunity for high school and junior college youths to compete in agricultural contests.

ATHLETICS

The Kellogg-Voorhis Campus participates regularly in intercollegiate competition in basketball, baseball, football, tennis, and track. Teams in basketball, baseball, and track compete in informal league play with other small Southern California colleges. In football, teams compete with colleges such as Cal Tech, La Verne College, and Cal Baptist. At least one game each season takes the football squad on a trip away from home. Golf, cross country, and water polo teams also compete in intercollegiate matches.

An extensive intramural program is an integral part of physical education at the Kellogg-Voorhis Campus. Team sports such as touch football, basketball, volleyball, and softball are organized around the dormitories. Individual sports such as tennis, badminton, horseshoes, track and field events, swimming, handball, boxing, and wrestling also are a part of intramural competition.
STUDENT PERSONNEL SERVICES

HEALTH AND MEDICAL

A student pays a $3 fee per quarter for medical service. The service includes treatment by a physician for minor injuries and diseases. It does not include hospitalization, major surgery, or X-ray.

COUNSELING

Individual counseling service is offered each student. This service consists of educational, vocational, and personal counseling in accordance with the needs of the student.

PLACEMENT

The services of the placement office on the San Luis Obispo campus are available to graduates and transfers from the Kellogg-Voorhis Campus. In addition, staff members of all departments aid in locating jobs for men who have had all or part of their instruction on the Kellogg-Voorhis Campus.

EMPLOYMENT

Opportunities are available for students to earn money and gain work experience in line with their major interests. The planting and maintenance of grounds, the maintenance of dormitories, and the care of crops, citrus groves, and horses are among the jobs often assigned to paid student workers. In addition, students work in the cafeteria, on the fire crew, and at other campus tasks. Off-campus jobs also are made available to students.

STUDENT LOANS

There are eight student loan funds on the Kellogg-Voorhis Campus to provide temporary assistance to worthy students. Loans from these funds are made for varying periods of time and according to regulations determined by a faculty committee. Applications should be made in the office of the Director of Students.

Alex M. Wilson Memorial Loan Fund

The family and friends of Alex M. Wilson established a memorial loan fund in his memory with an original grant of $500. The purpose of this fund is to make short and long term loans available to students of California State Polytechnic College.

Associated Students Loan Fund

The Associated Students established a loan fund with an original grant of $500 for the purpose of making short term loans available to students enrolled at the Kellogg-Voorhis Campus.

Cal Poly Women's Club Student Accommodation Loan Fund

The Cal Poly Women's Club established a student accommodation loan fund with an original grant of $150.36. The purpose of this fund is to make short term loans to deserving students.

Chet Pencille Memorial Fund

The Pest Control Operators of California established the Chet Pencille Memorial Fund with an original grant of $2,500. The purpose of this fund is to make short and long term loans available to deserving young men enrolled in services and inspection.

Lemon Men's Club Loan Fund

The Lemon Men's Club of California established this loan fund with an original grant of $500 to make short term loans available to deserving young men. Although preference is given fruit production students, other students are not excluded from receiving loans from this fund.

"Los Ganaderos Club" Loan Fund

The college animal husbandry club established the "Los Ganaderos Club" Loan Fund with an original grant of $200. Subsequent to the original grant the Arabian Horse Association of Southern California has contributed an additional $200 to the fund. Although preference is given to students majoring in animal husbandry, other students are not excluded from receiving loans from this fund.
Terminix Educational Foundation Fund
The Terminix Company Inc. of Los Angeles established this fund with an original grant of $500 to make short and long term loans available to deserving students. Although preference is given to students enrolled in services and inspection, other students are not excluded from receiving loans from this fund.

Leopold Edward Wrasse Loan Fund
This fund is available to students under the same terms and conditions as listed for the San Luis Obispo campus.

SCHOLARSHIPS
In addition to the scholarships listed in the General Information section of this catalog, three scholarships have been established on the Kellogg-Voorhis campus.

The Lemon Men's Club Annual Award of Merit of $100 goes to an outstanding upper classman in Citrus Fruit Production.

The California Nurseryman's Scholarship of $100 is awarded to a promising freshman student in Ornamental Horticulture.

One $200 scholarship and one $100 scholarship are included in the Chet Pencille Memorial Fund. They may be awarded to entering freshmen and/or students transferring from other colleges who enroll with the Services and Inspection Department and/or students pursuing Pest Control studies with the Services and Inspection Department who have completed the junior year.

Two $100 scholarships are made available at the Kellogg-Voorhis campus by the California Fertilizer Association. One award is given to an outstanding junior or senior Crops Production student and one to an outstanding junior or senior Soil Science student.

ADMISSIONS AND GENERAL REGULATIONS
Admission requirements, registration procedure, admission with advanced standing, credit by examination, scholarships, special instructional services, graduation requirements, and teaching credential requirements are the same for the Kellogg-Voorhis campus as for the San Luis Obispo campus of the college. Complete information on these subjects may be found in the General Information, Admissions, and General Regulations sections of this catalog.

REGULATIONS
The following regulations apply to students at the Kellogg-Voorhis campus in the same manner as to students on the San Luis Obispo campus of the college: Change of Curricula, Change of Program, Class Attendance, Grading System, Minimum Grade Requirements, Maximum and Minimum Load, Credit for Military Service. (See section of this catalog on General Regulations.)

Eligibility for Intercollegiate Athletics
All students regularly enrolled at the Kellogg-Voorhis campus are eligible to participate on the athletic teams, providing they meet the following rules set up by the Athletic Board.

1. Competition is open to regularly enrolled students currently carrying at least 12 units and passing in at least 10 units.
2. Students must have passed in 10 or more units and earned at least five grade points during the last quarter or semester of any college attendance.
3. A certified student must be an amateur sportsman who is engaged in sports for the physical, mental, or social benefits he derives therefrom, and to whom the sport is an avocation. According to the National Collegiate Athletic Association's interpretation, any athlete who takes or is promised pay in any form for participation in athletics does not meet this definition of an amateur.
4. Freshmen, junior college transfers, and transfer students from four-year colleges are immediately eligible if previous credits satisfy requirements of eligibility.

Administration of these regulations is carried out by a faculty committee which checks quarterly on the eligibility of students participating in extra-curricular activities.
FEES AND EXPENSES

STATE FEES AND DEPOSITS

Materials and Service Fee (quarter)
- Each student enrolled for less than 4 units: $6.00
- Each student enrolled from 4 to not over 6 units: 10.00
- Each student enrolled for over 6 units: 13.00
- Each student enrolled in Summer quarter: 13.00

Non-resident Tuition:
- Each nonresident student enrolled for 15 units or more (per quarter): 60.00
- Each nonresident student enrolled for less than 15 units (per quarter per unit): 4.00

Breakage deposit (year): 10.00
(Refundable to student when he leaves college less any charges against him)

Late registration fee: 2.00
Late return of registration cards fee: 2.00
Course challenge by special examination fee (per unit): 1.00
Extension course fee (per unit): 1.00 or 5.00
Change of program fee: 1.00
Failure to meet administratively required appointment: 2.00
Credential fee (for each credential): 4.00

OTHER FEES

Associated student card fee (fall quarter): 7.50
Associated student card fee (winter and spring quarters—each): 3.75
Post office box rental (all students, per quarter): .25
Medical fee (per quarter): 3.00
Graduation fee: 7.50
(Must be paid at time application for graduation is submitted)

NOTE: Fees for the summer quarter are the same as fees for the other quarters.

Living Expenses

FOR STUDENTS LIVING ON CAMPUS

Room, per month (subject to change): $12.00
(Must be paid quarterly in advance; students are required to furnish bed linen, blankets, and pillow)
Meal ticket (required with campus housing, represents approximately ½ the meals per quarter): 90.00
(Must be paid quarterly in advance)

TYPICAL STUDENT EXPENSES

Example A
Students living on campus and not enrolled under Public Law 16, 346, or the California Veterans Educational Institute should be prepared to pay at time of fall quarter registration:
- Breakage deposit (per year): $10.00
- Associated student card (fall quarter, $7.50; winter and spring quarters, $3.75 each): 7.50
- Post office box rental (per quarter): .25
- Medical fee (per quarter): 3.00
- Materials and service fee (per quarter): 13.00
- Room rent (per quarter) ($10 per month): 36.00
- Meal ticket (required with campus housing, represents approximately ½ the meals per quarter): 90.00
- Books and supplies (estimated): 35.00

* $194.75

* The student should be prepared to pay approximately the same amount at the time of winter and spring registration, with the exception of deposits which carry through the year.
Example B

Students living on campus and enrolled under Public Law 16, 346, or the California Veterans Educational Institute should be prepared to pay at time of fall quarter registration:

- Post office box rental (per quarter) - $0.25
- Room rent (per quarter) - $30.00
- Meal ticket (required with campus housing, represents approximately ½ the meals per quarter) - $90.00
- Medical fee (quarter) - $3.00
- Breakage deposit (students under State Veterans Program only) - $10.00
- Books and supplies - $133.25

FAMILY HOUSING

- Rental Charge on Apartments:
 - 1-bedroom apartments, furnished, including utilities - $35.00 (per month)
 - 2-bedroom apartments, furnished, including utilities - $40.00 (per month)

* If the trainee has a Veterans Administration "letter of entitlement" when he registers, books and supplies will be furnished. If he does not have the "letter of entitlement," the trainee must pay all fees, including those for books and supplies, until the time the letter is presented. A refund will be made to the veteran when the letter is presented. Trainees under the California Veterans Institute purchase their own books and supplies for which they receive an allowance of $10 per month.

† The student should be prepared to pay approximately the same amount at the time of winter and spring registration, with the exception of deposits which carry through the year.

‡ Includes electricity, gas, and water.
THE AGRICULTURAL DIVISION

Instruction

Instruction on the Kellogg-Voorhis campus of the California State Polytechnic College is primarily confined to six graduation majors leading to the bachelor of science degree. Each curriculum is so arranged that a student beginning as a freshman is enrolled immediately in production courses in his major, so that he can determine in a short time whether or not he is fitted for work in the field he has selected.

The courses offered in each agricultural curriculum may be grouped into four areas as follows:

1. Major agriculture—The required sequence of courses offered by the department in which the student expects to graduate. These courses constitute the core instruction leading to specific preparation for the production field of the student's choice.

2. Related agriculture—Supporting courses in agriculture selected from closely allied fields. They supplement the major agricultural block in (1).

3. Science and mathematics—Courses selected from scientific fields which provide basic biological, physical and social science and mathematical background and support to the agricultural block in (1) and (2) above.

4. Humanistic-social—Courses which provide cultural background for intelligent living in a complex world society.

The following chart illustrates the distribution of required units in the four areas indicating emphasis and balance through the four years. The entire program totals 198 quarter units including elective units which vary depending upon the student's major. Electives in the freshman and sophomore years are frequently chosen from agricultural courses.

<table>
<thead>
<tr>
<th>Area</th>
<th>Freshman</th>
<th>Sophomore</th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major agriculture</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Related agriculture</td>
<td>9</td>
<td>18</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Science and mathematics</td>
<td>18</td>
<td>7</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Humanistic-social</td>
<td>10½</td>
<td>11½</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

Admission

Admission to the Agricultural Division is open to any male high school graduate who meets the requirements listed in the section on admissions. Although no specific high school pattern of courses is required, it is to a student's advantage to have a good background in vocational agriculture and both physical and biological science.

Facilities

The college has facilities necessary for the best practical training possible in its major fields. The college farm consists of fertile soils typical of the Southern California area with enough variation in soil types and climate to give students a broad background of experience.

The Fruit Production Department has for instructional use 60 acres of citrus fruit, 15 acres of avocados, and smaller acreages of deciduous fruits and nuts. This department has at its disposal a variety of specialized equipment for all cultural operations, including equipment for cultivation, weed control, orchard heating, pest control, and propagation.

In the general crop program approximately 250 acres are devoted to the production of field crops, vegetable crops, and irrigated pastures. Available for student use is modern equipment necessary for complete instruction in crops production, including equipment for tillage, pest control, weed control, planting, fertilizing, and harvesting. Facilities in this department also include vegetable packing house and propagation areas.
The Ornamental Horticulture Department has more than 70 acres devoted to ornamental plantings for use in laboratory work, with additional land available for commercial flower growing. In addition this department offers its students the use of three glass houses, two lath houses, two screen houses, two propagation houses, and numerous hot beds and cold frames.

Students majoring in horticultural services and inspection use the facilities of the entire farm in their work in specific production courses. This department has at its disposal complete facilities in bee production including a modern apiary and honey houses.

The facilities of the Soil Science Department include a soils laboratory equipped with modern soil testing equipment as well as a field house for growing plants under controlled conditions of nutrition and environment. The facilities of the entire farm are also available for the use of students in obtaining practical knowledge in soil management.

The Animal Husbandry Department is equipped with facilities for beef cattle, horses, sheep, and swine to accommodate both college herds and student-owned projects. Barns, feed yards, and 500 acres of both irrigated and natural pasture are available for departmental use.

Agricultural mechanics shops have facilities for training students in mechanical skills, such as farm machinery operations and repair, farm building construction, welding, wiring, and plumbing. There are two main buildings given over to shop work. The first is a two-story structure, 160 feet long and 40 feet wide, which serves as the center for farm power and machinery, carpentry, plumbing, and rural electric wiring projects. The second is a welding shop, equipped with acetylene and arc stations.

College irrigation facilities include distributive systems typical of those used commercially in Southern California. Students obtain practice in working with check irrigation, furrow irrigation, and sprinkler irrigation both stationary and portable.

In keeping with the college philosophy of "learning by doing," each student is provided an opportunity to learn the fundamental skills involved in the care, maintenance, and operation of all equipment and facilities to assure him of occupational competence. A supervised work program is an important part of the college instruction and all departments offer jobs outside of class time so that students may earn while attending college.
Agricultural Management and Sales Department

The development of agriculture in California through specialization, mechanization, and improved breeding, fertilizing, and pest control methods has resulted in the growth of many business firms which meet the demand for agricultural services performed off the farm. In addition an increasingly important industry is concerned with the flow of agricultural products through processing and distribution channels to the ultimate consumer.

The Agricultural Management and Sales program is a business-type college program built upon a firm agricultural foundation. It is designed to train students for such positions as: owner, manager, supervisor of related agricultural businesses, agricultural sales-service, marketing specialist, real estate appraiser, and government program specialist. In addition to business-management, sales and sales promotion training, students may elect a concentration of work in specified production fields to gain valuable production techniques and experiences.

Metropolitan Los Angeles with its industrial activity serving agriculture and one of the Nation's largest agricultural markets provides excellent opportunity for student field study and work experience.

Students majoring in other departments will find excellent elective courses in this program to supplement their major field of study.

Curriculum in Agricultural Management and Sales

Freshman (Major courses offered initially 1956-57)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Business (AMS 101)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Organization and Operation (AMS 102)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Business Mathematics (Math 108, 109)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>General Biology (Bio 101)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Physical Science (PSc 101, 102)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore (Major courses offered initially 1957-58)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Organization and Management (AMS 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salesmanship (AMS 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Job Instruction Training (AMS 203)</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Literature (Eng 211, 212, or 213)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Physical Science (PSc 103)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Principles of Accounting (Ec 301, 302)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Commercial Law (Ec 316, 317)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

* Twenty-four elective units are to be selected from courses in agricultural production majors at the direction of the head of the Agricultural Management and Sales Department.
Junior (Major courses offered initially 1958-59)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits and Collections (AMS 301)</td>
<td>3</td>
</tr>
<tr>
<td>Stock and Inventory Control (AMS 302)</td>
<td>3</td>
</tr>
<tr>
<td>Business and Sales Finance (AMS 303)</td>
<td>3</td>
</tr>
<tr>
<td>Merchandising, Advertising and Promotion (AMS 305)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Marketing (FM 304)</td>
<td>3</td>
</tr>
<tr>
<td>Descriptive Statistics (Math 211)</td>
<td>3</td>
</tr>
<tr>
<td>Human Relations (Psy 304)</td>
<td>3</td>
</tr>
<tr>
<td>Economic Problems (Ec 213)</td>
<td>3</td>
</tr>
<tr>
<td>State and Local Government (Pol Sc 401)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>Economic Geography (Ec 312)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>*Electives</td>
<td>4 4 4</td>
</tr>
</tbody>
</table>

| Total | 16 16 16 |

Senior (Major courses offered initially 1959-60)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration and Management Problems (AMS 401)</td>
<td>3</td>
</tr>
<tr>
<td>Insurance and Taxation (AMS 411)</td>
<td>3</td>
</tr>
<tr>
<td>Personnel Management and Industrial Relations (AMS 402)</td>
<td>3</td>
</tr>
<tr>
<td>Wholesaling and Retailing (AMS 412)</td>
<td>3</td>
</tr>
<tr>
<td>Business Policies (AMS 416)</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (AMS 461, 462)</td>
<td>2 2</td>
</tr>
<tr>
<td>Undergraduate Seminar (AMS 463)</td>
<td>2</td>
</tr>
<tr>
<td>Cost and Payroll Accounting (Ec 303)</td>
<td>3</td>
</tr>
<tr>
<td>Report and Business Letter Writing (Eng 401)</td>
<td>3</td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 303)</td>
<td>2</td>
</tr>
<tr>
<td>*Electives</td>
<td>6 7 5</td>
</tr>
</tbody>
</table>

| Total | 17 17 16 |

DESCRIPTIONS OF COURSES IN AGRICULTURAL MANAGEMENT AND SALES

AMS 101 Introduction to Business

The field and scope of agricultural business. Fundamental concepts, tools, and practice. 3 lectures.

AMS 102 Office Organization and Operation

Basic office procedures and practices. Knowledge and techniques necessary to work in or manage a small business office. 2 lectures, 1 laboratory.

AMS 201 Business Organization and Management

Forms and problems of agricultural business organization and operation. Functions and fundamental skills of business management. 3 lectures.

AMS 202 Salesmanship

The role of salesmanship in the agricultural economy and other sales producing activities. Emphasis on practical sales techniques and solutions to common sales problems. 3 lectures.

AMS 203 Job Instruction Training

The skills of foremanship and on-the-job supervision. Operations and problems of supervision. 1 lecture.

AMS 301 Credits and Collections

Principles and techniques of reducing credit risks. Sources of credit information, credit terms, laws relating to credit instruments. Collection problems and techniques. 3 lectures.

* Twenty-four elective units are to be selected from courses in agricultural production majors at the direction of the head of the Agricultural Management and Sales Department.

† Offered 1956-57.
AMS 302 Stock and Inventory Control (3)
Techniques of stock room and warehouse operation. Inventory management, purchasing and receiving documents, record keeping, and materials handling problems. 2 lectures, 1 laboratory.

AMS 303 Business and Sales Finance (3)
Methods of financing. Analysis of financial requirements, instruments, and statements of agricultural business and sales agencies. Sources and uses of credit. Financial planning. 3 lectures.

AMS 305 Merchandising, Advertising, and Promotion (3)
Principles of demand creation. Relationship of market research, production, packaging, advertising, quality control, sales promotion, and store display. Practical application of merchandising principles to agricultural business. 2 lectures, 1 laboratory.

AMS 401 Administration and Management Problems (3)
Fundamentals of executive leadership in an expanding economy. Specific administration and management problems and their solutions. 3 lectures.

AMS 402 Personnel Management and Industrial Relations (3)
Employer-employee relationships. Manpower utilization and management. Labor relations and principles of collective bargaining. 3 lectures.

AMS 411 Insurance and Taxation (3)
Application of principles of insurance and taxation to specific agricultural situations. Emphasis upon insuring business risk, health and accident, social security, and workman's compensation. Federal, state, and local tax policies. Employer and employee taxes. 3 lectures.

AMS 412 Wholesaling and Retailing Agricultural Commodities (3)
The field of wholesaling and retailing agricultural commodities including auctions, commission houses, commission merchants, food brokers, car lot receivers, jobbers, shippers, and supply houses. Principles of buying and selling. Terms and trade customs. 3 lectures.

AMS 416 Business Policies (3)
Policy making and planning in the agricultural business organization. The aims and goals of business. Relationship of business policies and public relations. 3 lectures.

AMS 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

AMS 463 Undergraduate Seminar (2)
New methods and developments, practices, and procedures in the field. 2 meetings.
ANIMAL HUSBANDRY DEPARTMENT
Department Head, Weslie Combs
James W. Oxley

The location of the Kellogg Campus near the center of the commercial livestock feeding industry and the Los Angeles market, which is the leading slaughter center of the West, combines naturally with the college facilities to provide opportunities for students to obtain practical training in livestock production and management, with emphasis on feeding, marketing, and processing.

The departmental emphasis is on the commercial feeding and marketing of beef cattle with specialized offerings in meats, wool, and livestock marketing. Instruction in herd management is included. The program includes work in other closely related departments to give students the broad background necessary for successful employment.

The program provides training primarily for placement in the following fields: commercial feedlot operations, livestock marketing, meat packing, herd management, farm management, vocational agricultural teaching, and related industries.

Beef cattle, sheep, swine, and horses are maintained by the college for use in the instructional program. Meat animal breeding herds are performance tested with records maintained by students under staff supervision. Facilities for student-owned and operated projects are made available by the California State Polytechnic College Foundation.

CURRICULUM IN ANIMAL HUSBANDRY

Freshman
- Elements of Beef Marketing (AH 131) 4
- Elements of Swine Production (AH 122) 4
- Elements of Sheep Production (AH 123) 4
- Feeds and Feeding (AH 101, 102) 2
- Agricultural Mechanics (AE 121, 122) 2
- Language Communication (Eng 104, 105, 106) 3
- Agricultural Mathematics (Math 102, 103) 3
- Project Records (FM 100) 1
- General Zoology (Zoo 131, 132) 4
- Health and Hygiene (PE 107) 2
- Physical Education (PE 141, 142, 143) 1½
- Electives 2

Sophomore
- Market Swine Production (AH 223) 4
- Sheep and Wool Production (AH 232) 4
- Feeder Cattle Production (AH 233) 4
- Farm Machinery (AE 221) 2
- Agricultural Mechanics (AE 123) 2
- Farm Tractors (AE 241) 2
- Anatomy and Physiology (VS 123) 4
- Forage Crops (CP 123) 4
- General Soils (SS 230) 4
- Public Speaking (Sp 201) 2
- Principles of Economics (Ec 201, 202) 3
- Genetics (Bio 303) 3
- General Botany (Bot 121) 4
- Sports Education (PE 241, 242, 243) ½
- General Bacteriology (Bact 221) 4

With the approval of the adviser, the student may substitute for eight of these units, elective courses in Animal Husbandry and/or one Dairy Husbandry or one Poultry Husbandry course.
Junior

† Meat Animal Slaughter and Processing (AH 327) ... 4
† Beef Husbandry and Improvement (AH 332) .. 4
Advanced Livestock Feeding (AH 303) ... 3
Animal Breeding (AH 304) ... 3
Livestock Hygiene and Sanitation (VS 202) ... 3
Animal Parasitology (VS 203) .. 3
General Inorganic Chemistry (Chem 324, 325) ... 4
Organic Chemistry (Chem 326) ... 4
Farm Records (FM 321) 3
Growth of American Democracy (Hist 304) ... 3
American Government (Pol Sc 301) ... 3
Family Relations (Psy 206) ... 3
Electives ... 2

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

Senior Project (AH 461, 462) .. 2
Undergraduate Seminar (AH 463) ... 2
† Commercial Feedlot Operations (AH 422) ... 4
Principles of Farm Management (FM 322) ... 4
Agricultural Biochemistry (Chem 328) .. 4
Animal Nutrition (AH 402) ... 3
† Economics Elective .. 3
Literature ... 3
The United States in World Affairs (Hist 305) 3
Electives ... 6

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>16</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Animal Husbandry

AH 101 Feeds and Feeding
Identification and classification of feeds; simple use of food nutrients, protein, fat and carbohydrates; methods of preparing feeds; relative values of common feeds for each class of livestock; the use of by-product feeds. 2 lectures.

AH 102 Feeds and Feeding
The digestion and utilization of feeds; feeding standards and computation of standard rations for livestock; economy in feeding, and purchasing feeds by nutritive values; important vitamins and minerals and feed sources thereof. 2 lectures. Prerequisite: AH 101

AH 122 Elements of Swine Production
History and development of swine industry. Types and breeds of swine. Hog production under California and Midwestern conditions. Common feeds used to supply nutrition requirements. Practice in handling, feeding, and selecting correct type of hogs. 3 lectures, 1 laboratory.

AH 123 Elements of Sheep Production
Sheep operations in the United States. Emphasis on breeds and adaptation to California conditions. Principles of selecting, culling, and judging sheep. Market classes and marketing of sheep. Home slaughter and carcass cuts. Factors affecting wool value. 3 lectures, 1 laboratory. Prerequisite: AH 101

AH 124 Basic Horsemanship
Fundamentals of care and handling of light horses, including stabling, grooming, feeding, and equitation. Types, uses, and care of light horse equipment. 2 laboratories.

*To be offered for the first time in 1957-58. Students needing junior and senior year major course before 1957-58 should plan to transfer to the San Luis Obispo campus.
† With the approval of the adviser, the student may substitute for eight of these units, elective courses in Animal Husbandry and/or one Dairy Husbandry or one Poultry Husbandry course.
‡ Economics elective to be selected from FM 304, 403, 310.
AH 131 Elements of Beef Marketing (4)
Survey of market beef production in the United States with emphasis on Southern California. Beef cattle terms. Study of central market and functions. Grades and classes of market cattle and carcasses. Importance of by-products. Breed characteristics. 3 lectures, 1 laboratory.

AH 223 Market Swine Production (4)
Management of the swine herd and care of pigs until weaning. Selection of feeder pigs. Feeding and managerial practices involved in developing the finished product. Market channels, cycles, production cost analysis, hog slaughter, carcass grading, and pork processing. 3 lectures, 1 laboratory. Prerequisite: AH 102, 122

AH 225 Horse Husbandry (4)
History, size and scope of light horse industry in California, with emphasis on Arabian and Thoroughbred horses. Breeds, types, and selection of light horses for popular use. Showing, marketing, and transportation methods. Feeds and pastures. Equine organizations and publications. 3 lectures, 1 laboratory. Prerequisites: AH 102, 125

AH 230 General Animal Husbandry (4)
Selection, feeding, management of sheep, swine, and cattle and their uses in California. For nonanimal husbandry majors. 3 lectures, 1 laboratory.

AH 232 Sheep and Wool Production (4)
Management of commercial sheep operations. Breeding, lambing, selection, culling, marketing, shearing, grading, packing, and judging wool. Disease and parasite control. Range management. 3 lectures, 1 laboratory. Prerequisites: AH 102, 123

AH 233 Feeder Cattle Production (4)
Grading and selection of stocker and feeder cattle; necessary margin. Factors affecting economy and efficiency of gain. Disease problems and control. Feeder production on winter range, silage, irrigated pasture, soilage, hay, by-products. Supplemental feeding. 3 lectures, 1 laboratory.

AH 303 Advanced Livestock Feeding (3)
Nutritional requirements for maintenance, growth, fattening, reproduction and lactation. Calculation of efficient and economical rations. Sources and composition of nutrients. Biological and replacement value of feeds. Recent developments in feeding. 2 lectures, 1 laboratory.

AH 304 Animal Breeding (3)
Physiology of reproduction, application of genetics to animal breeding. Systems of mating animals, use of inbreeding, crossbreeding, and selection as applied to farm animals. 3 lectures.

AH 326 Livestock Judging (3)
Training in selection of beef cattle, sheep, swine, and horses according to breed, type, and use. 1 lecture, 2 laboratories. Prerequisite: 24 units of animal husbandry.

AH 327 Meat Animal Slaughter and Processing (4)
Slaughter and processing of cattle, sheep, and hogs. Live animal and carcass grading and yield. Curing methods, by-products, and consumption trends. Observation of commercial slaughter houses. 2 lectures, 2 laboratories.

AH 329 Advanced Horse Husbandry (4)
Techniques in training young horses. Care and management of mare and stallion during breeding season. Breeding and herd records. Fitting and showing. Show management. 3 lectures, 1 laboratory. Prerequisite: AH 124

AH 332 Beef Cattle Husbandry and Improvement (4)
Feeding and managing the breeding herd. Investment requirements and cost of production. Equipment, disease problems, and selection. Record keeping and performance testing. Fitting and marketing sale cattle. Breeding systems and bloodlines. 3 lectures, 1 laboratory.
AH 422 Commercial Feedlot Operations (4)
Management of the commercial feedlot. Selection of feeder cattle; procurement of feedstuffs; economical rations; disease control; livestock and equipment financing; record keeping and feeder-owner agreements; and cattle marketing. 3 lectures, 1 laboratory.

AH 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

AH 463 Undergraduate Seminar (2)
New methods and developments, practices, and procedures in the field. 2 meetings.
An industry as economically valuable as the California fruit industry is in constant need of the services of efficiently trained men. The Fruit Production Department has designed its curriculum to meet this need.

Each student obtains actual field experience in orchard practices through the operation of the college-owned fruit orchards. Various types of management programs enable students to acquire a basic foundation for citrus, avocado, and deciduous fruit production. Valuable knowledge of the handling and marketing of California-grown fruits is made easily accessible because of the proximity of the college to local packing houses, fruit processing plants, and marketing organizations.

The primary purpose of the fruit production program is to prepare students for occupations as orchard operators or managers. Placement opportunities also exist in related fields serving the agricultural industry. These opportunities include agricultural teaching; employment with insecticide, fertilizer, and equipment companies; fruit processing and marketing organizations; nurseries; pest control concerns; soil laboratories; agricultural contractors; and agencies of the county, state, and federal government.

CURRICULUM IN FRUIT PRODUCTION

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus Fruit Production (CF 121, 122, 123)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122, 123)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus Pest Control (CF 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avocado Production (CF 222, 223)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Citrus Diseases (CF 226)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fruit Propagation (CF 245, 246)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health & Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Plant Pathology I (Bot 223)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Surveying (AE 131)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Power (AE 227)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Machinery (AE 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Electives | | | |

| Total | 16½| 16½| 17½|
DESCRIPTIONS OF COURSES IN FRUIT PRODUCTION

CF 121 Citrus Fruit Production (4)
Methods used in operating commercial citrus orchards. Adaptation of operations to California conditions, economic importance of industry, selection of orchard site, pest control, irrigation methods and practices. 3 lectures, 1 laboratory.

CF 122 Citrus Fruit Production (4)
Frost and wind protection methods, fertilization, pruning and disease control. Commercial varieties of citrus grown in California. 3 lectures, 1 laboratory.

CF 123 Citrus Fruit Production (4)
Cultural operations, propagation of citrus including nursery methods, topworking, rootstock selection and performance. Selection, planting, and care of young trees. 3 lectures, 1 laboratory. Prerequisite: Bot 121

CF 221 Citrus Pest Control (4)
Recognition of citrus pests, damage, seasonal habits in relation to control. Control methods and materials. Spray rig operation, tree and soil fumigation. 3 lectures, 1 laboratory. Prerequisites: Ent 126, CF 121

CF 222 Avocado Production (4)
Origin and culture of the avocado. Industry development, selection of orchard site, orchard development and planting, climatic tolerances, irrigation, and fertilization. 3 lectures, 1 laboratory.

CF 223 Avocado Production (4)
Propagating, pruning, and tree training of the avocado. Established and experimental varieties adapted to commercial production, pests and diseases of the avocado and their control. 3 lectures, 1 laboratory. Prerequisites: Bot 121, Ent 126

CF 226 Citrus Diseases (4)
Diseases of citrus under California conditions, their symptoms and methods of control. 3 lectures, 1 laboratory. Prerequisites: Bot 223, CF 122
CF 245 Fruit Propagation (1)
Nursery propagation of fruit plants. Budding, tip grafting, cuttings, and propagation, seedbed preparation, planting seedlings, care and management of the nursery. 1 laboratory. Prerequisite: Bot 121

CF 246 Fruit Propagation (1)
Topworking and grafting fruit plants. Types of grafts used, selection of grafting wood, inarching, and bridge grafting, 1 laboratory. Prerequisite: Bot 121

CF 301 Citrus and Avocado Marketing (3)
Present day practices in marketing citrus and avocados. Organization of cooperatives and private corporations and their functions in the assembling, processing, and transportation of fruit; types of sales, merchandising, advertising, and marketing costs. 3 lectures. Prerequisites: CF 123, 222, 226

CF 322 Packinghouse Management (4)
Management of citrus and avocado packinghouses in relation to harvesting, pooling systems, marketing agreements and prorates, processing and packing, storage and precooling, grower and labor relations. 3 lectures, 1 laboratory. Prerequisites: CF 223, 226

CF 323 Citrus and Avocado Orchard Management (4)
Factors of management affecting efficient operation of citrus and avocado orchards. Effect of orchard operations and practices on production and quality of fruit. 3 lectures, 1 laboratory. Prerequisites: CF 221, 222, 223, 226

CF 400 Special Problems (1-2)
For advanced students with sufficient preparation to benefit from specialized study. According to needs and interest of student. Total credit limited to 4 units, with not more than 2 units in any one quarter. Prerequisite: Bot 322

CF 425 Fruit Storage (2)
Storage of fresh fruits, factors affecting the health and vigor of fresh fruits under various conditions. Respiration and maturity changes and determinations of fruit in storage. 1 lecture, 1 laboratory.

CF 426 Citrus and Avocado Products (3)
Products manufactured from citrus and avocados. Use, methods of manufacture, chemistry involved in processing, and the position of this field in relation to the citrus and avocado industry. 2 lectures, 1 laboratory. Prerequisites: Chem 326, CF 322

CF 461, 462 Senior Project (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

CF 463 Undergraduate Seminar (2)
Intensive study of the problems and new developments in the operation and management of citrus and avocado orchards. Critical study of the economics of these industries. 2 lectures.

FP 131 Pomology (4)
Commercial deciduous fruits and nuts. Varieties, production areas, seasonal cultural practices and problems. 3 lectures, 1 laboratory.

FP 132 Subtropical Fruits (4)
Subtropical fruits, other than citrus and avocado, adapted for commercial plantings in Southern California. Climatic and cultural requirements, fruiting habits, varietal description, and the propagation of certain subtropical fruit plants. 3 lectures, 1 laboratory. Prerequisite: Bot 121
FP 136 Small Fruit Production
Small fruits grown commercially in California. Specialized berry culture, varieties, production areas, propagation, training, pruning, pest control, cultural practices, and harvesting. 3 lectures, 1 laboratory.

FP 230 General Fruit Production
Common orchard practices in producing certain deciduous, citrus, avocados, and other subtropical fruits. Varieties, areas, propagation, planting, pruning, disease and pest control for home and commercial plantings. For students other than Fruit Production majors. 3 lectures, 1 laboratory.

FP 231 Viticulture
Producing, processing, and marketing of raisin, table, and wine grapes. 3 lectures, 1 laboratory.

FP 234 Deciduous Disease and Pest Control
Studies and field identification of diseases and insect pests of deciduous trees. Field application of control materials. 3 lectures, 1 laboratory.
The primary function of this department is to prepare students for commercial production of vegetable and field crops. The college offers training on a campus with soil and climatic conditions typical of Southern California. In addition, the campus is located near Los Angeles, one of the world’s largest vegetable markets. The type of training offered not only prepares students for specific enterprise production but also qualifies them for positions in certain allied fields, including farm management, fertilizer and pest control industries, marketing and processing, and agencies of the State and Federal Governments. Students are offered opportunities to develop and care for commercial vegetable and field crop plantings of their own. Financial assistance is available through the college foundation so that individual students may participate in “learn by doing” and “earn while learning” experiences.

CURRICULUM IN GENERAL CROP PRODUCTION

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal Crops (CP 122)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Field Crops (CP 121)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Weeds and Weed Control (CP 133)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122, 123)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language Communications (Eng 104, 105, 106)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16 1/2</td>
<td>16 1/2</td>
<td>16 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable Crop Production (TC 225, 226)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Harvesting and Packaging Vegetables (TC 224)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Farm Surveying (AE 131)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Power (AE 227)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Machinery (AE 221)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Plant Pathology (Bot 223)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>15 1/2</td>
<td>17 1/2</td>
<td>15 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation (AE 240)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Crop Technology (CP 222)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Irrigated Pastures (CP 333)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Farm Management (FM 322)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
DESCRIPITIONS OF COURSES IN GENERAL CROPS

CP 121 Field Crops

Growing of California field crops other than cereals, such as row-planted cotton, flax, field beans, sugar beets, and miscellaneous fiber and oil crops. Characteristics of the major varieties in relation to the best cultural, harvesting, marketing, disease and pest control practices. 3 lectures, 1 laboratory.

CP 122 Cereal Crops

Production and management of the major California cereal crop varieties. Characteristics of these varieties in relation to applicable cultural practices, harvesting, cost of production, grain grading and processing, marketing, disease and pest control. 3 lectures, 1 laboratory.

CP 123 Forage Crops

Production, harvesting, and utilization of principal California forage crops. Identification and utilization of range plants studied in the field. 3 lectures, 1 laboratory.

CP 133 Weeds and Weed Control

Recognition and control of weeds injurious to California crop and range lands. Classification of weeds and their seed. Dissemination; cultural, chemical, and biological control practices; laws regarding weeds. 3 lectures, 1 laboratory.

CP 222 Crop Technology

Grades and qualities of California crops as they affect market values. Determination of factors affecting optimum harvesting and storage. Technological processes as they affect processing. 3 lectures, 1 laboratory. Prerequisites: CP 121, 122, TC 224

CP 230 General Field Crops

Production, harvesting, and use of important California cereal and field crops. Production areas, varieties, disease, and pest control. 3 lectures, 1 laboratory.

CP 321 Crop Pest Control

Methods of recognizing and combatting insect pests, plant diseases, and rodents attacking commercial vegetable and field crops. Sprays, dusts, fumigants, and poisons, as well as cultural and sanitation practices of control. 3 lectures, 1 laboratory. Prerequisites: Bot 122, 223, Ent 126

CP 331 Seed Production

California field, vegetable and flower seed production. Location, methods of growing, harvesting, storing. Economic outlook for principal kinds. Certified seed production. Seed laws. 3 lectures, 1 laboratory. Prerequisites: CP 121, 122, 133, TC 226

CP 333 Irrigated Pastures

Culture, management, fertilization, composition, and costs of California irrigated pastures. Identification, adaptation, and utilization of major irrigated pasture varieties. 3 lectures, 1 laboratory.

To be selected from advanced Economics or Management and Sales courses with the approval of the adviser.
CP 337 Crop Farm Operation
Operation of commercial vegetable and field crop acreages. Land preparation, cultivation, planting, fertilization, and pest control. Familiarity with more specialized farm equipment. 2 lectures, 1 laboratory. Prerequisites: CP 121 or 122, TC 224 or 225

CP 400 Special Problems
For advanced students with sufficient preparation to benefit from specialized study. According to needs and interest of student. Total credit limited to 4 units, with not more than 2 units in any one quarter.

CP 461, 462 Senior Project
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

CP 463 Undergraduate Seminar
New methods and developments. Practices and procedures in the field. 2 lectures.

DESCRIPTIONS OF COURSES IN TRUCK CROPS PRODUCTION

TC 224 Harvesting and Packaging Truck Crops
Harvesting methods and procedures; current handling and packaging techniques; grades and grading, minimum standards, containers, storage; requirements of crops for processing. 3 lectures, 1 laboratory.

TC 225 Vegetable Crop Production
Production of vegetables grown in the cooler seasons of the year. The major crops and producing areas of California. Project in crop production. 3 lectures, 1 laboratory.

TC 226 Vegetable Crop Production
Production of vegetables of major economic value grown in the warmer seasons of the year. Manual application of production techniques on college owned acreage. 3 lectures, 1 laboratory.

TC 230 General Truck Crops
Principles of production, harvesting, and marketing of major truck crops grown in California. Specific production problems relating to areas. 3 lectures, 1 laboratory.
The Horticultural Services and Inspection Department has three primary functions:

1. To prepare students for employment in civil service and open positions with county, state, and federal agencies. County, state, and federal inspectors are cooperative agents whose duties are to enforce agricultural laws and regulations which have been established for the protection and assistance of agricultural enterprises. The protection of agricultural crops from the numerous plant and animal pests, the prevention of fraud and deception in the marketing of these crops requires the services of many inspectors.

2. To prepare students for employment as sales service representatives of the agricultural chemical and crop marketing industries. Agricultural chemical industries offer employment in sales and advisory capacities to those with specific training and with a basic knowledge of agricultural practices. Many opportunities are available in the marketing of agricultural commodities for graduates with training in fruit and vegetable grading, packing, and marketing. Applied training is offered to prospective supervisors, buyers, and sellers of agricultural crops.

3. To prepare students for employment in structural and agricultural pest control operations. This industry is rapidly expanding, due to the tremendous increase in housing and industrial development and re-establishment of agricultural lands.

Summer appointments with county and state agencies or commercial companies, after one year of training in this major, provide experience and a summer income.

CURRICULUM IN HORTICULTURAL SERVICES AND INSPECTION

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Law and Procedure (SI 101)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Approved Plant Production Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Insect Pests (SI 228, 229)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Plant Identification (SI 224)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest Control Materials (SI 231)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weed Control (SI 226)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Rodent Control (SI 223)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pest Control Equipment (AE 233)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Plant Pathology (Bot 223)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>
DESCRIBINGS OF COURSES IN HORTICULTURAL SERVICES AND INSPECTION

SI 101 Agricultural Law and Procedure (3)
Provisions of the Agricultural Code and other laws affecting industries serving agriculture and the agricultural inspector; structures, and functions of state and county departments of agriculture, California seed law, agricultural chemicals, grain warehouse inspection, agricultural and structural pest control operators. 3 lectures.

SI 223 Rodent Control (3)
Small mammals injurious to agricultural crops and structures including introduced rats and mice, ground squirrels, pocket gophers, moles, native rats and mice. Identification, seasonal history, and economic importance. Control methods and materials, their uses and precautions. Related laws and regulations. 2 lectures, 1 laboratory. Prerequisite: SI 101

SI 224 Plant Identification (4)
Identification of ornamental, orchard, and crop plants by contrast of odors, leaf shapes, and arrangements; fruit and flower types, growth habits; coloration of plant parts; and environmental variations. Consideration of scientific, common, and family name; general propagation and most serious pests. 3 lectures, 1 laboratory. Prerequisites: Bot 122, Ent 126

SI 226 Weed Control (3)
Collection, preservation, and identification of common weeds found in agricultural crops, industrial and residential areas. Primary and secondary noxious weeds and seeds; their habits of growth, seasonal history, and most effective methods and materials for control. Related laws and regulations. 2 lectures, 1 laboratory. Prerequisites: SI 101, Bot 122

* Students wishing to specialize in Structural Pest Control will substitute for the courses indicated, the following: SI 332, 333, 334, 446, Bot 335, AMS 201, 202, ME 121, Ec 301, 302, 316, and 317.

† Two applied plant pathology courses to be selected with approval of major adviser.
SI 228 Economic Insect Pests
Recognition and distribution of the more serious mites and insects with gradual metamorphosis attacking important agricultural crops. Identification of damage to various parts of plants. Seasonal history relating to susceptibility to commonly applied control measures. 2 lectures, 1 laboratory. Prerequisite: Ent 126

SI 229 Economic Insect Pests
A continuation of SI 228 considering the insects having complete metamorphosis. 2 lectures, 1 laboratory. Prerequisite: Ent 126

SI 231 Pest Control Materials
Economic entomology as it pertains to the development of pest control materials; properties and formulations of pesticides; insect, plant, and animal tolerances; application of and precautions for modern insecticides, including the most recent developments; related laws and regulations. 3 lectures, 1 laboratory. Prerequisite: Ent 126

SI 321 Standardization
Standardization provisions of the Agricultural Code relating to fruits, nuts, vegetables, eggs, and honey. Minimum requirements for marketing, including maturity standards; disease, insect, and physiological quality and condition factors; container markings and size designations. 3 lectures, 1 laboratory. Prerequisites: SI 101, Ent 126, Bot 223

SI 322 Plant Quarantine
Purpose and application of federal, foreign, and domestic plant quarantines and California plant quarantine laws and regulations; identification, habits and seasonal history of pests and diseases concerned; areas under quarantine, commodities covered, restrictions, and established treatments. 3 lectures, 1 laboratory. Prerequisites: SI 101, Ent 126, Bot 223

SI 325 Shipping Point Inspection
Fundamentals, principles, and procedures for inspecting fruits and vegetables based on United States grades. Primary quality and condition factors, size determinants, types of pack, containers, varieties, areas of production and time of harvest for major fruits and vegetables. 2 lectures, 1 laboratory. Prerequisite: SI 321

SI 332 Household Pests
Pests attacking plant and animal products in dwellings, food serving, and processing establishments, warehouses, and other enclosures; recognition of pests, damage, habitats; means of control and exclusion; pesticides registered for use in controlling these pests; related laws and regulations. 2 lectures, 1 laboratory. Prerequisite: Ent 126

SI 333 Household Pests
A continuation of SI 332 to include pests existing as nuisances in homes or other enclosures of occupancy, dooryard pests, and pests attacking man and domestic animals, including pets, poultry, and wild animals whose ectoparasites also attack man. 2 lectures, 1 laboratory. Prerequisite: Ent 126

SI 334 Insects Affecting Timber Products
The major and minor insect pests and other orthopods of economic significance in the destruction of wood products; recognition of stages and damage, habits, seasonal history, and control of such pests. Laws and regulations affecting the structural pest control operator. 2 lectures, 1 laboratory. Prerequisite: Ent 126

SI 336 Apiculture
Care, management, and manipulation of bees by beginners. Practical application of principles for effective establishment and maintenance of home and commercial apiaries. Recognition and control of bee diseases. Laws and regulations pertaining to beekeeping. 2 lectures, 1 laboratory. Prerequisite: Ent 126
SI 372, 373 Services and Inspection Problems (1) (1)
Breakdown of fields of employment and opportunities. Application forms, letter of application, data sheet, the interview, application follow-up. Speakers representing agricultural and structural pest control, agricultural chemical, crop marketing, and allied industries, and governmental agencies. 1 lecture. Prerequisite: Junior standing.

SI 400 Special Problems (1-2)
For advanced students with sufficient preparation to benefit from specialized study. According to needs and interest of student. Total credit limited to 4 units, with not more than 2 units in any one quarter.

SI 419 Seed Inspection (2)
Identification of agricultural, vegetable, and weed seeds; inspection methods and procedures. Technique of purity and germination tests in accordance with official procedures. California seed law and other pertinent laws and regulations. 2 lectures.

SI 424 Field and Orchard Inspection (3)
Inspection methods and procedures for important insect, weed, rodent, and disease pests of major agricultural crops. How to determine when control measures are necessary and evaluation of control programs. Detection surveys. Related laws and regulations. 2 lectures, 1 laboratory. Prerequisite: Senior standing.

SI 437 Nursery Inspection (2)
Inspection techniques and procedures for nursery plants prepared and offered for sale. Identification and relative importance of pests. Control recommendations, plant tolerances to pesticides, and evaluation of control programs. Quarantine and shipping requirements. Related laws and regulations. 1 lecture, 1 laboratory. Prerequisites: SI 224, 229, 322

SI 446 Pest Control Practices (2)
Field pest control operations directed against wood destroying and household pests. 2 laboratories. Prerequisites: SI 332, 333, 334, Bot 335

SI 461, 462 Senior Project (2) (2)
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

SI 463 Undergraduate Seminar (2)
New methods and developments, practices, and procedures in the field. 2 meetings.
The function of this department is to train men for positions in the ornamental horticultural industry and allied fields.

Students majoring in ornamental horticulture may, by proper selection of available courses in the junior year, specialize in one of two occupational areas: in design and contracting, or in nursery operations.

Class and student projects give a practical aspect to instruction. Each year a section of the campus is improved by such project activities. Use and beauty are considered and a completely new design is developed, constructed, and planted, giving the students valuable practical experience.

Frequent field trips are made to the Los Angeles area, which leads the Nation in the ornamental horticultural industry. In addition to the opportunities to work in nurseries and on maintenance jobs, students in the department grow and sell cut flowers, pot plants, house plants, and nursery stock. Student salesmen learn how to meet customers and sell their products. Student project owners receive a share of the profits.

Graduates are prepared for managerial and operational positions in general nursery work, specialized growing, landscape design, construction and contracting, estate maintenance, tree surgery, and for civil service positions with park and highway departments.

CURRICULUM IN ORNAMENTAL HORTICULTURE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Horticulture (OH 131)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornamental Shrubs (OH 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nursery Practices (OH 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Landscape Construction (AE 124, 125)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electricity and Plumbing (AE 122)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Project Records (FM 100)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ornamental Trees (OH 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Landscape Design (OH 224)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape Design of Small Homes (OH 225)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting Design (OH 226)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Herbaceous Landscape Plants (OH 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Salesmanship (AMS 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Farm Surveying (AE 131)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Pathology I (Bot 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>
Junior

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Landscape Design of Suburban Properties (OH 326)</td>
<td>3</td>
</tr>
<tr>
<td>* Landscape Contracting (OH 331, 332)</td>
<td>3</td>
</tr>
<tr>
<td>* Native Plant Materials (OH 336)</td>
<td>3</td>
</tr>
<tr>
<td>Diseases and Pests of Ornamental Plants (OH 327)</td>
<td>4</td>
</tr>
<tr>
<td>Turf Management (OH 333)</td>
<td>4</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td>4</td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td>4</td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Park Design (OH 324)</td>
<td>4</td>
</tr>
<tr>
<td>Undergraduate Seminar (OH 463)</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project (OH 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>† Economics</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>11</td>
</tr>
</tbody>
</table>

DESCRIPTIONS OF COURSES IN ORNAMENTAL HORTICULTURE

OH 121 Nursery Practices
- Commercial nursery operations. Propagation, nursery layout, seed sowing, transplanting, potting, canning, fertilizing, irrigation, and pest control. Bedding plants, hot plants, trees and shrubs. 3 lectures, 1 laboratory.

OH 122 Ornamental Shrubs
- Broadleaf shrubs and vines used in California. Identification, habits of growth, cultural requirements, and landscape use. 3 lectures, 1 laboratory.

OH 131 Basic Horticulture
- The basic skills of horticulture. Techniques and plans for their use in the gardening and nursery trade. 3 lectures, 1 laboratory.

OH 221 Ornamental Trees
- Broadleaf trees grown and used in California. Identification, habits of growth, cultural requirements, and landscape use. 3 lectures, 1 laboratory.

OH 224 Principles of Landscape Design
- Basic principles of design and the application of these principles in the solving of landscape design problems. 2 lectures, 1 laboratory.

OH 225 Landscape Design of Small Homes
- Adaptation of landscape design principles to the garden layout of residential properties. Each student designs and renders in color a minimum of four small home properties. 1 lecture, 2 laboratories. Prerequisite: OH 224

OH 226 Planting Design
- The proper association of plant materials according to texture, color, and mass. The techniques involved in their grouping, arranging, and planting about buildings. 2 lectures, 1 laboratory. Prerequisites: OH 122, 221

* A student desiring to specialize in Nursery Operations will omit the courses marked and will substitute the following: OH 322, 323, 334, FP 230, Bio 303, Chem 328.
† Three units to be selected from: FM 304, 403, Ec 316.
OH 230 General Nursery Practices (3)
A general course in Ornamental Horticulture with emphasis upon nursery operations. Includes budding, potting, seed sowing, transplanting, pest control, and the planting of lawns, trees, shrubs, and flower beds. 2 lectures, 1 laboratory.

OH 321 Herbaceous Landscape Plants (4)
The identification, habits of growth, and landscape uses of ornamental annuals and herbaceous perennials commonly grown for California landscape. 3 lectures, 1 laboratory. Prerequisites: OH 121, 122, 223

OH 322 Specialized Propagation Practices (4)
Commercial specialized propagation including all types of grafting, budding, layerage, inarching, separations, divisions, and cuttings. Flask seeding. Use of the college facilities and frequent field trips to wholesale growers. 3 lectures, 1 laboratory. Prerequisites: OH 131, 122, Bot 122

OH 323 Greenhouse Design and Management (4)
Construction, maintenance, and management of forcing structures. Growing of commercial flower crops under glass, lath, and cloth. Experience in greenhouse watering, fertilizing, and pest control operations. 3 lectures, 1 laboratory. Prerequisites: OH 122, 123, 221, 222

OH 324 Park Design (4)
Application of design principles to more specialized landscape problems of parks, schools, and public institutions. 2 lectures, 2 laboratories. Prerequisites: OH 224, 225

OH 326 Landscape Design of Suburban Properties (3)
Design principles are applied in the solving of landscape problems dealing with large residential developments. 1 lecture, 2 laboratories. Prerequisites: OH 224, 225

OH 327 Diseases and Pests of Ornamental Plants (4)
The effect of diseases and pests on ornamental plants found in nurseries, greenhouses, and commercial cut flowers. Their identification, control, and prevention. Field trips to the production areas to study field conditions. 3 lectures, 1 laboratory. Prerequisites: OH 122, 221, Ent 126, Bot 223

OH 329 Tree Surgery (3)
Instruction and practice in the use of safety lines; in the fertilizing, trimming, bracing, cabling, repair, and maintenance of ornamental trees. 2 lectures, 1 laboratory. Prerequisites: OH 131, 221

OH 331 Landscape Contracting (3)
Practice in handling men and applying approved techniques in landscape construction. Cost finding and estimating for the landscape trade. 2 lectures, 1 laboratory. Prerequisites: AE 124, 125, Math 102, 103, AE 131, 132

OH 332 Landscape Contracting (3)
Practice in handling men and applying approved techniques in landscape construction. Contract writing and legal aspects of landscape contracting. 2 lectures, 1 laboratory. Prerequisites: OH 331, Math 102, 103, AE 131, 132

OH 333 Turf Maintenance and Management (4)
Practice in the maintenance and management of turf areas, including such specialized areas as golf greens, athletic fields, and park lawns. 3 lectures, 1 laboratory. Prerequisites: OH 131, 224

OH 344 Commercial Cut-flower Growing (4)
Planting, cultural care, pest control, harvesting, storage, and marketing of cut flowers. Field trips to nearby production centers and the flower market. 3 lectures, 1 laboratory. Prerequisites: OH 131, 122, 222, Bot 122

OH 355 Park and Estate Management (3)
Planning, scheduling, and operational techniques applicable to the maintenance of grounds in public and private parks and estates. 2 lectures, 1 laboratory. Prerequisites: OH 131, 122, 224, 226, 221, 321
OH 336 Native Plant Materials
Native California plants suitable for landscape purposes. Their identification, habits of growth, cultural requirements, and landscape use. 2 lectures, 1 laboratory.

OH 339 Flower Shop Operation
The operations of a retail florist shop. History and background, selection of location, layout and arrangement, equipment and supplies, policies and management, buying and selling. 3 lectures, 1 laboratory.

OH 351 Special Ornamental Horticultural Problems
Special advanced work in the ornamental horticultural field, of a technical and professional nature, to further qualify advanced students in the field. Hours to be arranged. Limited to advanced students.

OH 461, 462 Senior Project
Selection and completion of a project under a minimum of supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

OH 463 Undergraduate Seminar
An open forum of senior students in which the latest developments, practices, and procedures are discussed. Each student is responsible for the development and presentation of a topic in his chosen field. 2 lectures.
The functions of this department are to provide training in soil science for students in the Agricultural Division enrolled in other majors and to prepare students in the occupational fields of soils, conservation, range management, education, and farming. Courses in soil science have been developed with lecture, laboratory, and field coverage to provide fundamental knowledge of the subject and its application in agricultural production.

Completion of the four-year curriculum entitles the graduate to a Bachelor of Science degree in soil science.

Facilities of the department have been expanded to provide sufficient laboratory space and equipment to meet the needs of the program. The application of soil management practices on the college farm is utilized to the fullest possible extent in the study of methods for putting soil knowledge to work. Work of outstanding value on nearby ranches and that being carried on by public agencies is also widely utilized.

CURRICULUM IN SOIL SCIENCE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Field Crops (CP 230)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Soils (SS 123)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language Communication (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141, 142, 143)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health and Hygiene (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizers (SS 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Conservation (SS 222)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Range Management (SS 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Plant Pathology (Bot 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Fruit Production (FP 230)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveying (AE 131)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Farm Tractors (AE 241)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics (Math 114, 115)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sports Education (PE 241, 242, 243)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 324, 325)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Family Relations (Psy 206)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>
Junior (San Luis Obispo)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Classification (SS 321)</td>
<td>4</td>
</tr>
<tr>
<td>Soil Fertility (SS 322)</td>
<td>3</td>
</tr>
<tr>
<td>Range Technology (SS 332)</td>
<td>3</td>
</tr>
<tr>
<td>Irrigation (AE 240)</td>
<td>4</td>
</tr>
<tr>
<td>Literature</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201, 202)</td>
<td>3</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Biochemistry (Chem 328)</td>
<td>4</td>
</tr>
<tr>
<td>General Animal Husbandry (AH 230)</td>
<td>4</td>
</tr>
<tr>
<td>General Dairy Husbandry (DH 230)</td>
<td>4</td>
</tr>
<tr>
<td>* Optional Courses</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior (San Luis Obispo)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Management (FM 322)</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Resources (FM 305)</td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (SS 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (SS 463)</td>
<td>2</td>
</tr>
<tr>
<td>Soil Microbiology (SS 422)</td>
<td>4</td>
</tr>
<tr>
<td>Soil Chemistry (SS 423)</td>
<td>3</td>
</tr>
<tr>
<td>Soil Physics (SS 432)</td>
<td>4</td>
</tr>
<tr>
<td>* Optional Courses</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Descriptions of Courses in Soil Science

SS 121 Soils
Physical, chemical, and biological properties of soils as related to agriculture. 3 lectures, 1 laboratory.

SS 122 Soil Management
Effect of tillage, manuring, drainage, and irrigation practices on soil productivity. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 123 California Soils
Origin, formation, and composition of California soils. Interpretation and utilization of soil survey and other data in crop production. 2 lectures, 1 laboratory. Prerequisite: SS 121

SS 202 Soil Conservation
Climate, topography, soils and land use in relation to soil and water losses. Evaluation of soil and water conservation programs and practices. 3 lectures. Prerequisite: SS 121

SS 221 Fertilizers
Composition, value, and use of fertilizer materials and soil correctives. Methods employed in the manufacture, distribution, and application of fertilizers. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 223 Range Management
Soil and plant characteristics of range lands. Management practices used to maintain range resources and increase production of forage and livestock. Identification of important range plants. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 230 General Soils
General properties of soils including common soil management, fertility, and conservation practices. Nonsoils majors. 3 lectures, 1 laboratory.

* Students electing to specialize in Soil Conservation must select 12 units from the following courses: AE 132, 437; AH 101, 102, 402; Bot 343; Bio 433; OH 220; PH 230; CP 221, 321.

* Students electing to specialize in Technical Soils must select 12 units from the following courses: Zoo 131; Bio 225; Bot 322; Phys 131; PSc 209; Chem 331, 332, 403; Math 201; Eng 301.
RELATED AGRICULTURAL COURSES

In addition to courses within major departments of study, there are certain fields of agriculture, including agricultural mechanics, poultry, and soils, which are necessary to provide adequate training for practical applications of the major field of study.

DESCRIPTIONS OF COURSES IN AGRICULTURAL ENGINEERING

Haven Q. Conard Albert E. Kattenhorn Glenn E. Stringham

AE 100 Introduction to Agricultural Engineering (1)
Agricultural Engineering as a profession. Technical areas and job opportunities. Departmental orientation. 1 lecture.

AE 121 Carpentry and Concrete (2)
Elements of carpentry and concrete work as applied to farm buildings and structures, concrete walks, floors, foundations, and concrete block construction. Use of both hand and power equipment. 1 lecture, 1 laboratory.

AE 122 Electricity and Plumbing (2)
House wiring practices, types of material use, fractional horsepower electric motor installation, soldering, water pipe selection and fitting. 1 lecture, 1 laboratory.

AE 123 Welding (2)
Elements of arc and acetylene welding of mild steel; flat horizontal, vertical, and overhead positions. Oxyacetylene cutting. 1 lecture, 1 laboratory.

AE 124, 125 Landscape Construction (2)
Instruction and practice in the construction techniques applicable to landscaping. 1 lecture, 1 laboratory.

AE 131 Farm Surveying (2)
Care and use of surveying equipment. Land measurement. Differential leveling. Laying out contours and ditch lines. Writing and interpreting field notes. 1 lecture, 1 laboratory.

AE 132 Applied Farm Surveying (2)
Methods of plane table mapping, use of contour maps, planimeter and profiles in calculating earth yardage and reservoir capacity. Borrow pit and land leveling problems. 1 lecture, 1 laboratory. Prerequisite: AE 131

AE 221 Farm Machinery (2)
Basic principles of machines. Materials and construction. Lubrication and maintenance. Selection, operation, and adjustment of seed bed preparation equipment. Seeding, planting, and commercial fertilizer equipment. 1 lecture, 1 laboratory. Prerequisite: AE 122

AE 222 Farm Machinery (2)
Selection, operation, and adjustment of haying, harvesting, cultivating, spraying, and dusting equipment. For students majoring in the crops and fruit production fields. 1 lecture, 1 laboratory. Prerequisite: AE 221

AE 227 Farm Power (2)
Internal combustion engine fundamentals, both gasoline and diesel. Trouble shooting, overhauling, and making major adjustments and repairs. 1 lecture, 1 laboratory. Prerequisite: AE 122
AE 233 Pest Control Equipment
Principles of operation of the various types of spraying, dusting, and fumigation equipment used by the structural and agricultural pest control industries. Care, adjustment, and repair of this equipment. 2 lectures, 1 laboratory. Prerequisite: AE 122

AE 240 Irrigation
Fundamental principles and practices of irrigation. Soil-moisture relationships, water measurement, methods of irrigation, crop requirements, farm irrigation structures, pumps and pumping, and problems of the irrigation farmer. 3 lectures, 1 laboratory. Prerequisites: AE 131, SS 121

AE 241 Farm Tractors
Field and shop practice in the operation, service, and adjustment of the modern farm tractor; including both wheel and track types with gasoline, diesel, and butane power units. 1 lecture, 1 laboratory.

AE 244 Farm Equipment Projects
Construction of trailers and other implements. 1 laboratory per unit. Prerequisites: AE 121, AE 123

DESCRIPTION OF COURSE IN MECHANICAL ENGINEERING

ME 121 Engineering Drafting
The use of drafting instruments, lettering, geometric construction, orthographic and pictorial projections, and dimensioning. 1 lecture, 1 laboratory.

DESCRIPTION OF COURSE IN DAIRY HUSBANDRY

DH 230 General Dairy Husbandry
Selection, breeding, feeding, and management of dairy cattle, composition and food value of dairy products. Dairy industry statistics and opportunities. A general course for other than dairy majors. 3 lectures, 1 laboratory.

DESCRIPTIONS OF COURSES IN POULTRY INDUSTRIES
Lyle J. Arnold

PI 131 Poultry Production
Poultry industry in Southern California. Breeds and strains for egg and meat production. Types of housing. Poultry as a sideline with other crop and livestock enterprises. 3 lectures, 1 laboratory.

PI 132 Fryer Production
Fryer production and problems in Southern California. Emphasis on peculiarities of housing, feeding, climatic management and marketing peculiar to Southern California conditions. 3 lectures, 1 laboratory. Prerequisite: PI 131

PI 133 Egg Production
Aspects of egg production in cages in Southern California. Suitable strains for cage production. Feed formulations, culling and egg quality problems. Los Angeles Market requirements. 3 lectures, 1 laboratory. Prerequisite: PI 131

PI 136 Turkey Production
Turkey production in Southern California desert regions. Emphasis upon strains, housing, management and climatic problems. Marketing and financial practices. 3 lectures, 1 laboratory. Prerequisite: PI 131

PI 231 Poultry Products
Conditions surrounding the production and marketing of poultry meats and eggs in Southern California. Emphasis on assembly, processing, grading, selling and storage methods. 3 lectures.
PI 232 Egg Wholesaling (4)
Survey of the purchase, processing and sale of eggs in quantity to include: candling, grading, packaging, costs, equipment, sanitation regulations, labor management. Preparation of by-products. Principal dealers. 3 lectures, 1 laboratory. Prerequisite: PI 131

PI 233 Poultry Meat Wholesaling (4)
The purchase, processing and sale of poultry to include: grading, packaging, costs, equipment, sanitation regulations, labor management, and preparation of by-products. 3 lectures, 1 laboratory. Prerequisite: PI 231

DESCRIPTION OF COURSE IN VETERINARY SCIENCE

VS 123 Anatomy and Physiology (3)
Anatomy and the related physiological functions of farm animals. 2 lectures, 1 laboratory. Prerequisites: Zoo 131, 132
ARTS AND SCIENCES COURSES

BIOLOGICAL SCIENCE COURSES

Howard S. Brown Vernon L. Gregory J. F. Lamiman
Jerome E. Dimitman Harold L. Lint

DESCRIPTION OF COURSE IN BACTERIOLOGY

Bact 221 General Bacteriology (4)

Morphology, classification, physiology, and cultivation of bacteria; relation of bacteria to health of man, animals, and plants. 2 lectures, 2 laboratories. Prerequisite: Bot 121 or Zoo 131, or Chem 321 or 324

DESCRIPTIONS OF COURSES IN BIOLOGY

Bio 101 General Biology (3)

Characteristics of living things; cellular composition and organization; functional approach to organ systems of man. 3 lectures.

Bio 303 Genetics (3)

Principles of heredity and variation. 3 lectures. Prerequisite: Bot 121 or Zoo 131

DESCRIPTIONS OF COURSES IN BOTANY

Bot 121 General Botany (4)

Introduction to structure and functions of seed bearing plants. 2 lectures, 2 laboratories.

Bot 122 General Botany (4)

Nature and relationships of plant groups from bacteria to angiospermae; emphasis on nonseedbearing plants of economic importance. 2 lectures, 2 laboratories. Prerequisite: Bot 121

Bot 123 General Botany (4)

Elementary plant genetics, paleobotany, organic evolution, plant ecology, and plant geography. 2 lectures, 2 laboratories. Prerequisite: Bot 122

Bot 223 Plant Pathology I (4)

Principal diseases of plants; symptoms, field identification, and control methods. 3 lectures, 1 laboratory. Prerequisite: Bot 121

Bot 236 Families of Flowering Plants (3)

Recognition of the major orders and families of flowering plants. 2 lectures, 1 laboratory. Prerequisite: Bot 122

Bot 304 Plant Breeding (3)

Principles and techniques of improving ornamental and agronomic plants. 2 lectures, 1 laboratory. Prerequisite: Bio 303

Bot 322 Plant Physiology (3)

Functions of plants; water relations, metabolism, and plant growth. 2 lectures, 1 laboratory.

Bot 324 Advanced Plant Pathology (3)

Methods and materials used in diagnosis of plant diseases; special reference to techniques for differentiation of plant disease problems. 2 lectures, 1 laboratory. Prerequisite: Bot 223

Bot 329 Grass Identification (2)

Structure and variation in grasses. Use of a key in identification. Recognition of tribes of the grass family. Use of vegetative characters in the identification of common hay and pasture grasses. 1 lecture, 1 laboratory. Prerequisite: Bot 122
Bot 335 Fungi Attacking Wood Products (3)
Recognition and identification of fungi found in timber products. Types of damage, means of prevention, and control measures. 2 lectures, 1 laboratory.

DESCRIPTIONS OF COURSES IN ENTOMOLOGY

Ent 126 General Entomology (4)
Basic principles of insect classification, with a survey of important families. Structure, development, and behavior of insects. General principles of insect control. 2 lectures, 2 laboratories.

Ent 334 Advanced Entomology (3)
Methods and techniques of systematic entomology. Immature forms of economic importance. Principles of biological control; insect ecology. Methods for evaluation of insect control procedures. 2 lectures, 1 laboratory. Prerequisite: Ent 126

DESCRIPTIONS OF COURSES IN ZOOLOGY

Zoo 131 General Zoology (4)
Cells, tissues, and organ systems of vertebrates; emphasis on man and domestic animals. 2 lectures, 2 laboratories.

Zoo 132 General Zoology (4)
Reproduction, embryology, and genetics in vertebrate animals. General taxonomy, economic zoology, ecology, and evolution. 2 lectures, 2 laboratories. Prerequisite: Zoo 131

Zoo 133 General Zoology (4)
Invertebrate animals from protozoa to chordates. A study of the variety and distribution of animal life with emphasis on those forms of economic and medical importance. 2 lectures, 2 laboratories. Prerequisite: Zoo 132

ENGLISH, PUBLIC SPEAKING, AND JOURNALISM COURSES

Albert J. Aschenbrenner Hugh O. La Bounty Frank A. Tennant
Harold Brungardt Lowell K. Weeks

DESCRIPTIONS OF COURSES IN ENGLISH

Eng 4 Preparatory English (3)
For the student who needs additional work before entering English 104. The organization of ideas into logical, clear sentences and paragraphs, taught primarily through intensive writing based on the student's interests and experience. 3 lectures.

Eng 104 Language Communication (3)
Oral and written communication as they relate to examining assumptions, distinguishing fact from opinion, and recognizing oversimplification and rationalization. Application of these skills to reports, letter writing, and factual exposition. 3 lectures. Prerequisite: Satisfactory grade on placement examination or Eng 4

Eng 105 Language Communication (3)
Oral and written communication as they relate to testing inferences, using forms of logic, and developing adequate definitions. Application of these skills to practical problem-solving situations involving argumentation, persuasion, and use of evidence. 3 lectures. Prerequisite: Eng 104

Eng 106 Language Communication (3)
Oral and written communication as they are used in the mass media, particularly newspapers, magazines, radio, and movies. Analysis of language components in propaganda disseminated through these media. 3 lectures. Prerequisite: Eng 105
Eng 211 Modern Literature (3)
Consideration, through the study of modern literature, of the problems of man and his social world—his search for social, political, and economic stability. 3 lectures. Prerequisite: Eng 106

Eng 212 Modern Literature (3)
Consideration, through the study of modern literature, of the problems of man and his material world—his reaction to nature, science, and machinery. 3 lectures. Prerequisite: Eng 106

Eng 213 Modern Literature (3)
Consideration, through the study of modern literature, of the problems of man's inner world—his attempt to understand himself through psychology, religion, and philosophy. 3 lectures. Prerequisite: Eng 106

Eng 401 Report and Business Letter Writing (3)
Practice in routine business correspondence; letters of application, inquiries, questionnaires, and the psychology of modern business letters; study of the common types of business reports, articles and papers. 3 lectures. Prerequisite: Eng 106

DESCRIPTIONS OF COURSES IN SPEECH

Sp 201 Public Speaking (2)
Oral presentation of facts and opinion and training in critical listening. Experiences in practical speaking situations, such as business reports, sales talks, interviews, panels, discussion groups, and parliamentary meetings. 2 lectures. Prerequisite: Eng 105

Sp 303 Advanced Public Speaking (2)
Problems in parliamentary law and formal discussion. Specialized speaking situations in business, engineering, and agriculture; attention will be given to individual problems and interests. 2 lectures. Prerequisite: Sp 201

DESCRIPTIONS OF COURSES IN JOURNALISM

Jour 140, 141 Typing (1) (1)
Designed to teach the fundamentals of the touch system in the shortest time. Training is also given in making our business forms and writing business letters. 3 one-hour periods.

Jour 201 Introductory Journalism (3)
An introduction to journalism, survey of its history, and study of techniques of writing the news story. 3 lectures. Prerequisite: Eng 106

Jour 251, 252, 253 Journalism Practice (1-2) (1-2) (1-2)
Credit arranged for students holding editorial positions on college publications or student news bureau. 1-2 laboratories. Prerequisite: Instructor's permission.

Jour 321 Elementary Photography (2)
For those who have had limited experience in photography. Picture-taking techniques and darkroom practices. 1 lecture, 1 laboratory.

DESCRIPTIONS OF COURSES IN HEALTH AND PHYSICAL EDUCATION

Staley L. Pitts Robert B. Stull

PE 107 Health and Hygiene (2)
Personal hygiene and health education and the relation of exercise, nutrition, and application of the rules of hygiene in maintaining physical and mental health. Fire prevention and public safety; alcohol and other drugs. Required for freshmen and sophomores. 2 lectures.

PE 121 Safety and First Aid (2)
A standard American Red Cross first-aid course. Instruction and practice in the immediate and temporary care of injuries and sudden illness. 1 lecture, 1 laboratory.
PE 123 Swimming and Water Sports Theory and Practice (2)
Supervision of pool activities. Swimming instruction and safety. 1 lecture, 1 laboratory.

PE 126 Community Recreation (3)
The supervision and administration of community recreation. Games and activities suitable for a community recreation program. 1 lecture, 2 laboratories.

PE 141 Physical Education (½)
Fundamentals of sports and games. 2 laboratories.

PE 142 Physical Education (½)
Tumbling and apparatus work; boxing and wrestling; gymnastics and calisthenics. 2 laboratories.

PE 143 Physical Education (½)
Sports activities; physical tests; progressive activities. 2 laboratories.

PE 144, 145 Beginning Swimming (½) (½)
Beginning swimming for all who do not pass college swimming test. 2 laboratories.

PE 151, 152, 153 Competitive Athletics (½) (½) (½)
May be substituted for required physical training by those qualified to compete in intercollegiate sports program. 10 hours laboratory.

PE 201 Principles of Physical Education (3)
History of physical education and the concept of physical education as a profession. Correlation between principles and methods. 3 lectures.

PE 203 Health Education (2)
General school health problems of interest to students of physical education, teachers in service, and others. 2 lectures.

PE 232 Intramural Sports (3)
Sports adapted to intramural use. Organization of intramural programs. 2 lectures, 1 laboratory.

PE 241 Sports Education (½)
Training and competition in seasonal sports such as speed ball, touch football, and tennis. 2 laboratories.

PE 242 Sports Education (½)
Training and competition in seasonal sports such as basketball, badminton, volleyball, boxing, and wrestling. 2 laboratories.

PE 243 Sports Education (½)
Training and competition in seasonal sports such as tennis, track and cross-country running, softball, and soccer. 2 laboratories.

PE 251, 252, 253 Competitive Athletics (½) (½) (½)
May be substituted for required physical training by those qualified to compete in intercollegiate sports program. 10 hours laboratory.

DESCRIPTIONS OF COURSES IN MATHEMATICS

Cameron Bogue

Math 1 Preparatory Mathematics (3)
Fundamentals of arithmetic, denominate numbers, introduction to algebra, percentage, exponents, simultaneous linear equations. Required of all students who show a deficiency in algebra on the placement examination. 3 lectures.
Math 102 Agricultural Mathematics I (3)
Percentage, formulas, linear equations, simultaneous linear equations, problems involving soils and irrigation, dairy products, horticulture and agronomy, feeds, fertilizers, discounts and interest, slope, mixtures, nutritive ratio, perimeters, areas, volumes, specific gravity, ratio and proportion, farm construction, farm mechanics. 3 lectures. Prerequisite: Satisfactory score on placement examination or Math 1

Math 103 Agricultural Mathematics II (3)
Exponents, logarithms, Mannheim slide rule, introduction to trigonometry, statistical data, measures of central tendency, standard deviation, rectangular coordinates, plotting curves, expanding and factoring polynomials. 3 lectures. Prerequisite: Math 102

Math 108 Business Math I (3)
Arithmetic operations, algebraic operations, percentage, simple interest, discounts, business graphs, business statistics. 3 lectures. Prerequisite: Satisfactory score on placement examination or Math 1

Math 109 Business Math II (3)
Algebraic operations, compound interest, annuities, sinking funds, amortization, insurance, stocks and bonds, probability. 3 lectures. Prerequisite: Math 108

Math 111 Basic Mathematics for General Education (3)
Proportion, variation, units of measurement, slide rule, and probability as applied to biological science, physical education, and social science. 3 lectures. Prerequisites: Satisfactory score on placement examination or Math 1

Math 112 Basic Mathematics for General Education (3)
Elements of trigonometry, analytic geometry, and statistics as applied to biological science, physical education, social science. 3 lectures. Prerequisite: Math 111

Math 114 Agricultural Mathematics III (3)
An abridged course covering selected topics from trigonometry and intermediate algebra designed for those students who take no mathematics beyond Math 201. 3 lectures. Prerequisite: Math 103

Math 115 Agricultural Mathematics IV (3)
Inequalities and roots of equations. The geometry of the straight line, conic sections, and such higher plane curves as are needed in Math 201. 3 lectures. Prerequisite: Math 114

Math 211 Descriptive Statistics (3)
Graphical representation of statistical data; calculation and uses of various averages, measures of variability, elementary probability and the normal probability curve, simple linear correlation. 3 lectures. Prerequisite: Math 103 or 117

DESCRIPTIONS OF COURSES IN MUSIC
Lowell K. Weeks

Mu 141, 142, 143 Orchestra (2) (2) (2)
Limited to those who have had considerable experience playing musical instruments. The orchestra student has an opportunity to play for various college entertainments, dances, community programs, and radio broadcasts. 2 laboratories.

Mu 151, 152, 153 Band (1) (1) (1)
Limited to those students who have had experience with band instruments. The band plays for many college functions, assemblies, athletic games, and rallies, and makes at least one trip each year. Smaller groups are organized from the band for special functions. 1 laboratory.

Mu 154, 155, 156 Glee Club (1-2) (1-2) (1-2)
Four-part vocal compositions; fundamentals of breathing, tone production, diction, and interpretation. Quartets, octets, and soloists are developed, for which activities additional credit may be given. Try-outs in fall only. 1 or 2 laboratories.
Mu 241, 242, 243 Orchestra
Continuation of Mu 141, 142, 143.

Mu 251, 252, 253 Band
Continuation of Mu 151, 152, 153.

Mu 254, 255, 256 Glee Club
Continuation of Mu 154, 155, 156.

Mu 341, 342, 343 Orchestra
Continuation of Mu 241, 242, 243.

Mu 351, 352, 353 Band
Continuation of Mu 251, 252, 253.

Mu 354, 355, 356 Glee Club
Continuation of Mu 254, 255, 256.

SOCIAL SCIENCE COURSES
George E. Carlberg George T. Galbreath Donald H. Pfleuger

DESCRIPTIONS OF COURSES IN ECONOMICS

Ec 201 Principles of Economics
How the economic system works. The forces that determine the efficiency of the allocation, utilization, and distribution of resources. The financial, market, agricultural, and industrial structure of the American economy and its influence on the activities of the individual producer and consumer. 3 lectures. Prerequisite: Eng 106

Ec 202 Principles of Economics
Determinants of national income, output, prices, and employment. Distribution of, and fluctuations in, national income. Government policy related to agriculture and business. Study of the efficient combination of, and returns to, the factors of production. Personal economics and the position of the individual in domestic and international economics. 3 lectures. Prerequisite: Ec 201

Ec 213 Economic Problems
This is a flexible course adjustable to different student needs. Three general areas are covered: (1) Consumer economic problems; e.g., insurance, social security, budgeting, investing, purchasing, etc. (2) The scope of individual and national action with respect to domestic and international economic problems. (3) A study of economic problems in the areas of the agricultural majors. 3 lectures. Prerequisite: Ec 201

Ec 301, 302 Principles of Accounting
Principles and practices of fundamental double entry accounting theory. Problem approach to the subject with illustrations taken from real business situations. Provides information for analysis and allocation purposes. 2 lectures, 1 laboratory.

Ec 303 Cost and Payroll Accounting
Basic aspects of accounting organization; techniques commonly used in business operations as they concern cost and payroll accounting. Practice in payroll record-keeping and cost accounting procedures. 3 lectures. Prerequisite: Ec 302

Ec 312 Economic Geography
The physical environment as it affects the economic well-being of the individual. Analysis of the geographical location of agriculture and industry both domestic and international, emphasizing the economic interdependence of geographical areas, and the availability and use of resources. Prerequisites: Ec 201, 202
Ec 316 Commercial Law

The principles of contracts, the sale of personal property, negotiable instruments, and the sale of real property. Through use of the case method, attention is given to logical reasoning and the application of rules of law to everyday business affairs. 3 lectures. Prerequisite: Ec 201

Ec 317 Commercial Law

Mortgages, bailments, partnerships, insurance, agency, employment, with accompanying cases stressing the application of the principles of law in these fields. 3 lectures. Prerequisites: Ec 201, 316

Ec 416 Business Statements

Business statements examined from the standpoint of their use as a managerial tool in the operation of a business enterprise in industry or agriculture. Interpretation of the balance sheet, the profit and loss statement, and supplementary financial statements. 1 lecture.

DESCRIPTIONS OF COURSES IN FARM MANAGEMENT

FM 100 Project Records

Organization of the foundation, records needed in conducting a project, methods of keeping records and their analysis. Adapted to student conducted projects under the supervision of the college. 1 lecture.

FM 304 Agricultural Marketing

Problems in marketing agricultural products both cooperatively and otherwise. Structure and functions of the markets. Emphasis on distribution of California farm products. 3 lectures. Prerequisite: Ec 202

FM 321 Farm Records

The fundamental processes of record keeping based on the uses of records, the kinds of records that could be kept, the farm inventory, depreciation, the cash and accrual basis of income tax reporting, the basic fundamental reports, i.e., the balance sheet and the operating statement and their analysis. 2 lectures, 1 laboratory. Prerequisite: Ec 202

FM 322 Farm Management I

Measures of farm profits, method of finding profitability of enterprise, factors affecting farm profits, getting started in farming; problems involving the reorganization of actual farms. 3 lectures, 1 laboratory. Prerequisites: FM 321

FM 403 Agricultural Prices and Government Control

General price level, price-making process, price variations and trends, price reports and forecasting, governmental agricultural price control programs, price characteristics of specific agricultural commodities. 3 lectures. Prerequisite: Ec 202

DESCRIPTIONS OF COURSES IN HISTORY

Hist 304 Growth of American Democracy

The historic backgrounds of present-day economic, political, and social problems. Development of American institutions and ideals. 3 lectures. Prerequisite: Pol Sc 301

Hist 305 The United States in World Affairs

The origin, forms, and forces of international relations. Current problems of security since World War II. American ideals. Development of the United States influence in world affairs. Finding and evaluating authoritative source material on world affairs. 3 lectures. Prerequisites: Eng 105, Pol Sc 301, Hist 304

DESCRIPTIONS OF COURSES IN POLITICAL SCIENCE

Pol Sc 301 American Government

Pol Sc 401 State and Local Government (3)
The structure, function, and problems of state, county, municipal, and district governments with emphasis on those units of government serving the agricultural community. 3 lectures. Prerequisites: Pol Sc 301, Hist 304

DESCRIPTIONS OF COURSES IN PSYCHOLOGY AND EDUCATION

Psy 1 Remedial Reading (2)
Improvement of basic reading skills. Training in quick, accurate visual and auditory perception. Vocabulary development. Improvement of comprehension through analyses of author's purpose and techniques. 2 lectures.

Psy 101 Personal Development (2)
Orientation to college. Adjustment from high school to college level of education. Study habits, principles of learning, tools of learning, social adjustment. 2 lectures.

Psy 202 General Psychology (3)
Biological individuality; heredity and environment; motives; emotions; sensory activity and its use by the individual; learning and remembering; thinking and creating; intelligence; abilities; personality; culture and the individual; oneself and others. 3 lectures.

Psy 206 Family Relations (3)
Family life education. Economic, psychological, and biological understanding necessary for successful family life and child rearing. Techniques for happy marriage. Interrelationships of marriage, family living, democratic life, and sound mental health. 3 lectures.

Psy 304 Human Relations (3)
The purpose of this course is to teach methods of understanding and skill in dealing with people, particularly in job situations. Case studies will be used to illustrate interpersonal problems within social groups. 3 lectures. Prerequisite: Psy 202

Ed 312 Educational Psychology (5)
Pupil-teacher relationships; promotion learning, mental health, and motivation. Growth and development. Individual differences and group interaction. Group methods and classroom observation. 5 lectures. Prerequisite: Psy 202

PHYSICAL SCIENCE COURSES

Donald E. Rees

DESCRIPTIONS OF COURSES IN CHEMISTRY

Chem 4 Preparatory Chemistry (3)
For students whose background is deficient in chemistry and mathematics. Symbols, nomenclature, molecular theory, problems dealing with the metric system, density, formulas, percentage composition, and chemical equations. 3 lectures. Prerequisite: Math 103

Chem 324 General Inorganic Chemistry (4)
Fundamental principles including gas laws, valence, equations, and chemical calculations. Elementary atomic theory and periodic classification of the elements. For agricultural students. 3 lectures, 1 laboratory. Prerequisite: Chem 4 or the passing of a placement test.

Chem 325 General Inorganic Chemistry (4)
Basic principles of solution, equilibrium, and colloids. Properties of the common elements and their compounds with applications to agriculture. 3 lectures, 1 laboratory. Prerequisite: Chem 324
Chem 326 Organic Chemistry (4)
The fundamental concepts of organic chemistry with applications to industrial and agricultural processes. 3 lectures, 1 laboratory. Prerequisite: Chem 325

Chem 328 Agricultural Biochemistry (4)
Fundamental chemistry of carbohydrates, proteins, fats, vitamins, enzymes, and hormones as applied to their function in plant and animal metabolism. Special reference to the chemistry involved in the use, analysis, and manufacture of fertilizers, feeds, and insecticides. 3 lectures, 1 laboratory. Prerequisite: Chem 326

Chem 337 Soil Analysis (2)
Chemical analysis as a means of diagnosing problems related to Western soils. Offered only at Kellogg-Voorhis campus. 1 lecture, 1 laboratory. Prerequisites: Chem 325, SS 121, Math 102, 103

Chem 338 Plant Tissue Analysis (2)
Chemical analysis of plant tissue as a guide to fertilization and crop production. Offered only at Kellogg-Voorhis campus. 1 lecture, 1 laboratory. Prerequisites: Chem 325, SS 121, Math 102, 103

DESCRIPTIONS OF COURSES IN PHYSICAL SCIENCE

PSc 101 General Physical Science (4)
For nonproduction majors. Geological features and processes. Astronomical phenomena and concepts. The development of a better understanding of man's physical environment. The scientific method of working and thinking. 3 lectures, 1 recitation. Prerequisite: Math 103, or 112

PSc 102 General Physical Science (4)
Fundamental principles of physics. Various theories of matter and energy and the principles and laws that describe their behavior and applications. Some special knowledge of modern science that will function in a socially desirable manner in the lives of students. 3 lectures, 1 recitation. Prerequisite: PSc 101

PSc 103 General Physical Science (4)
Fundamental principles of chemistry. Chemical changes and their uses. A number of recent advances. Objective observation and experimentation in the solution of problems relating to natural phenomena. 3 lectures, 1 recitation. Prerequisite: PSc 102

PSc 339 Soil Physics (2)
Fundamental aspects of soil physics and their application. Offered only at Kellogg-Voorhis campus. 1 lecture, 1 laboratory. Prerequisites: SS 121, Math 102, 103
DIRECTORIES
DEPARTMENT HEADS AND CHAIRMEN BY DIVISIONS
SAN LUIS OBISPO

AGRICULTURAL DIVISION

<table>
<thead>
<tr>
<th>Department</th>
<th>Chairman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Engineering</td>
<td>James Merson</td>
</tr>
<tr>
<td>Animal Husbandry</td>
<td>Lyman Bennion</td>
</tr>
<tr>
<td>Dairy Husbandry and Manufacturing</td>
<td>George Drumm</td>
</tr>
<tr>
<td>Farm Management</td>
<td>Edgar Hyer</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td>Howard C. Brown</td>
</tr>
<tr>
<td>Poultry Husbandry</td>
<td>Richard Leach</td>
</tr>
<tr>
<td>Soil Science</td>
<td>Logan Carter</td>
</tr>
<tr>
<td>Veterinary Science</td>
<td>John Allen</td>
</tr>
</tbody>
</table>

ENGINEERING DIVISION

<table>
<thead>
<tr>
<th>Department</th>
<th>Chairman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Engineering</td>
<td>Lester W. Gustafson</td>
</tr>
<tr>
<td>Air Conditioning and Refrigeration Engineering</td>
<td>Norman Sharpe</td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td>George J. Hasslein</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Fred W. Bowden</td>
</tr>
<tr>
<td>Electronic Engineering</td>
<td>Clarence Radius</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>Millard J. Fotter</td>
</tr>
<tr>
<td>Machine Shop</td>
<td>Francis F. Whiting</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>T. J. Zilka</td>
</tr>
<tr>
<td>Printing</td>
<td>A. M. Fellows</td>
</tr>
<tr>
<td>Welding</td>
<td>Richard C. Wiley</td>
</tr>
</tbody>
</table>

ARTS AND SCIENCES DIVISION

<table>
<thead>
<tr>
<th>Department</th>
<th>Chairman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Journalism</td>
<td>Kenneth Kitch</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Glenn A. Noble</td>
</tr>
<tr>
<td>Education</td>
<td>Arthur G. Butzbach</td>
</tr>
<tr>
<td>English and Speech</td>
<td>David M. Grant</td>
</tr>
<tr>
<td>Home Economics</td>
<td>Marjory M. Elliott</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Milo E. Whitson</td>
</tr>
<tr>
<td>Military Science and Tactics</td>
<td>Col. Postford A. Loiselle</td>
</tr>
<tr>
<td>Music</td>
<td>Harold P. Davidson</td>
</tr>
<tr>
<td>Physical Education</td>
<td>Robert A. Mott</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>Woodford E. Bowls</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>A. Norman Cruikshanks</td>
</tr>
</tbody>
</table>

KELLOGG-VOORHIS

<table>
<thead>
<tr>
<th>Department</th>
<th>Chairman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry</td>
<td>Weslie Combs</td>
</tr>
<tr>
<td>Fruit Production</td>
<td>Albert E. Canham</td>
</tr>
<tr>
<td>General Crops</td>
<td>Robert L. Procsal</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td>Oliver A. Batchelor</td>
</tr>
<tr>
<td>Horticulture Services and Inspection</td>
<td>Edward C. Appel, Jr.</td>
</tr>
<tr>
<td>Soil Science</td>
<td>Harry V. Welch, Jr.</td>
</tr>
</tbody>
</table>

[249]
FACULTY
(Number in parentheses indicates year of appointment)
Listed as of March 15, 1956

MCPEE, JULIAN A. (1933).-..-. President
B.S., University of California, 1917; M.A., 1928; LL.D., Armstrong College, 1951.
Experience: Agriculture Extension Service, University of California; U. S. Navy; director of vocational agriculture, El Dorado County High School and Gilroy Union High School; chief, Bureau of Agricultural Education, State Department of Education (California); director, War Food Production Training Program for California; acting chief, Bureau of Readjustment Education; assistant executive officer, State Board of Vocational Education; state director, Vocational Education (California).

ABERNETHY, JOHN LEO (1955) --------------------------- Chemistry
A.B., University of California at Los Angeles, 1936; M.S., Northwestern University, 1938; Ph.D., 1940.
Experience: Instructor, Texas Western College, University of Texas, California State Polytechnic College; assistant professor, Humboldt State College; associate professor, Washington and Lee University, Bowling Green State University, University of South Carolina; teacher, Mt. San Antonio College; National Research Council fellow, Northwestern University.

ADAMSON, ROBERT W. (1953) ------------------------- Mechanical Engineering
B.S., Ch.E., Tulane University, 1941; M.S., Ch.E., Oregon State College, 1948.
Experience: Petroleum refinery engineer, Standard Oil Co. of N. J.; instructor, mechanical engineering, Oregon State College; research assistant, industrial sales engineer, Union Oil Co. of Cal. Registered professional engineer, California.

ALLEN, FRANCIS S. (1949) ------------------------- Head Librarian
Litt.B., Xavier University, 1933; B.S. in L.S., University of Illinois, 1941.
Experience: Librarian, Seattle College; officer, U. S. Army; librarian, Shrivenham American University, England; assistant circulation librarian, Oregon State College.

ALLEN, JOHN K. (1952) ------------------------ Veterinary Science
D.V.M., Iowa State College, 1934.

ALLEN, RAY (1955) ------------------------- Welding
B.A. in Industrial Education, Santa Barbara State College, 1942; additional graduate work, Santa Barbara State College.
Experience: Instructor, U. S. Naval Air Technical Training Center; technician, U. S. Air Force; instrument technician, welder, and machinist, self-employed; welder, Ventura Coastal Lemon Co.; engineer, Carpinteria Fire District.

AMATO, ANTHONY J. (1955) --------------------- Ornamental Horticulture
B.S., California State Polytechnic College, 1949; graduate work, California State Polytechnic College.
Experience: Instructor, Mt. San Antonio Junior College, Pomona; Oakland Junior College, Oakland; landscape architect and contractor, Walnut Creek, California; officer, U. S. Air Force.
ANDERSON, KENNETH R. (1955) English
Experience: U. S. Navy; instructor, American University, Beirut.

ANDERSON, RICHARD A. (1947) Physical Education and Athletics
B.S. in Education, University of Southern California, 1942; M.S. in Education, 1947; additional graduate work, University of California, Los Angeles.
Experience: Playground director, Los Angeles Playground and Recreation Department; officer, U. S. Navy; swimming pool director, South Pasadena; assistant instructor in physical education and assistant swimming coach, University of Southern California.

ANDERSON, ROY E. (1949) Economics, Accounting
A.B., Pacific Lutheran College, 1940; M.A., Stanford University, 1948; M.B.A., 1952.
Experience: Assistant manager, Hancock Oil Company, Tacoma, Washington; teacher, Parkland and Tacoma, Washington, public schools systems; officer, U. S. Army; instructor, Monterey Peninsula College, Monterey, California; National Park Ranger.

ANDERSON, RUSSELL K. (1955) Animal Husbandry
B.S., University of Minnesota, 1948; M.S., Iowa State College, 1950; additional graduate work, Iowa State College.
Experience: Instructor in animal husbandry, Iowa State College; assistant swine herdsman, Iowa State College, Ames, Iowa; assistant swine herdsman, University of Minnesota, St. Paul, Minnesota.

ANDERSON, WARREN R. (1946) Electrical Engineering
B.S. in agriculture, University of Minnesota, 1939; B.S. in EE., Louisiana State University, 1944; graduate work, Central Signal Corps School, Camp Crowder, Missouri.

ANDREINI, ROBERT L. (1954) English and Speech
B.A., Stanford University, 1941; M.A., 1949; additional graduate study, University of California, Berkeley.
Experience: U. S. Air Force; instructor in English and speech in California high schools; real estate promotion in San Mateo, California.

ANDREWS, DALE W. (1950) Agricultural Education and Teacher Training
B.S., University of California, Davis, 1941; M.A., California State Polytechnic College, 1952; graduate work, University of California, Davis, University of Minnesota.
Experience: Director of agriculture and critic teacher, Merced Union High School; director of agriculture and critic teacher, Arroyo Grande Union High School, Arroyo Grande; officer, U. S. Marine Corps.

* APPEL, EDWARD CARL, JR. (1946) Head, Horticultural Services and Inspection Department
B.S., Oregon State College, 1940.
Experience: Agricultural inspector and deputy county agricultural commissioner, Department of Agriculture, San Bernardino County; officer, U. S. Navy.

APPLEGARTH, JOHN H. (1952) Biological Science
A.B., San Jose State College, 1935; M.A., Stanford University, 1938; additional graduate work, University of Maryland.
Experience: Instructor, San Jose State College; Bureau of Plant Quarantine and Entomology; ranger-naturalist, Sequoia National Park; commodity expert, drug and miscellaneous plants, U. S. Tariff Commission, Chemical Division, Washington, D. C.; instructor, University of Maryland.

* Kellogg-Voorhis Staff.
ARMENTROUT, WILLIAM W. (1953) Testing Officer, Psychology
Experience: Guidance counselor, Menlo School and Junior College; classification and personnel consultant, U. S. Air Force; assistant registrar, Stanford University.

ARNETTE, JOHN Q., Captain, USA (1955) Military Science and Tactics
B.S., United States Military Academy, 1949; graduate, Infantry Officers Basic, Advance, and Jumpmasters Courses, The Infantry School, Fort Benning, Georgia.
Experience: Staff officer and Company Commander, Airborne Infantry, Fort Bragg, N.C.; Company Officer, Infantry, Korea.

* ARNOLD, LYLE J. (1953) Poultry Husbandry
B.S., University of Missouri, 1936; graduate work, University of Southern California.

* ASCHENBRENNER, ALBERT J. (1947) Admissions Officer
A.B., Whitman College, Washington, 1940; M.S., University of Southern California, 1947. Additional graduate work, Montana State University, Claremont Graduate School, University of Southern California.
Experience: Custer County High School, Miles City, Montana; Infantry School, Fort Benning, Georgia.

AVARY, J. D. (1954) Economics
B.A., University of Texas, 1944; M.A., 1948; additional graduate study, University of California at Los Angeles.
Experience: Farm operator; Social Science Analyst, Bureau of Agricultural Economics, U.S.D.A.; research assistant, Federal Reserve Bank, Dallas; instructor, Texas Christian University; teaching assistant, U. C. L. A.; teacher, Long Beach State College.

BAILEY, BERNIE B. (1949) Poultry
B.S., Iowa State College, 1947; graduate study, Texas A. & M., 1949.
Experience: Manager, Poultry Farm, North Texas Agricultural College; U. S. Army; poultry supervisor, Iowa Poultry Improvement Association; poultry department supervisor, Texas A. & M.

BANISTER, JOHN R. (1954) English
B.A., University of Santa Clara, 1949; M.A., Stanford University, 1951; additional graduate study, Stanford University.
Experience: Acting instructor, Stanford University, 1950-52; head instructor, Motor Vehicle Accident Prevention Training School, Bainbridge, Maryland, 1952-54.

* BATECHELLER, OLIVER A. (1946) Head, Ornamental Horticulture Department
B.S., Oregon State College, 1936; graduate work, Oregon State College.
Experience: Assistant farm adviser, Oregon; branch manager, California Nursery Company; officer, U. S. Army.

BECK, CARL G. (1932) Farm Management
B.S., Colorado A. & M. College, 1921. Additional study Colorado A. & M. and University of California at Berkeley and Davis.
Experience: Director of vocational agriculture, Del Norte Union High School, Colorado; Middletown Union High School and Colusa Union High School, California; principal, Del Norte Union High School, Colorado; U. S. Army.

BENNION, LYMAN L. (1938) Head, Animal Husbandry Department
B.S. from Utah State College, 1929.
Experience: Sales Department, Purina Mills; American Packing Company, Union Stockyards, Ogden, Utah; agriculture instructor, Salinas Union High School; agricultural extension service, University of California.

* Kellogg-Voorhis Staff.
B.A., Santa Barbara State College, 1942.
Experience: U. S. Navy; teacher, Victorville, California.

BILLE, RALPH O. (1948) Agricultural Engineering
B.S., University of Minnesota, 1922; M.S., 1940.
Experience: Agriculture instructor in secondary schools, Minnesota; agricultural engineering and industrial arts instructor, State Teachers College, Platteville, Wisconsin.

BIRKETT, RICHARD J. (1955) Animal Husbandry
B.S., California State Polytechnic College, 1953; additional work, California State Polytechnic College.
Experience: Feed and milking supervision, Union Stock Farms, Blythe, California.

BLINKHERN, LOUISE (1955) Librarian
B.A., University of California, 1929; Certificate in Librarianship, 1931.
Experience: Librarian, San Marino Public Library, San Marino, California; cataloger and audio-visual assistant, Arcadia Unified School District, Arcadia, California.

BLOWER, SYDNEY RALPH (1954) English
A.B., 1939, University of Chicago, M.A., 1948; Ph.D., Stanford University, 1954.
Experience: U. S. Army; instructor, Washington State College; acting instructor, Stanford University.

BOLTON, F. F. (1955) Welding
BOWDEN, FREDERICK W. (1949) Head, Electrical Engineering Department
B.S., California Institute of Technology, 1932; M.S. in E.E., 1933; additional
graduate work, California Institute of Technology.
Experience: Geophysics, Shell Oil Company; electrical engineer, Oilfields Service
Co.; mechanical and electrical consultant, Walt Disney Enterprises; head Electrical
Research Department, Lockheed Aircraft Corp.; associate professor, University of
Southern California College of Aeronautics. Registered professional engineer, Cali-
ifornia.

BOWLS, WOODFORD E. (1937) Head, Physical Sciences Department
A.B., University of California, 1932; M.A., 1935; Ph.D., 1937
Experience: Teaching assistant and teaching fellow in physics, University of
California.

BOYLE, KENNETH D. (1947) Dairy Manufacturing
B.S., University of Minnesota, 1942.
Experience: Butter and ice cream, Neepawa Creamery and Produce Co., Neep-
awa, Manitoba, and Central Creameries, Brandon, Manitoba; Royal Canadian Air
Force; research staff and foreman in experimental plant, Golden State Co., Ltd.,
San Francisco.

BRADLEY, HENRY, Sergeant First Class, U. S. Army (1954) Military Science and Tactics
Experience: Warrant Officer, U. S. Army: Armored Battalion Supply Officer;
Unit Administrator; administrative assistant to special service officer, Camp Hunter
Liggett and Fort Ord, California; Sergeant Major and Personnel Sergeant Major,
Training Center, Fort MacArthur, California.

BRANNUM, THOMAS P. (1952) Animal Husbandry
B.S., California State Polytechnic College, 1948.
Experience: Dos Pueblos Ranch, Goleta, California; U. S. Army Air Force; agri-
culture instructor, Santa Ynez High School.

BRENDLIN, GENE E. (1950) Foundation Manager
B.S., University of California, 1934.
Experience: Director, vocational agriculture, Fallbrook Union High School,
Linden Union High School, Tracy Union High School, and Arroyo Grande Union
High School; farmer, San Luis Obispo County.

BROMLEY, J. PHILIP (1947) Agricultural Economics
B.S., University of Southern California, 1934; M.S., 1936; graduate work at Colum-
bria, Texas A. & M., and University of California.
Experience: Teacher, Garvey School District; instructor, San Diego State Col-
lege; officer, U. S. Navy.

BROWN, BENJAMIN H. (1954) Mechanical Engineering
B.S. in Trade and Industrial Education, Purdue University, 1949.
Experience: Tooling inspector, Douglas Aircraft Co.; inspector, Houston Corp.;
inspector, Allison Division of General Motors Corp.; instructor, Arsenal Technical
High School, Indianapolis; U. S. Navy.

BROWN, CHARLES F. (1956) Electronic Engineering
Experience: Officer, U. S. Navy; duty assignments including communications
supervision, Loran specialist, electronics instructor.

BROWN, HOWARD C. (1946) Head, Ornamental Horticulture
B.S., California State Polytechnic College, 1943; M.S., Ohio State University, 1954.

BROWN, HOWARD S. (1948) Botany
B.A., 1943, University of California at Los Angeles, M.A., 1948; additional gradu-
ate work, Claremont Graduate School.
Experience: Teaching assistant, University of California at Los Angeles; officer,
U. S. Marine Corps.

* Kellogg-Voorhis Staff.
* Brungardt, Harold (1955) ... English
 Experience: Engineering instructor, U.S. Navy; instructor, Redlands High
 School, Redlands, California.

Bucy, L. LaVerne (1955) ... Animal Husbandry
 B.S., University of Kentucky, 1943; M.S., 1950; Ph.D., University of Illinois, 1954.
 Experience: Graduate assistant in animal science, University of Illinois; teacher
 of vocational agriculture, Kentucky high schools; farming; U.S. Navy.

Burlingham, Herbert H. (1948) Agricultural Education and Teacher Training
 B.S., Oregon State College, 1929; graduate work, University of California.
 Experience: Executive student, Swift and Company; director of agriculture,
 Willis Junior-Senior High School; director of agriculture and critic teacher,
 Madera Union High School; director of agriculture and critic teacher, Paso Robles
 Union High School; regional supervisor, State Bureau of Agricultural Education,
 California.

Burnham, Kenneth D. (1953) Biological Sciences
 B.S., Roosevelt College, 1948; M.S., State University of Iowa, 1952; additional
 graduate work, DePaul University and State University of Iowa.
 Experience: Instructor and coach, Schiller Park, Illinois, public schools; teaching
 assistant, State University of Iowa.

Butzbach, Arthur G. (1950) Acting Chairman, Education Department,
 Coordinator of Graduate Studies
 A.B., Stanford University, 1926; M.A., 1929; Ed.D., 1948.
 Experience: Teacher and principal, Lower Lake Union High School; assistant
 professor of education, Drake University and Sacramento State College.

* Canham, Albert E. (1948) Head, Fruit Production Department
 B.S., University of California at Los Angeles, 1941.
 Experience: Officer, U.S. Navy; manager of avocado and citrus orchards; owner
 and operator of commercial weed and pest control company; instructor in I-on-F
 program, Palomar College, Vista, California.

* Carlberg, George E. (1949) Agricultural Economics
 B.S., University of California, 1947; graduate work, University of California at
 Los Angeles and Claremont Graduate School.
 Experience: Livestock buyer, Armour & Co.; officer, U.S. Army; field man,
 Arden Farms Co.

Carrington, James H. (1943) Machine Shop
 Special Vocational Arts Credential, University of California, Los Angeles, 1940;
 Special Vocational Arts Credentials, University of California, Berkeley, 1941 and
 1942.
 Experience: Auto mechanic, Los Molinos Garage, Los Molinos; auto shop in-
 instructor, Los Molinos High School, Los Molinos.

Carter, Logan Sampson (1947) Head, Soil Science Department
 B.S., Oregon State College, 1930; Ph.D., Michigan State College, 1934.
 Experience: Instructor, Michigan State College; U.S. Department of Soil Conserv-
 ation; Bureau of Reclamation, U.S. Department of Interior, Washington, D.C.

Chandler, Everett M. (1951) Dean of Students
 A.B., University of California, 1939; additional graduate work, University of Cali-
 fornia.
 Experience: Administrative officer, U.S. Air Force; personnel technician, State
 Personnel Board; management analyst, State Department of Finance; extension
 teacher, Sacramento State College; U.S. Air Force.

* Kellogg-Voorhis Staff.
CHASE, DANIEL C. (1954)
Farm Management
Experience: Teacher of vocational agriculture, veterans' instructor, Tolleson Union High School, Tolleson, Arizona; supervising teacher, University of Arizona; veterans' coordinating teacher, State Department of Vocational Education, Phoenix, Arizona; farm editor and columnist, *Arizona Republic*; assistant professor and head, division of farm management, Arizona State College, Tempe, Arizona.

CLUCAS, GEORGE G. (1956)
Administrative Dean, Finance and Development
A.B., University of Michigan; M.P.A., University of Michigan.
Experience: Senior administrative analyst, Office of the Legislative Auditor for California.

COFFIN, PHILIP R. (1956)
Mathematics
Experience: United States Navy.

COLLINS, RALPH C. (1955)
Coordinator of Secondary Student Teaching
B.S., Drake University, 1932; M.A., 1941; Ed.D., University of Colorado, 1951.
Experience: Officer and Navigation Instructor, U.S. Navy; physics instructor, East High School, Des Moines, Iowa; graduate assistant, Iowa State College and University of Colorado; head, Science Department, Eugene High School, Eugene, Oregon; assistant professor, Central Washington College of Education, Drake University, University of Oregon.

COLLINS, SPELMAN B. (1949)
Animal Husbandry
B.S., Agriculture, University of California, 1925.
Experience: Agriculture instructor, Middletown, Calistoga, and Livermore high schools.

*COMBS, WESLIE (1952)
Head, Animal Husbandry Department
B.S., California State Polytechnic College, 1950; M.S., University of Minnesota, 1952.
Experience: Teaching assistant, University of Minnesota, 1950-51; research assistant, University of Minnesota, 1951-52.

*CONARD, HAVEN Q. (1946)
Agricultural Engineering
B.S., Iowa State College, 1943.
Experience: Teaching, Engineering Drafting Department, Iowa State College; officer, U.S. Air Force.

COOK, DAVID W. (1941)
Mathematics
B.S., University of California, 1937.
Experience: Examiner, Board of Fire Underwriters of the Pacific; engineer, Insurance Company of North America.

COTT, HAROLD E. (1955)
Biological Sciences
B.S., University of California, Davis, 1948; Ph.D., 1952.
Experience: Teaching assistant, research assistant in entomology, University of California, Berkeley and Davis; associate in zoology, University of California, Davis; specialist in epidemiology, U.S. Navy; associate ecologist, University of Utah, Dugway Project.

CRUIKSHANKS, ANDREW N. (1947)
Head, Social Sciences Department
A.B., University of California, 1931; M.A., Stanford University, 1933; additional graduate work, Stanford University, 1947-1951.
Experience: Instructor, social studies and speech, California high schools; director, community forums, adult education, Fort Bragg, California Schools; assistant director, Mediterranean-Middle East Seminar; professional lecturer.

* Kellogg-Voorhis Staff.
CULBERTSON, JAMES T. (1953) ... Mathematics
A.B., Yale University, 1934; graduate work, University of Pennsylvania, 1935-37;
Ph.D., Yale University, 1940.
Experience: Research fellow, Yale University; professor, mathematics and physics,
Cumberland University; head of mathematics department, Southwestern University;
research associate mathematical biology, University of Chicago; assistant professor
of philosophy, University of Southern California; research associate, Rand Corpora-
tion.

DAKAN, NORMAN E. (1954) ... Library
A.B., University of California, 1953; B.L.S., 1954.
Experience: U.S. Navy; library, University of California, Berkeley.

DAVIDSON, HAROLD P. (1936) ... Chairman Music Department
B.A., Pomona College, 1929; M.A., Claremont College, 1932; additional graduate
work, University of Southern California.
Experience: Head of Music Department, Emerson Junior High School, Pomona;
master training teacher, Claremont College.

DEAN, ARNOLD M. (1949) ... Soils
B.S., University of Alberta, Canada, 1943; M.S., 1946; Ph.D., University of Wis-
consin, 1949.
Experience: Laboratory assistant, Dominion Department of Agriculture, Edmon-
ton, Alberta; teaching assistant, University of Wisconsin; industrial fellowship,
University of Wisconsin.

DE VOROS, EVELYN K. (1955) ... English and Speech
B.A., University of Texas, 1936; M.A., University of Michigan, 1941; Ph.D., Uni-
versity of Michigan, 1945.
Experience: Instructor in Texas Public Schools; instructor, Louisiana Polytechnic
Institute; assistant professor, Bowling Green State University, Ohio, University of
California, Santa Barbara College.

DICKSON, BRUCE A. (1952) ... Soils
B.S.A., University of British Columbia, Canada, 1940; M.S.A., 1942; Ph.D., Univer-
sity of California, Berkeley, 1952.
Experience: Teaching assistant, University of British Columbia; teaching assist-
ant, University of California at Berkeley; assistant in plant nutrition, Dominion
Experimental Station, Saanichton, B. C.; soil specialist, Dominion Experimental
Farm, Agassiz, B. C.

DIETZ, FRED C. (1955) ... Chemistry
A.B., Stanford University, 1932; Ph.D., University of Illinois, 1951.
Experience: Assistant Chemist, E. I. Du Pont Co., Deepwater, New Jersey; as-
sistant plant chemist, General Aniline and Film Corp., Grasselli, New Jersey; ad-
ministrative assistant, California Research and Development Co., Livermore, Cali-
ifornia; research chemist, California Research Corp., Richmond, California.

DILLION, JERRY L. (1954) ... Electronic Engineering
B.S., in Electronic Engineering and Mathematics, California State Polytechnic
College, 1954.
Experience: Technician, Clayton Radio Co., Modesto, California; technician,
U.S. Army, Sacramento, California.

DILTS, RALPH W. (1944) ... History and Political Science
A.B., Montana State University, 1936; M.A., 1938; graduate study, University of
California, 1940-1941.
Experience: Stevensville High School, Stevensville, Montana; graduate assistant
Montana State University; graduate assistant, University of California; U.S. Bureau
of Reclamation.

* Kellogg-Voorhis Staff.
DIMITMAN, JEROME E. (1949)
Plant Pathology
B.S., University of California at Berkeley, 1943; M.S., University of California, Citrus Experiment Station, Riverside, 1949.
Experience: Citrus production, University of California at Los Angeles; assistant plant pathologist, California State Department of Agriculture; officer, U.S. Navy.

DRUMM, GEORGE M. (1931)
Head, Dairy Department
B.S., Kansas State College, 1921; M.S., Iowa State College, 1922.
Experience: Instructor, dairying, University of California; farm manager, Ranch Del Monte, Carmel and Patrick Farms, Salinas.

ECKROTE, LAWRENCE H. (1955)
Printing
Experience: Foreman, Mail of Woodland and San Bernardino Orange Belt News; machinist, Santa Barbara News-Press and San Luis Obispo Telegram-Tribune Co. Over 30 years of experience in the printing industry.

ELLIOTT, MARJORY M. (1955)
Head, Home Economics Department
B.S., University of Missouri, 1931; M.A., 1939; additional graduate work at University of Chicago and University of California at Los Angeles.
Experience: Vocational home economics teacher, Brunswick, Crystal City, and Columbia, Missouri; supervising teacher, University of Missouri; teacher trainer, Northwest Missouri State College; lecturer, University of Hawaii; assistant state supervisor of home economics, Missouri State Board of Vocational Education; associate professor, The Stout Institute; teaching assistant, University of California at Los Angeles.

ELSTON, CHARLES A. (1947)
Mathematics
A.B., Santa Barbara State College, 1932; M.S., University of Southern California, 1940.
Experience: Teacher, Santa Barbara County Schools; instructor, head, Mathematics Department, Junior High School, and instructor, Adult Evening School, San Luis Obispo; surveyor, U.S.E.D. and Southern Pacific Railroad.

ENGLUND, CARL R. (1948)
Dean of Agriculture, Kellogg-Voorhis Campus
B.S., University of California, Berkeley, 1939.
Experience: Director of vocational agriculture, Reedley Union High School and Junior College, Reedley, California; head, crops department, California State Polytechnic College, Voorhis Unit.

ESSIG, FREDERICK M. (1946)
Biological Sciences
A.B., University of California, 1917; Ph.D., 1920; B.D., University of Southern California, 1927.
Experience: Teaching assistant, University of California; instructor, University of California at Los Angeles; professor, Asbury College, Kentucky; chaplain, U.S. Army.

FALKENSTERN, OSWALD J. (1953)
Mathematics
B.S., Montana State College, 1939; additional graduate work, University of Colorado and Colorado A. & M. College; M.S., San Jose State College, 1952.
Experience: High school teacher and coach, Baker and Opheim, Montana; air navigation officer, U.S. Navy; mathematics instructor, Colorado A. & M. College; instructor and chairman of junior high school mathematics, Salinas.

FELLOWS, ALBERT MELVIN (1946)
Head, Printing Department
Experience: Special training courses in journalism, advertising, mechanical art and print shop management; U.S. Army, World War I; journeyman printer and supervisor of apprentice training programs; superintendent of printing plants in Kansas City, Missouri, and Birmingham, Alabama.

FISHER, CLYDE P. (1947)
Mathematics
A.B., University of Oklahoma, 1942; M.A., University of Southern California, 1947; Ph.D., 1955.
Experience: Teaching assistant in Mathematics, lecturer in mathematics, University of Southern California; officer, U.S. Army.

* Kellogg-Voorhis Staff.
FLETCHER, EARL W., Captain, USA (1954) - Military Science and Tactics

Graduate, North Georgia Military College; completed advanced ROTC, University of Georgia; additional study, Walter F. George School of Law, Mercer University, Macon, Georgia; graduate, Infantry School, Fort Benning, Georgia; Armored Company Officer Course, Advanced Armor Officer Course, Fort Knox, Kentucky; Airborne and Jump Master Course, Fort Benning, Georgia; Air Ground School, Tokyo, Japan.

Experience: Battalion S3, 11th Airborne Division; Assistant Executive Officer G3 Division, Department of the Army; Assistant Secretary of the General Staff, 8th Army, Korea; Aide-de-camp to General Maxwell D. Taylor and Lt. General Carter B. Magruder.

FOLSOM, VOLMAR A. (1946) - Mathematics

B.S., Iowa State College, 1934; M.E., Colorado University, 1937; additional graduate work, Southern Methodist University.

Experience: High school and junior college teaching; officer, U.S. Navy; assistant professor, mathematics, Southern Methodist University.

FOTTER, MILLARD J. (1954) - Head, Industrial Engineering

B.S. in Mechanical Engineering, Armour Institute of Technology, 1935. Additional graduate work, University of Southern California.

FROST, ROBERT H. (1953) - Physics

A.B., University of California, 1939; M.A., 1945; Ph.D., 1947.

Experience: Teaching assistant, University of California; assistant professor, University of Missouri.

FURIMSKY, GEORGE S. (1955) - Electrical Engineering

B.S., Bradley University, 1949; M.S., 1950.

Experience: Instructor, Peoria Manual Training High School; graduate assistant, Bradley University; superintendent, buildings and grounds, Blackburn College.

GALBREATH, GEORGE T. (1953) - Social Science

A.B., Stanford University, 1948; M.A., 1949; additional graduate study, University of California.

Experience: Instructor, California State Polytechnic College, San Luis Obispo Campus; assistant professor of economics, Armstrong College; manager, Galbreath Orchards.

GARZA, RAYMOND E. (1955) - Agricultural Engineering

B.S., California State Polytechnic College, 1952.

Experience: Sales and service in farm machinery throughout California; apprentice mechanic in farm machinery.

GENTHNER, FREDERICK L. (1952) - Library

Experience: Periodicals librarian, Ball State Teachers College; officer, U.S. Army; assistant reference librarian, Ohio State University.

GERARD, E. DOUGLAS (1951) - Agricultural Engineering

B.S., University of British Columbia, 1950; M.S., University of Saskatchewan, 1951.

Experience: Instructor, University of British Columbia; instructor, University of Saskatchewan; shop superintendent, British Columbia Forest Products, Pitt Lake, British Columbia; service manager, Tractor and Allied Equipment, Limited, Melfort, Saskatchewan.

* Kellogg-Voorhis Staff.
GIBFORD, WILLIAM R. (1955) .. Animal Husbandry
B.S., California State Polytechnic College, 1947.
Experience: Horse trainer, Ed Wright Stables and 1001 Ranch, Riverside, California; horse trainer and horseshoer, San Luis Obispo; employee, Humphrey Meat Packing Company, San Miguel, California; Pacific Valley Cattle Company, King City, California; U. S. Marine Corps.

GIBSON, J. CORDNER (1949) .. Dean, Student Personnel and Business Management,
Kellogg-Voorhis Campus
B.S., University of California, 1937; M.S., University of Southern California, 1955.
Experience: Director of vocational agriculture, Downey and Whittier Union High Schools; U. S. Army; regional supervisor, Bureau of Agricultural Education.

GILLETTE, D. DALE (1955) .. Veterinary Science
D.V.M., Iowa State College, 1953.
Experience: General practice of veterinary medicine at Rapid City, South Dakota; meat inspection for State of California at Sebastopol.

GOLD, MARCUS (1947) (1954) .. Audio-Visual Library
B.A., University of California, 1942; B.L.S., 1947; M.S.L., 1954.
Experience: U. S. Army; library, University of California; Audio-Visual Librarian, California State Polytechnic College, 1947-52; research assistant, University of California, Berkeley.

GORDON, ROBERT D. (1955) .. Mathematics
B.A., Stanford University, 1932; M.A., 1934; Ph.D., Indiana University, 1948.
Experience: Physical oceanography, Scripps Institute of Oceanography; engineering mathematician, Douglas Aircraft Co.; assistant professor, University of Buffalo; professor, Washington College; associate professor and department chairman, Hampton Institute; instructor, Los Angeles Valley Junior College.

Gould, Norman S. (1950) .. Education and Psychology
A.B., Pomona College, 1948; M.S., University of Southern California, 1949.
Experience: Instructor, basic medical sciences, U. S. Army; assistant to counselor of men, University of Southern California; lecturer, University of California Extension.

Gow, IMOGENE V. (1947) .. Nurse
R.N., Union Labor Hospital, Eureka, 1921.
Experience: In charge floor nurses, Union Labor Hospital; nurse, Stanford Lane, San Francisco; X-ray technician, private duty Eureka and Yreka.

GRANT, DAVID M. (1950) .. Head, English and Speech Department
B.A., Iowa State Teachers College, 1935; M.A., University of Iowa, 1940; Ph.D., Stanford University, 1953.
Experience: Instructor in public schools in Iowa; chairman, Department of Speech, Hastings College, Hastings, Nebraska; officer, U. S. Navy; instructor, Stanford University.

GRAVES, THEODORE G. (1947) .. Air Conditioning and Refrigeration Engineering
B.A., Humboldt State College, 1940; graduate work, Oregon State College.
Experience: Instructor, Paia School, Paia, Maui, T. H.; instructor, Maui High School, Maui, T. H.; teacher, San Francisco, California; lecturer, University of California, Santa Barbara College.

GRAY, STANTON (1940, 1946) .. Crops
B.S., Agriculture, University of California, 1930.
Experience: Agriculture instructor, Hamilton City, Corning, and Yuba City high schools.

GREEN, LISLE R. (1955) .. Soil Science Department
B.S., Utah State College, 1941; M.S., 1948.

* Kellogg-Voorhis Staff.
GREGORY, C. HEROLD (1950) Printing
B.S., California State Polytechnic College, 1952.

* GREGORY, VERNON L. (1953) Zoology and Bacteriology
B.S., University of Miami, 1941; M.A., DePauw University, 1947; additional graduate work, University of Southern California, 1949-1953.
Experience: Undergraduate Assistant in Zoology, University of Miami; Graduate Assistant, DePauw University; Naval Aviator, United States Navy; Flight Instructor, United States Navy; Instructor in Zoology, University of Miami; Graduate Associate, University of Southern California.

* GRIFFIN, JAMES M. (1949) Ornamental Horticulture
B.S., California State Polytechnic College, 1949; M.A., 1952.

GUSTAFSON, LESTER W. (1947) Head, Aeronautical Engineering Department
B.S., Aeronautical Engineering, University of Minnesota, 1932; graduate work, University of Minnesota, 1933.
Experience: Assistant in experimental engineering, University of Minnesota; experimental engineer, Minneapolis Moline Power Implement Company, Minneapolis; Tropic Air Corporation, Chicago; aerodynamics engineer, Lockheed Aircraft Corporation; Hughes Aircraft Company.

HALL, RICHARD E. (1947) Aeronautical Engineering
B.S., Aeronautical Engineering, California State Polytechnic College, 1952; training on Packard aircraft engines, 1942; Allison aircraft engines, 1944; Pratt and Whitney aircraft engines, 1948.
Experience: Aircraft mechanic, Lockheed Aircraft, and Hancock Field, Santa Maria; mechanic, Sacramento Air Depot.

HAMMITT, LEWIS E. (1946) Physics
B.S., Whitman College, 1926; M.A., University of Washington, 1940; additional graduate work, University of Washington, U. S. Navy Air Navigation School, 1943.

HANKS, CHARLES J. (1954) Mathematics
Experience: Assistant Professor, Drexel Institute of Technology; line coach and graduate assistant, University of Arkansas; officer, U. S. Coast Guard.

HAROLD, F. SHELDON (1948) Physical Education and Athletics
Experience: Player-coach, Sacramento Nuggets Professional Football team; playground supervisor, City of Sacramento; Red Cross swimming instructor, San Luis Obispo High School; officer, U. S. Army.

HARRIS, ROY M. (1954) Animal Husbandry
B.S., M.S., Utah State Agricultural College, 1954; additional research work.

* Kellogg-Voorhis Staff.
HASSLEIN, GEO. JOHANN (1949) Head, Architectural Engineering Department

B. of Arch., University of Southern California, 1945, A.I.A.
Experience: Road and bridge design in Mexico and Central America for Pan-American Highway; airport design for Army Engineers; development work at M.I.T. for Gilfillan Bros.; with architects and practice in Los Angeles area; designer for Sumner Spaulding, and Wurdeman and Becket; chief designer, Kistner, Curtis and Wright. Registered Architect, California.

HATFIELD, R. C. (1949) ... Biological Sciences

B.Sc., University of Dayton, 1941; M.A., University of California at Los Angeles, 1947; Ph.D., University of California at Los Angeles, 1950.
Experience: Chemist, Research Division, National Cash Register Co.; U. S. Navy Hospital Corps School Staff; assistant in bacteriology, University of California at Los Angeles; Chief of Laboratories, F.O.D. Assessment Branch, Camp Detrick, Md.

HAUGSTEN, ROBERT C. (1952) Equipment Technician, Arts and Sciences Division

B.S., California State Polytechnic College, 1952.

HAWORTH, ALICE J. (1955) Physical Education and Health

A.B., Colorado State College of Education, 1940; M.A., 1947; additional graduate work, University of Wisconsin.
Experience: Physical education instructor in elementary and secondary schools of Colorado and California; instructor, Colorado State College of Education; assistant professor, Morris Harvey College; recreation director, Charleston, W. Va.

HAYES, HAROLD P. (1952) .. Dean, Engineering Division

B.M.E., University of Santa Clara, 1941; graduate study, Stanford University.
Experience: Test and commercial engineer, General Electric Company; officer, U. S. Navy; head of Mechanical Engineering Department, University of Santa Clara, 1946-1951; sales engineer, Dudley Machinery Corporation. Registered professional engineer, California.

HEALEY, JOHN R. (1947) .. Journalism and Publications

B.A., San Jose State College, 1941.
Experience: Reporter, San Jose News; public relations, McClellan Field, Sacramento; reporter, Sacramento Union; Valley editor, Modesto Bee.

HEINZ, JOHN A. (1953) .. Audio-Visual Education

Experience: Technical and research assistant, University of Washington; production assistant, Korry Film Productions; free lance photographer, Seattle; production coordinator, Criterion Films, Inc., Seattle; film editor, KRON-TV, San Francisco.

HENDRIKS, HAROLD J. (1952) Electronic Engineering

B.S., Iowa State College, 1940; M.S., 1941; graduate study, University of Colorado, 1949.
Experience: Engineer, Collins Radio Company, Cedar Rapids, Iowa; engineer, U. S. Naval Ordnance Test Station, Inyokern; industrial experience program, Westinghouse Electric Corporation, East Pittsburgh, Pa.; associate professor, electrical engineering, University of Nevada, Reno, Nev.

* Hobbs, Kenneth R. (1950) Horticultural Services and Inspection

B.S., Oregon State College, 1946; M.A., 1948; additional graduate work, Oregon State College.
Experience: Technician and curator, Department of Entomology, Oregon State College; agricultural inspector, Los Angeles County Department of Agriculture; inspector, Nursery Service, State Department of Agriculture.

HODNETTE, MILTON G., JR. (1954) Library

B.A., Colorado College, 1942; M.A., University of Denver, 1951; additional graduate work, Stanford University, University of California and University of Colorado.
Experience: Teacher, Webb School (Tennessee), Elko County (Nevada) High School and Colorado Military School; Documents Librarian and Municipal Reference Librarian, Denver Public Library.

* Kellogg-Voorls Staff.
HOLMES, KENNETH R. (1955) Architectural Engineering
Experience: Designer, various architects in Philadelphia and England; associate professor, Virginia Polytechnic Institute.

HOLMQVIST, ROBERT E. (1946) Physics
B.A., University of Oregon, 1932; M.A., Oregon State College, 1936; additional graduate work, Purdue University and University of Washington.
Experience: Teaching assistant, University of Oregon and Oregon State College; instructor, University of Oregon; teaching fellow, Purdue University and University of Washington; inspection supervisor, Boeing Aircraft Company.

HOLT, RAY J. (1955) Physics
A.B., University of California, 1939; M.A., 1949.
Experience: Physicist, University of California Radiation Laboratory; aircraft inspector, Consolidated Vultee Aircraft Corporation; high school and junior college teacher.

HOLTZ, WALTER E. (1954) Mechanical Engineering
B.S., in Mechanical Engineering, Illinois Institute of Technology, 1949; M.S., in Mechanical Engineering, California Institute of Technology, 1953.

Experience: Instructor in horseshoeing and blacksmithing, U.S. Army; horseshoer, Porterville, California.

HOOVER, ROBERT F. (1946) Biological Sciences
B.A., Stanford University, 1934; M.A., University of California, 1935; Ph.D., University of California, 1937.
Experience: Teaching assistant and research assistant, University of California; instructor, Yakima Valley Junior College; U.S. Army.

HOUK, A. L. (1946) Chemistry
B.S., Michigan State College, 1926; M.S., 1928; Ph.D., Pennsylvania State College, 1933.
Experience: Graduate assistant in chemistry, Michigan State College and Pennsylvania State College; analyst, Michigan Agricultural Experiment Station; instructor in chemistry, Michigan State College; research chemist and group leader, Rohm and Haas Company, Philadelphia, Pennsylvania.

*HOUSE, HENRY (1947) Director of Students
B.S., California State Polytechnic College, 1943; additional graduate work, University of California, California State Polytechnic College.
Experience: Director of vocational agriculture, Brawley Union High School; officer, U.S. Marine Corps.

HUGHES, LEROY BARRY (1950) Director of Athletics
B.S., University of Oregon, 1931; M.A., Stanford University, 1950.

HYER, EDGAR A. (1951) Head, Farm Management Department
B.S., Utah State College, 1939; M.S., 1942; Ph.D., Cornell University, 1948.
Experience: Land use economist, Utah; field supervisor of A.A.A., Utah; U.S. Army; graduate assistant, Cornell University; assistant professor of agricultural economics, Oregon State College.

* Kellogg-Voorhis Staff.
JACKSON, HARRY J. (1953) Mechanical Engineering
B.S., University of Washington, 1947; M.S., Oregon State College, 1951.
Experience: Aircraft Maintenance Office, AAF Twin Engine; instructor, mechanical engineering, University of Idaho; instructor, mechanical engineering, Oregon State College; experimental gas turbine engineer, Solar Aircraft Co. Registered professional engineer, California.

JENSEN, JAMES J. (1948) Physical Education and Athletics
A.B., Washington State College, 1935; M.S., Stanford University, 1940.
Experience: Football and track coach, Shelton High School, Washington; history teacher and football and track coach, Santa Rosa High School, Santa Rosa, California; track coach and guidance assistant, Menlo Junior College, Menlo Park, California; U. S. Navy; track coach and instructor in health and physical education, San Francisco Junior College, California.

JENSEN, ROBERT P. (1954) Mechanical Engineering
B.S. in Industrial Education, The Stout Institute, 1932; M.S., 1938.
Experience: Instructor, Orange Coast College; instructor, College of the Sequoias; assistant professor, Kansas State Teachers College; instructor, Maryand high schools; operation sheet writer in production engineering, Pratt Whitney Corp., Kansas City, Missouri.

JOHNSON, RICHARD F. (1950) Animal Husbandry
B.S., Iowa State College, 1942; M.S., State College of Washington, 1947.
Experience: U. S. Army; instructor, College of Agriculture and assistant animal husbandman, Experiment Station, State College of Washington, Pullman, Washington.

JONES, JOHN E. (1947) Placement Officer
B.S., California State Polytechnic College, 1947; graduate work, University of Southern California.
Experience: Assistant manager, Service Unit, Union Oil Co.; U. S. Navy; student manager, Associated Students, California State Polytechnic College.

JONES, LINCOLN D. (1954) Electrical Engineering
B.S. in Electrical Engineering, University of Arizona, 1951; additional graduate work, University of Arizona.
Experience: Instructor, University of Arizona; officer and instructor, U. S. Air Force.

JORGENSEN, EDWARD J. (1947) Physical Education and Athletics
B.A., Chico State College, 1936; M.S., University of Southern California, 1950.
Experience: Instructor, physical education and industrial arts, South Fork, Ferndale, and Watsonville high schools; athletic director, Marin Junior College; officer, U. S. Navy.

KABAT, HERBERT R. (1952) Physics
B.S., United States Naval Academy, 1938; M.A., Stanford University, 1951; additional graduate work, University of Southern California, Stanford University, University of Colorado.
Experience: Officer, U. S. Navy; research analyst, Rheem Mfg. Co.; instructor, Pasadena City College, College of the Sequoias.

*KATTENHORN, ALBERT E. (1948) Agricultural Mechanics
B.S., University of California at Davis, 1935.
Experience: Instructor of agriculture and agricultural mechanics at Point Arena Union High School; Julian Union High School; Escondido Union High School; Welder, Julian Garage; Maintenance Engineer, Wharton Dairies, Escondido, California.

* Kellogg-Voorhis Staff.
KEITH, DOUGLAS L. (1955) Machine Shop
Experience: Machinist, Standard Oil of California; salesman, Standard Stations, Inc.; instructor, Chico State College; assistant, State Compensation Insurance Fund.

KENNEDY, ROBERT E. (1940) Assistant to the President

KENNELLY, BRUCE (1947) Chemistry
B.S., University of Kentucky, 1944; M.S., Purdue University, 1946; additional graduate work, Purdue University and University of Southern California; Ph.D., Cornell University, 1952.
Experience: Chemist, department of agricultural chemistry, Purdue University; research chemist, department of Biochemistry and Nutrition, Cornell University.

KIRKPATRICK, WILLIAM M. (1949-51) (1953) Agricultural Engineering
B.S., California State Polytechnic College, 1949.

KITCH, KENNETH H. (1950) Head, Agricultural Journalism Department
A.B., Southwestern College, 1930; A.M., Kansas University, 1937.
Experience: Reporting, editing, advertising staffs, various Kansas daily newspapers; instructor, community high schools, Arlington and Altamont, Kansas; correspondent for Kansas City Star; editorial columnist for chain of southeast Kansas weeklies; instructor, Dallas, Texas, Technical High School; wire editor and writer, Associated Press; assistant director, Dallas Adult Education Program; public relations and advertising counsel, Dallas and San Antonio; news editor, WFFA, Dallas; editor and managing editor, Southern Seedsmen and Sun-Up magazines; freelance magazine writer.

KNOTT, C. E. (1921) .. Assistant Dean of Engineering
B.S., University of California, 1916; M.S., 1917.

KOMBRINK, RICHARD T. (1955) Mechanical Engineering
A.B., Loyola University, 1946.

* LABOUNTY, HUGH O. (1953) English and Public Speaking
B.S., M.A., University of Redlands, 1950-1951; additional study, Claremont Graduate School; University of California at Los Angeles.
Experience: Director of Citizenship, Citrus Union High School; Instructor in Social Science, Citrus High School and Junior College; Navy.

† LAMBERTY, BERNARD J. (1955) Electronic Engineering
Experience: Research assistant, Ohio State University Antenna Laboratory; design engineer, Gilfillan Brothers.

* Kellogg-Voorhis Staff.
† On military leave.
LAMIMAN, JOHN F. (1946) Biological Science
B.S., Entomology, University of California, 1922; M.S., Entomology, 1924; Ph.D., Entomology, 1931; additional work, University of California, 1939-1940.
Experience: S. A. T. C. (Army) University of California; research assistant in entomology; instructor in entomology, University of California; entomologist in Experiment Station.

LANGFORD, JAMES A. (1955) Elementary Education
A.B., Western Kentucky Teachers College 1937; M.A., 1947; Ph.D., University of Michigan, 1953.
Experience: Teacher in elementary and secondary schools in Kentucky; principal, Cromwell, Kentucky; principal, Jefferson Elementary School, Wayne, Michigan; assistant professor and supervisor of elementary education, University of Nevada; communications officer, U. S. N. R.

LAUTNER, EDWARD J. (1954) English and Speech
A.B., Bowling Green State University, Ohio, 1946; A.M., University of Nebraska, 1947; additional graduate study, University of Michigan and Western Reserve University.
Experience: Professor, Sterling College, Kansas; associate professor and Director of Forensics, Upper Iowa University.

LAWRENCE, HAROLD T. (1955) Mathematics
B.S., Colorado Agricultural College, 1935; M.A. University of Chicago, 1939; additional graduate work, University of Denver, University of Arizona, University of California at Los Angeles.
Experience: Teacher-principal in Illinois; science teacher in Arizona and California schools; instructor, Citrus Junior College.

LAWSON, JOHN D. (1951) Activities Officer
B.S., University of California, Berkeley, 1938; M.Ed., University of California at Davis, 1955.
Experience: Vocational instructor; officer, U. S. Navy; special supervisor, State Bureau of Agricultural Education.

LEACH, RICHARD (1930) Head, Poultry Husbandry Department
B.S., Montana State College, 1931.
Experience: Supervisor, feed sales agency, Sweet & Company, Bozeman, Montana; manager and owner commercial poultry plant, Bozeman, Montana.

LEBAY, E. LOUIS (1955) Agricultural Engineering
B.S., Mechanical Engineering, Michigan State University, 1953; M.S., Mechanical Engineering, 1955.
Experience: Research engineer, physics and metallurgy, Owens-Illinois Glass Co., Toledo, Ohio; concrete masonry construction supervision, Toledo, Ohio; management, orchard and general farming enterprise, southern Michigan.

LEE, THOMAS J. (1952) Physical Education and Athletics
Experience: Player-coach, All-American Professional Basketball Team; instructor, private gymnasium, Oakland; playground director, Hayward Recreation District; U. S. Army.

LEWIS, VANCE D. (1946) Physics
A.B., University of California, 1933; M.A., 1940; Ph.D., University of Southern California, 1954.
Experience: California secondary school administrator; officer, U. S. Navy.

LINT, HAROLD L. (1947) Botany
B.A., University of California at Los Angeles, 1940; M.A., 1942.
Experience: Inspector, United States Food and Drug Administration.

* Kellogg-Voorhis Staff.
LOISELLE, POSTFORD A., Colonel, USA (1953) Chairman Military
Science and Tactics
Experience: Battalion commander and unit staff officer during World War II; special duty with Office of the Chief of Staff, Dept. of the Army; member of U. S. military delegation to the Five Power Nations; general staff w/troops, Hq., Far East Command.

LONBORG, REYNOLD H. (1946) Truck Crops
B.S., Agriculture, University of California, 1932.
Experience: Vocational agriculture teacher at Downey and Santa Maria High schools; truck crops production and sales, Santa Maria Valley.

LOPER, WILLARD H. (1955) Agricultural Engineering
B.S., New York College of Agriculture, Cornell University, 1953.

LOVETT, EARL DEAN (1951) College Physician
B.S., M.D., University of Iowa, 1934; additional graduate work, Cook County, Post Graduate School of Medicine, Chicago; University Hospital, Iowa City.
Experience: Rockford City, Illinois, Hospital; Mary's Help Hospital, San Francisco; Yocom Hospital, Chariton, Iowa; Cherokee State Hospital, Cherokee, Iowa; Virginia Gay Hospital, Vinton, Iowa; private practice, Vinton, Iowa; established Lovett Clinic, Vinton, Iowa.

LYNDON, THOMAS J. (1955) Librarian
A.B., University of Denver; M.A. in Librarianship, 1954.
Experience: First National Bank, Collections Department, Kansas City, Missouri; Consumer's Cooperative Association, Education Department, Kansas City, Missouri; U. S. Army; Rich-Con Hardware Company, Sales Department, Kansas City, Missouri.

McCORKLE, C. O. (1932) Administrative Dean, Instruction
B.S., University of California, 1927; M.S., 1937.
Experience: Director of agriculture and critic teacher, Red Bluff Union High School; executive secretary, California Association Future Farmers of America; assistant teacher trainer, Agricultural Education, Bureau of Agricultural Education; head, Agricultural Division, California Polytechnic; research assistant Giannini Foundation of Agricultural Economics, University of California; instructor, Agricultural Economics; subject matter specialist, Bureau of Agricultural Education, State Department of Education (California).

McGLASSON, ELMER D. (1954) Dairy Manufacturing
B.S., Oklahoma A. & M. College, 1947; M.S., University of Idaho, 1950.
Experience: Assistant plant manager and in charge of quality control, Beatrice Foods, Oklahoma City, Oklahoma; agriculture instructor, Guthrie, Oklahoma; research assistant, University of Idaho; assistant professor, University of Idaho; instructor, A. & M. College of Texas; Lucerne Milk Co., Washington, D. C.; Swift and Company, Oklahoma City, Oklahoma; U. S. D. A. chemist, Oklahoma City, Oklahoma.

McGRATH, JAMES M. (1946) Air Conditioning and Refrigeration Engineering
California Polytechnic, 1935-1938; B.A., Santa Barbara College, 1941; graduate work, Claremont College.

Kellogg-Voorhis Staff.
* MCINTOSH, WILLIAM C. (1951) ----------------- Mathematics
A.B., University of California, 1948; M.A., 1950; additional graduate work.
Experience: Mathematics and physics teacher, Richmond Union High School; U. S. Navy.

McLACHLIN, HARRY B. (1954)--------------------------------- Animal Husbandry
B.S., Agriculture, North Dakota State College, 1930.
Experience: Extension service, extension animal husbandman, North Dakota; U. S. Navy; ranch management in the Sacramento Valley.

MACH, GEORGE R. (1954)--------------------------------- Mathematics
B.A., Iowa State Teachers College, 1950; M.S., State University of Iowa, 1951.
Experience: Officer, U. S. Navy.

MAGER, HANS (1949)--------------------------------- Architectural Engineering

* MALTBY, HARRY L. (1955)--------------------------------- Fruit Production
A.B., Stanford University, 1929; M.A., 1935; B.S., California State Polytechnic College, 1953.
Experience: Public Safety employee, Long Beach City; co-owner, San Antonio Mines, Lower California; biological control technician, Citrus Experiment Station, Riverside, California.

MARSTON, ENA LESLIE (1946)--------------------------------- English
A.B., Mills College, 1927; A.M., 1928; A.M., Radcliffe College, 1931; additional graduate work at Universities of California, Washington, and Chicago.
Experience: Instructor and administrator at junior colleges in Oregon and Pennsylvania; instructor, Washington State College; assistant professor, Lewis and Clark College.

MARTINSEN, M. C. (1930)--------------------------------- Aeronautical Engineering
Mechanic Engineering, California Polytechnic, 1917; Teacher Training, University of California at Los Angeles, 1933; Civil Aeronautics Authority Certificates; aircraft pilot, aircraft and engine mechanic, ground and mechanic school instructor.
Experience: Electrician, Reynolds Electric Company; steam engineer, Union Oil Company; machinist, C. F. Braun Company; owner-operator, automotive-airmotive repair business; mechanic, Lockheed Aircraft Corporation.

MATHENY, ROBERT (1952)--------------------------------- Agricultural Engineering
B.S., California State Polytechnic College, 1951.
Experience: International Harvester Company, Des Moines, Iowa; diesel and heavy duty machinery mechanic, Army Air Corps; Allis Chalmers, dealer and sales, Point Arena, California.

MATTHEW, THEODORE (1948)--------------------------------- Chemistry
A.B., University of California, 1922; Chem. Engr., Stanford University, 1930.
Experience: Playground director, Berkeley Recreation Department; instructor in chemistry, Union High School, Richmond, California; instructor in chemistry, Junior College, San Mateo, California; officer, U. S. Army Air Force.

MAURER, ROBERT L. (1948)--------------------------------- Assistant Administrator, Arts and Sciences Division
B.A., Western Reserve University, 1935; M.A., 1936; Ph.D., Ohio State University, 1951.
Experience: Teaching assistant and research fellow, Ohio State University; instructor, Oregon State College; officer, U. S. Air Force.

* Kellogg-Voorhis Staff.
MAW, MARY ELIZABETH (1954) -------------- English
Experience: Instructor, University of Connecticut.

MEACHAM, VERNON H. (1929) --------------- Agricultural Education and Teacher Training
B.S., University of California, 1924.
Experience: Agricultural instructor, Gilroy and Manteca High Schools.

MEIER, WILLIAM T. (1955) --------------- Air Conditioning and Refrigeration Engineering
B.S., Air Conditioning and Refrigeration Engineering, California State Polytechnic College, 1955.
Experience: U. S. Navy; machinist, General Electric Co.; officer, Massachusetts State Police; refrigeration maintenance, San Luis Obispo City Schools and California State Polytechnic College.

MERSON, JAMES F. (1936) --------------- Head, Agricultural Engineering Department
B.A. in Education, San Jose State College, 1932; additional graduate work, University of California and Colorado State College.
Experience: Instructor, agricultural mechanics, Dos Palos and Santa Rosa High Schools.

METZ, ROY F. (1937) ------------------- Aeronautical Engineering
Cass Technical School of Engineering, 1941; additional study, Pratt-Whitney Corporation; Allison Corporation; certificates by Civil Aeronautics Authority as aircraft and engine mechanic, ground school instructor, and designated examiner and inspector.

MEYER, EDGAR V. (1955) --------------- English
B.A., St. Louis University, 1936; M.A., Louisiana State University, 1938; Ph.D., Denver University, 1954.
Experience: Instructor, Xavier University, New Orleans, College of St. Teresa, Winona, Minnesota; Loras College, Dubuque, Iowa; Kansas State College; California public schools.

MEYER, THOMAS O. (1955) --------------- Animal Husbandry
B.S., State College of Washington, 1949; M.S., 1953.
Experience: Instructor and meats specialist, State College of Washington; assistant animal husbandman, Experiment Station, State College of Washington, Pullman, Washington.

MILLER, DOUGLASS W. (1953) --------------- Public Relations Director and Journalism
B.A., DePauw University, 1916; M.A., University of Wisconsin, 1927; Litt. D., DePauw University, 1941.
Experience: Copywriter, Sidener-Van Riper Advertising Agency; editorial staff: Greencastle, Ind., Daily Banner; European Edition, Stars and Stripes; community newspaper publisher, Syracuse, N. Y., Los Angeles; director of public relations, Ohio Wesleyan University, Syracuse University, Case Institute of Technology; professor of journalism, Ohio Wesleyan University, Stanford University, Syracuse University.

MILLER, ROBERT W. (1949) --------------- Animal Husbandry

MORAN, GABRIEL T. (1948) --------------- Chemistry
B.A., Whittier College, California, 1942; graduate work, Whittier College.
Experience: Chemist, American Potash and Chemical Company, Trona, California; Thompson Products, Bell, California; Paul Dickerson, Chemistry Laboratory; District Agricultural Laboratory, Whittier, California.

* Kellogg-Voorhis Staff.
MOTT, ROBERT A. (1946) Head, Physical Education Department
B.S., University of Akron, 1938; M.A., University of Southern California, 1946; Ed.D., Stanford University, 1953.
Experience: Physical education instructor and athletic coach, Akron Public School System; officer, U. S. Navy; teaching assistant, University of Southern California.

NALLY, WALLACE E. (1955) Aeronautical Engineering
B.S., Mechanical Engineering, University of Washington, 1954.
Experience: Draftsman, expeditor, and planner, Boeing Airplane Co.; engineering aide, Alaska Road Commission; flight test analyst, Boeing Airplane Co.; test engineer, Northrop Aircraft, Inc.

NELSON, CARL RUSSELL (1949) Dairy Husbandry
B.S., Kansas State College, Manhattan, Kansas, 1941.
Experience: Instructor, Kansas State College; supervisor, dairy herd and farm management association, Kansas; extension agent, extension dairyman, Kansas; U. S. Public Health Service, dairy inspection; U. S. Army.

NELSON, DONALD S. (1943) Business Manager
A.B., Stanford, 1930.
Experience: California State Department of Finance, Budgets and Accounts; Comptroller, Fresno State College, Fresno.

NOLAN, THOMAS F. (1949) History and Political Science
B.S., University of Wisconsin, 1935; M.A., University of Southern California, 1940.
Experience: Instructor, Senior High School, Stockbridge, Wisconsin; instructor, Senior High School, Kaukauna, Wisconsin; instructor, American School, Quito, Ecuador; economic analyst, Department of State, Washington, D.C., at Montevideo, Uruguay; officer, U. S. Navy; vice consul, Department of State, Washington, D. C., at Valparaiso, Chile.

O’DANIELS, HOWARD R. (1933) Accounting and Typing
Bachelor of Commercial Science, University of Santa Clara, 1931; additional graduate study, University of Southern California.
Experience: Coach, California Polytechnic; officer, U. S. Navy.

O’LEAN, MICHAEL J. (1951) Sociology and Political Science
Olsen, Fritz H. (1955) --------------------------------- Welding
B.A., Industrial Arts, San Jose State College, 1941.

* Oxley, James W. (1955) --------------------------------- Animal Husbandry
Experience: Operator, Oxley Sheep Ranch, Monte Vista, Colorado.

Perello, Dominic B. (1954) --------------------------------- Economics
A.B., University of California, Santa Barbara College, 1951; M.S., University of Wisconsin, 1952; additional graduate study, University of California at Los Angeles.
Experience: Officer, U. S. Air Force; partner, Perello and Sons; teaching assistant, University of California at Los Angeles.

* Pettit, Frederick D. (1953) --------------------------------- Crops
B.S., University of British Columbia, 1949; M.S., 1951; Ph.D., Rutgers University, 1953.
Experience: Wheat farming, Saskatchewan; plant breeder, Robinson Seed Company, Gridley, California; research assistant, Department of Farm Crops, Rutgers University; teaching and research assistant, University of British Columbia; officer, Royal Canadian Air Force.

* Pelueger, Donald H. (1952) --------------------------------- History, Political Science
A.B., Pomona College, 1949; M.A. Stanford University, 1951; scholar, Institute of American History, Stanford University, summer, 1951; additional graduate work, Claremont Graduate School, U. C. L. A.; Sherwood Eddy Seminar in Europe, 1953.
Experience: Social science instructor, Covina High School.

Philbin, Leo F. (1948) --------------------------------- Registrar
B.S., California State Polytechnic College, 1944.
Experience: Aircraft instructor, Naval Flight Preparatory School; aircraft instructor, Fourth Air Force Headquarters, San Francisco; civilian training administrator, Salinas Army Air Base; training officer, Veterans Administration Office, San Luis Obispo.

Pimentel, Richard A. (1952) --------------------------------- Biological Sciences
A.B., San Jose State College, 1947; General Secondary Teaching Credential, 1948; M.S., Oregon State College, 1950; Ph.D., 1952.
Experience: Teaching assistant, Oregon State College; ranger-naturalist, Crater Lake National Park; officer, U. S. Army.

* Pitts, Staley L. (1953) --------------------------------- Physical Education and Athletics
B.S., Kansas State, 1939; M.S., University of Southern California, 1951; additional graduate work, University of Southern California.
Experience: Instructor, Ransom High School, Kansas; Instructor, Newton High School, Kansas; P.E. instructor and line coach, South Dakota State; associate professor and line coach, Kansas State; associate professor and line coach, Virginia Polytechnic Institute; vocational agriculture instructor, Corona High School; officer, U. S. Navy.

Plath, Charles E., Master Sergeant, U. S. Army (1954) --------------------------------- Military Science and Tactics
Certificate, director of physical education, George Williams College, 1931; additional study, Philadelphia College of Pharmacy, University of Illinois.
Experience: Officer U. S. Army; executive director, Army and Navy YMCA, San Antonio, Texas; instructor, Special Services School, Washington and Lee University; overseas duty, Army of Occupation Troops, Germany; Special Services Officer, Camp San Luis Obispo, California.

* Kellogg-Voorhis Staff.
POLLEY, RUDOLPH A. (1952) Architectural Engineering
A.B., Architecture, University of California, 1927.
Experience: Draftsman and designer with architects in San Francisco and Santa Barbara; architect engineer for Santa Barbara County, Hancock College, and U. S. Government; private practice as architect in Oxnard, California. Registered architect, California.

PONKOW, JOHN W., Master Sergeant, U. S. Army (1955) Military Science and Tactics
British Artillery School; Chemical, Biological and Radiological School, Gifu, Japan.
Experience: Instructor artillery, Fort Sheridan, Illinois, and Fort Bliss, Texas; First Sergeant WW II; instructor infantry, Division Faculty, Fort Ord, California; ROTC instructor, UCLA; rifle team coach, ROTC and varsity, UCLA; Chief, Air Immigration; U. S. Civil Administration, Ryukus Island; Gun Commander AA (Skysweeper Unit) March Field, California.

*PROCSAL, ROBERT L. (1949) Head, General Crops Department
B.S., California State Polytechnic College, 1946.
Experience: Borden's Dairy Delivery Service, Oakland; vocational agricultural instructor, El Centro; diversified farming, Imperial County; officer, U. S. Army Air Force.

PYLE, KATHERINE M. (1953) Placement Secretary
A.B., San Diego State College, 1933.
Experience: Assistant to Comptroller, San Diego State College; Placement Secretary, San Diego State College; in charge of Veterans' Affairs, San Diego State College; U. S. Women's Army Corps.

RADIUS, CLARENCE (1946) Head, Electronic Engineering Department
B.S., University of Chicago, 1932; graduate work in electronics and communications at University of Chicago, Stevens Institute of Technology.
Experience: Engineer, Radiomarine Corp. of America; head, Department of Audio-Video Technology, RCA Institutes, N. Y.; lecturer in television for NBC in New York, Chicago, Hollywood; registered professional engineer, California.

Experience: Librarian, College of the Holy Cross, Worcester, Mass.; Librarian, Charity Hospital School of Nursing, New Orleans; Cataloger, California State Polytechnic College, 1946-48.

REAVES, L. LEROY (1955) Agricultural Engineering
B.S., University of Georgia, 1938; M.S., Iowa State College, 1939; additional work at U. S. Naval Academy Post Graduate School, 1944.
Experience: Sales promotion engineer, U. S. Steel; U. S. Navy aerology officer; Air National Guard meteorology officer; head of Engineering Department, registrar, Howard College, Birmingham, Alabama; salesman for office and engineering supplies.

REECE, ROBERT HOWELL (1946) Mechanical Engineering
B.S., in mechanical engineering, University of Illinois, 1920.
Experience: Steel plate work estimator, Joseph T. Ryerson & Son, Chicago; City of Chicago water filter plant; Skidmore, Owings and Merrill, Architects and Engineers, Chicago and New York; officer, U. S. Navy; Wurdeman and Becket, Architects and Engineers, Los Angeles, California; mechanical design engineer, Bechtel Corporation, San Francisco.

*REES, DONALD E. (1949) Physical Science
A.B., Whittier College, 1942; M.S., University of Iowa, 1943; Ph.D., 1947.
Experience: Teaching assistant and research fellow, University of Iowa; officer U. S. Navy; group leader, Research Department, Shell Oil Co., Inc.

* Kellogg-Voorhis Staff.
REMUND, CLIVE O. (1946) Agricultural Engineering
B.S., Agriculture, Utah State Agricultural College, 1931.
Experience: Teacher, Utah high schools; agricultural instructor and critic teacher, California high schools.

RENDALL, ROBERT G. (1954) Aeronautical Engineering
Experience: Officer, U. S. Coast and Geodetic Survey; instructor, Del Norte High School, Colorado; design engineer, North American Aviation Corp., Los Angeles, California; U. S. Army.

REYNOLDS, R. WALLACE (1953) Mechanical Engineering
B.S., California (Pa.) State Teachers College, 1940; M.S., Purdue University, 1946; additional graduate work, University of Pittsburgh and University of Southern California.
Experience: Assistant educational adviser, Civilian Conservation Corps; weight engineer, Douglas Aircraft Co.; ordnance engineer, Naval Ordnance Laboratory; instructor, Purdue University; head, engineering drawing, Washington and Jefferson College; assistant professor, University of Santa Clara; instructor, West Coast University; instructor (part time) UCLA; engineering designer, Hughes Aircraft Co.; consulting work in tool design and machine design.

RICH, GLENN W. (1953) Agricultural Engineering
B.S., California Polytechnic College, 1953.
Experience: Assistant instructor, California State Polytechnic College, San Luis Obispo; Journeyman Carpenter, U. S. Coast Guard.

RICHARDS, CARLOS C. (1946) Machine Shop
B.A., Santa Barbara State College, 1942.
Experience: O. C. Field Gasoline Corporation; U. S. Coast Guard.

RICHARDSON, JOY O. (1948) Mechanical Engineering
B.S., University of Nebraska, 1940; M. of Engr., Yale University, 1942.
Experience: Instructor, Yale University, New Haven Junior College, New Haven, Connecticut; instructor, Orland High School, Orland, California; machine designer, Rockbestos Products Corporation; engineer, Marlin Firearms Company; Bristol Aeronautical Corporation, New Haven, Connecticut; engineer, Johns Manville Corporation, Tilton, New Hampshire; vice-president and treasurer, Richardson Industries, Incorporated, East Haven, Connecticut. Registered professional engineer, California.

RICKANSRUD, TORLEIF M. (1943) Physics and Chemistry
B.A., Luther College, 1922; M.S., Iowa State College, 1940; graduate work, University of St. Louis, 1942-1943.
Experience: Superintendent of schools and director of Science Department at Rolla, North Dakota; Omemee, North Dakota; Lansing, Iowa; electronics instructor, Advanced Radar School, Trux Field, Madison, Wisconsin.

RIEBEL, JOHN P. (1947) English
B.S., University of Kentucky, 1924; A.B., University of Southern California, 1927; M.A., 1928; additional graduate work, University of Illinois.
Experience: Teaching, Georgia School of Technology; University of Illinois; Austin Peay Normal, Clarksville, Tennessee; General Motors Institute, Flint, Michigan; University of Detroit. Editor and author, L. W. Singer Company; Cadillac Motor Car Division; Gladding, McBean & Co.; professional writing.

RITTENHOUSE, EUGENE A. (1949) Economics
B.S., University of California, Los Angeles, 1947; M.B.A., University of California, Berkeley, 1948; additional graduate work, University of California, Berkeley.
ROBINSON, PAUL V. (1954)
Art and Audio-Visual Education
B.S., Ohio State University, 1947; M.A., Teacher's College, Columbia University, 1949; additional graduate study, University of Southern California.
Experience: Instructor, Columbus Gallery of Fine Arts; teacher, Bexley, Ohio, High School; instructor, Miami University, Oxford, Ohio; assistant, University of Southern California; lecturer, Los Angeles State College; assistant to training coordinator, Douglas Aircraft Co., Santa Monica.

ROBINSON, ROBERT J. (1953)
Biological Sciences
A.B., University of California, 1943; Ph.D., 1951.
Experience: Assistant botanist, University of California Herbarium; ranger naturalist, Yosemite National Park; administrative clerk, U. S. Marine Corps; expedition botanist, University of California African Expedition; teaching assistant, University of California; lecturer for extension division, University of California; professor of biology, Forman Christian College, Lahore, Pakistan.

ROEST, ARYAN I. (1955)
Biological Sciences
B.S., University of Virginia, 1945; B.S., Oregon State College, 1948; M.S., 1949; Ph.D., 1954.
Experience: Teaching and research assistant, Oregon State College; assistant professor, Central Oregon College; forester, Oregon State Board of Forestry; officer, U. S. Navy.

ROGERS, EDWARD P. (1950)
Economics
B.A., University of California, Los Angeles, 1940; graduate work, University of Southern California.
Experience: Plant personnel and labor relations, Lockheed Aircraft Corporation, Burbank; personnel manager, Naco Manufacturing Co., Huntington Park; administrative assistant to director of industrial relations, Pacific Airmotive Corporation, Burbank.

ROGERS, LEO E. (1954)
Machine Shop
B.S., in Aeronautical Engineering, California State Polytechnic College, 1950.
Experience: Instructor, San Luis Obispo High School; engineering aid, Division of Highways, San Luis Obispo.

ROSEN, ARTHUR Z. (1953)
Physics
A.B., University of California, 1941; Ph.D., 1952.
Experience: Physicist, University of California Radiation Laboratory; U. S. Navy; teaching and research assistant, University of California; lecturer, University of California, Santa Barbara College.

SALO, GLENN W. (1955)
Agricultural Engineering
B.S., Montana State College, 1950; M.S., University of Idaho, 1955.
Experience: Shops officer, U. S. Air Force; Instructor and assistant Agricultural Engineer, University of Idaho; Research Fellow, University of Idaho.

SANKOFF, LEO (1946)
Poultry and Agricultural Engineering
B.S., Agriculture, California State Polytechnic College, 1942.
Experience: Agricultural instructor, Fillmore High School.

SCHENK, JANICE C. (1955)
Mathematics
Experience: Public health statistician, Ohio State Department of Health and Oklahoma State Department of Health; auditor, U. S. Army; budget and fiscal supervisor, U. S. Air Force; mathematics instructor, U. S. Government; junior mathematician, Battelle Memorial Institute, Columbus, Ohio.

SCHUYLER, WILLIAM S. (1952)
English
A.B., Washington University, 1935; M.A., Stanford University, 1933.
Experience: Radio, advertising, and real estate, in St. Louis, Mo.; dude ranch operator, Santa Fe, N. M.; U. S. Navy; professional writer.
SCOTT, CHESTER H. (1952) .. Mathematics
Experience: Instructor, Sheridan High School, Wyoming; instructor, mathematics and navigation, Civilian Pilot Training School; counselor, Y. M. C. A.; instructor, mathematics, electronics, U. S. Navy; assistant professor mathematics; Montana School of Mines; state-wide counselor, University of Montana.

SCHWARTZ, KENNETH E. (1952) .. Architectural Engineering
B. of Arch., University of Southern California, 1952.

SEEBER, GLENN E. (1954) .. Welding Department
A.B. and M.A. in Biology, Chico State College, 1950.
Experience: Instructor in biology and welding, Lassen Union High School and Junior College; welder and foreman, Interstate Steel Co., Chico, California; welder, Anderson’s Welding Shop, Chico; welder and foreman, Pollock Shipbuilding Corp., Stockton; locomotive fireman, Western Pacific Railroad.

SHARPE, NORMAN (1937) ... Head, Air Conditioning and Refrigeration Engineering Department
B.A., University of California at Los Angeles, 1929; M.A., University of Southern California, 1939.
Experience: Development engineer, Carrier Corporation; design engineer, Carrier Corporation; mathematics instructor, Los Angeles City Schools; design and construction engineer, Luppen and Hawley, Inc.; professional writing. Registered professional engineer, California.

SHEPARD, VARD M. (1932, 1947) Dean, Agricultural Division
B.S., University of Minnesota, 1923.
Experience: Agricultural extension service; extension specialist in animal husbandry, University of California; U. S. Navy; instructor, vocational agriculture, Galt and Los Banos high schools; South St. Paul, San Francisco, and Stockton Union Stockyards.

SIMON, ALFRED W. (1955) ... Physics
B.S., University of Chicago, 1921; Ph.D., 1925.
Experience: National research fellow in physics, California Institute of Technology; director, Cottrell Research Laboratory, Tennessee Coal, Iron and Railroad Co.; research physicist, Stewart-Warner Corp., American Harmonica Co., and Naval Ordnance Laboratory; assistant professor, Washington University, St. Louis; associate professor, Tulsa University and Alabama Polytechnic Institute.

SMITH, DON W. (1955) ... Aeronautical Engineering
B.S., Mechanical Engineering, Valparaiso University, 1952.
Experience: Officer, U. S. Army Air Corps; engineer, Chicago Midway Laboratory, Rockford Clutch Corp., Lockheed Aircraft Corp.

SMITH, M. EUGENE (1946) .. History and Political Science
A.B., University of California, 1934; M.A., 1937; additional graduate study, University of California and University of Oregon.
Experience: Instructor, Piedmont High School, Piedmont, California; officer, U. S. Army.

SMITH, WARREN T. (1952) .. Assistant Dean of Agriculture
B.S., University of California, 1943; M.S., University of California, Davis, 1953.
Experience: Forester, United States Forest Service; U. S. National Park Service; Stores U. S. Navy (civilian); director of vocational agriculture and critic teacher, Madera Union High School.
STEFFEL, MILAN S. (1954) .. Printing
B.S. in Printing, California State Polytechnic College, 1954.
Experience: Assistant pressman, World Publishing Co., Buehler Print Craft Co.,
and International Press, Cleveland, Ohio; pressman, Odd Things Publishing Co.,
Cleveland; pressman, Commercial Press, New York City; U. S. Army.

STEUCK, FRED H. (1947) .. Electronic Engineering
B.S., Iowa State College, 1937.
Experience: Engineer, Nebraska Power Co.; manager, O'Brien Co.; Rural Electric
Co-op., Iowa; instructor, Iowa State College; officer, U. S. Army; registered pro-
fessional engineer, California.

STOBBE, ARTHUR J. (1949) .. Library
Ph.B., Marquette University, 1937; B.L.S., Syracuse University, 1947; M.L.S.,
University of California, 1949.
Experience: Officer, U. S. Army Air Force; art and music librarian, Milwaukee
Public Library; reference librarian, Grosvenor Reference Library; research assistant,
University of California School of Librarianship; library, Syracuse University.

STRINGHAM, GLEN E. (1955) .. Agricultural Engineering
B.S., Utah State Agricultural College, 1955.
Experience: Engineer, Conservation and Development Branch, Saskatchewan De-
partment of Agriculture, Regina, Saskatchewan, Canada.

STULL, ROBERT B. (1947) ... Health and Physical Education
A.B., Whittier College, 1941; M.A., 1947; additional graduate work, University
of Southern California.
Experience: Freshman basketball coach, Whittier College; graduate manager,
Whittier College; athletic specialist, U. S. Navy; officer, U. S. Navy; instructor,
political science and physical education, Valencia Union High School.

SUSMAN, IRVING (1954) ... Mathematics
B.S., Columbia University, 1943; M.A., the Johns Hopkins University, 1947; Ph.D.,
University of California, 1953.
Experience: Professional writer; Editor, Musical Observer, Musical Courier; pro-
fessional engineer, New York City; instructor, Ricker Junior College, the Johns
Hopkins University, University of Arizona, University of California (San Francis-
co Extension Division); assistant professor, University of Dayton, St. Mary's College,
University of San Francisco.

TAIBOTT, JOHN WILLIAM (1949) .. Truck Crops and Agronomy
B.S., Agriculture, University of California, Davis, 1949.
Experience: Field assistant, University of California, Davis; general farm work,
76 Ranch, Lemhi, Idaho; fruit sales, College Heights Orange Association, Claremont.

TAYLOR, HARRIETT S. ... College Physician
B.S., A.B., La Sierra College, 1938; M.D., College of Medical Evangelists, 1941.
Experience: Blodgett Memorial Hospital, Grand Rapids, Mich.; Tehachapi Valley
Hospital and Clinic, Tehachapi, Calif.; private practice Morgan Clinic, Covina,
Calif.; Mojave Hospital and Clinic, Mojave, Calif.; Industrial Physician, Federal
Reserve Bank of Cleveland, Cleveland, Ohio; Maternal Health Association, Clev-
land, Ohio; civilian physician, Camp Roberts, Calif., and Camp San Luis Obispo,
Calif.

TEITEL, LUDWIG (1954) ... English and Journalism
A.B., University of California at Los Angeles, 1950; M.A., 1953.
Experience: Editor, Monterey Park Californian; reporter, Los Angeles Mirror;
director of public relations, Los Angeles Title Insurance Company; U. S. Army.

THOMAS, JOHN P. (1954) ... Mechanical Engineering
B.M.E., University of British Columbia, 1950.
Experience: Mechanical designer, John B. Parkins, Toronto, Canada; instructor,
General Motors Corp., London, Canada.

* Kellogg-Voorhis Staff.
THOMSON, DAVID H. (1946) ... Biological Sciences
B.S., University of Arizona, 1944; M.A., Claremont Graduate School, 1948.
Experience: Laboratory instructor, Pomona College; ranger-naturalist, Sequoia National Park.

THURMOND, WILLIAM (1951) Biological Sciences
A.B., University of California, 1948; M.A., 1950.
Experience: Teaching assistant, University of California; instructor, San Mateo Junior College.

TOONE, HARMON (1952) Agricultural Education and Teacher Training
B.S., University of Idaho, 1940.
Experience: Director of vocational agriculture at Moreland, Ucon, and Firth high schools, Idaho; superintendent, Firth High School, Idaho; director of vocational agriculture, Riverdale High School, California; special supervisor, Bureau of Agricultural Education.

TROUTNER, WILLIAM R. (1942) Field Crops, Agricultural Inspection
Vocational Certificate, California State Polytechnic College, 1934; B.S., Agriculture, University of California, Davis, 1938.
Experience: Agriculture instructor, Pomona High School and Junior College; agriculture instructor and critic teacher, San Luis Obispo Senior High School.

TRUEX, JOSEPH W. (1954) Printing
B.S. in Printing, California State Polytechnic College, 1952.

TULOCK, MARY K. (1955) Mathematics
B.S., Virginia Polytechnic Institute, 1930; M.A., George Peabody College for Teachers, 1954; additional graduate work, Stanford University.
Experience: Instructor, Virginia Polytechnic Institute; education specialist advising Ministry of Education, Republic of Korea; high school and elementary school teacher, Virginia and Georgia.

TURNER, PEARL (1951) Library
A.B., San Jose State, 1937; M.S., University of Southern California, 1949; M.L.S., Texas State College for Women, 1951.
Experience: Officer, U. S. Navy; library, Texas State College for Women.

ULRICH, BARRY W., Captain, USAR (1954) Military Science and Tactics
A.B., Stanford University, 1944; Stanford Law School; Graduate, Officer Candidate School and Battery Executive Course, Fort Sill, Oklahoma; graduate, Chemical School, Fort Bliss, Texas.
Experience: World War II in Germany; Commanding Officer, Displaced Persons installation, Germany; Trial Counsel for southern France; Battalion S2, S3, and Motor Officer; Artillery Battery Commander; Inspector General at Fort Richardson, Alaska, and Camp Chaffee, Arkansas.

VAN ASPEREN, IR JAN T. (1951) Electrical Engineering
Master's Degree in E.E., Technische Hoogeschool, Delft, The Netherlands, 1918.
Experience: Research, Technische Hoogeschool; Centraal Bruinkool Bureau; electrical engineer, Heemaf, The Netherlands; director of publicity and editor of "Heemafpost," Heemaf, The Netherlands; teacher, Middelbare Technische School Dordrecht, The Netherlands; member, examining committee for welding instructors and supervisors, Dutch Welding Society; member, examining committee for trade school teachers, The Netherlands; lecturer, University of California at Los Angeles; electrical engineer, Inet, Inc., Los Angeles.

VORHIES, RALPH M. (1946) Crops
B.S., University of Missouri, 1938; M.A., 1941.
Experience: Agriculture Instructor at Belton and Couch High Schools, Missouri; instructor, Southeast State Teachers College, Cape Girardeau, Missouri; officer U. S. Navy.
WALES, T. E. (1953) Agricultural Engineering
B.S., University of California, Davis, 1950; M.S., 1953.
Experience: U. S. Navy; engineering aide, University of California, Davis.

WARD, WESLEY S. (1954) Architectural Engineering
B. of Arch., University of Southern California, 1953.
Experience: Engineering assistant, Pacific Telephone and Telegraph Co.; officer, U. S. Air Force; surveyor, City of Santa Ana; design draftsman, Benedict Beckler and Kocher, Architects and Engineers; construction supervisor, Everett E. Parks, Architect. Registered Architect, California.

*WEEKS, LOWELL K. (1947) Music, English
B.A., University of New Mexico, Albuquerque, New Mexico, 1938; graduate work, University of New Mexico, University of Southern California, and Claremont Graduate School.
Experience: Music and English teacher, Los Lunas, New Mexico; Air Force Band Leader, U. S. Army at Albuquerque, New Mexico, Palm Springs, California and Long Beach, California.

*WELCH, HARRY V. Jr. (1947) Head, Soil Science Department
B.S., University of California at Los Angeles, 1941; M.S., 1953.
Experience: University of California Citrus Experiment Station, Riverside; Farm Security Administration.

*WELLS, HAROLD F. (1954) Head Librarian
Experience: Reference assistant, Eastern Washington College of Education; Junior Librarian, Fresno State College.

WERBACK, WILLIAM J. (1954) Aeronautical Engineering
B.S. in Mechanical Engineering, Michigan State College, 1944; M.S. in Aeronautical Engineering, University of Michigan, 1950.
Experience: Hydrodynamics and flight test engineer, Consolidated Vultee Aircraft Corp.; radio technician, U. S. Navy.

WESKAMP, KATHRYN (1948) Nurse
Attended Akron University. R.N. St. Thomas School of Nursing, Akron, Ohio, 1947.
Experience: General duty at St. Thomas School of Nursing.

WESTON, RALPH E. (1948) Mathematics
A.B., Stanford University, 1922; M.A., 1932.
Experience: Electrical engineering; San Joaquin Light and Power Co.; Pacific Gas and Electric Co.; teaching, Stanford University, Chaffee Junior College, Sacramento Junior College, visiting professor mathematics, University of Idaho, Southern Branch; visiting associate professor, aeronautical engineering, University of Southern California.

WHITING, FRANCIS F. (1946) Chairman, Machine Shop Department
B.S., Stout Institute, 1931; M.A., University of Minnesota, 1938.
Experience: Teacher, Eau Claire, Wisconsin; teacher, Minneapolis, Minnesota; instructor, Kent State University, Kent, Ohio; assistant professor, University of Minnesota; officer, U. S. Navy.

WHITNEY, LESTER V. (1955) Physics
Ph.B., University of Wisconsin, 1930; Ph.M., 1932; Ph.D., 1936.
Experience: Teacher and demonstration assistant, University of Wisconsin; research associate, Wisconsin Natural History and Geological Survey; research in underwater physical measurements and consultant, Woods Hole Oceanographic Institute, Scripps Institution of Oceanography, Marine Biological Laboratory, University of Georgia; sonar and electrofishing research, University of Wisconsin; professor, Southwest Missouri State College.

* Kellogg-Voorhis Staff.
WHITSON, MILO E. (1947)Head, Mathematics Department
Ph.B., Washburn College, 1937; M.A., George Peabody College for Teachers, 1940; Ed.D., University of Southern California, 1949.
Experience: Teacher and administrator, Kansas; officer, U. S. Navy; lecturer, mathematics, University of Southern California.

WIGHT, HEWITT G. (1952)Chemistry
B.S., University of Utah, 1943; Ph.D., University of California, 1955.
Experience: Teaching assistant, University of Utah, St. Martin's College, and the University of California; officer, U. S. Army.

WILEY, RICHARD C. (1946)Chairman, Welding Department
Special engineering courses, Stanford University; industrial arts training, San Jose State College and University of California.
Experience: Master mechanic and welder, Utah Construction Company; Eaton and Smith, contracting engineers; instructor in welding, Sacramento Junior College; Palo Alto, San Francisco, and San Jose school systems; senior welding engineer, Joshua Hendy Iron Works, Sunnyvale, California; welding inspector, Bechtel Corp., San Francisco, California.

WILKINSON, JAMES S. (1954)Residence Supervisor
Experience: Director of Athletics, Toppenish, Wash., High School; instructor in P. E., University of Oregon; Director of Health and P. E., The Dalles, Oregon, High School; Officer-in-Charge, Ship Handling School USN; Training and Scheduling Officer, Combat Information Center, USN.

* WILLIAMSON, WILLIS N., JR. (1955)...Manager, Horse Breeding Program
B.S., California State Polytechnic College, 1953.
Experience: Trainer, stable foreman, California State Polytechnic College, Kellogg Unit, Pomona, California; head of breeding program and sale yearlings, Dr. Frank Porter Miller Ranch, Riverside, California.

WILLS, JAMES R. (1953)Electronic Engineering
B.S., Southwest Missouri State College, 1951.

WILSON, HAROLD O. (1936, 1946)Administrative Dean, Student and College Affairs
B.S., University of California, 1932; additional study, Fresno State College; graduate study, University of California at Los Angeles.
Experience: Director of agriculture, Excelsior Union High School, Norwalk; instructor of agriculture and head, Swine Department at California Polytechnic; regional supervisor, agricultural education, State Department of Education, California; dean, Voorhis Unit.

WILSON, VIRGINIA (1954)English
A.B., University of California at Los Angeles, 1946; M.A., University of California, 1953.
Experience: Instructor, Santa Barbara Junior College; executive secretary, Don Lee Broadcasting System and Southern Pacific Milling Company.

WINEROTH, HARRY J. (1949)Graduate Manager and Student Store Manager
B.S., California State Polytechnic College, 1946; graduate work, University of California, Davis, 1947.
Experience: Athletic and welfare director, U. S. Navy; agricultural instructor.

WINNER, C. PAUL (1940)Admissions Officer
B.S., Montana State College, 1931.
Experience: Director of vocational agriculture and critic teacher, Montana and California high schools; teacher trainer of agriculture education.

* Kellogg-Voorhis Staff.
INTERBOURNE, ROBERT J. (1950) Registrar
B.S., California State Polytechnic College, 1950; M.A., 1952.
Experience: Agricultural instructor, Shandon, Moorpark, and Ventura High Schools.

WIRSHUP, ARTHUR D. (1952) Mathematics
B.S., City College of New York, 1931; M.A., Columbia University, 1936; M.S., Oregon State College, 1951; additional graduate study, Oregon State College.
Experience: Teaching fellow in mathematics, Oregon State College; instructor, Multnomah College, Portland, Oregon; radar officer, U. S. Army.

WOLF, HARRY K. (1942) Electronic Engineering
B.A., Arizona State College, 1933; M.A., University of Arizona, 1941; Ed.D., University of Southern California, 1953.
Experience: Engineer, Agricultural Adjustment Administration; high school teaching; Signal Corps program.

WOODWORTH, JOHN A. (1949) Mathematics
A.B., Hastings College, 1939; M.S., University of Southern California, 1948; additional graduate work, University of California, Berkeley.
Experience: Teacher-principal, Nebraska schools; instructor, Baldwin Park, Salinas, Santa Ana Army Air Base; physicist, University of California Radiation Laboratory; principal, Hopland Union High School.

WRIGHT, DOROTHY S. (1946) Library
A.B., Occidental College, 1926; library certificate, University of California, 1939.
Experience: Pasadena Public Library; Long Beach School Libraries; Occidental College Library.

YOUNG, CHESTER G. (1954) Mathematics
A.B., San Diego State College, 1936; M.S., Stanford University, 1954; additional graduate study, University of California and San Jose State College.
Experience: Teacher and vice principal, Lemoore Elementary Schools; U. S. Navy; assistant professor, acting chairman, Mathematics Department, University of Santa Clara.

YOUNG, EDGAR M. (1954) Ornamental Horticulture
B.S., California State Polytechnic College, 1948; graduate study at Ohio State University.
Experience: Instructor, San Francisco City College; landscape architect; U. S. Army.

YOUNG, KENNETH E. (1951) Acting Head, Arts and Sciences
A.B., San Francisco State College, 1943; M.A., Stanford University, 1946; Ph.D., 1952.

ZILKA, THOMAS J. (1947) Head, Mechanical Engineering Department
B.S., Oregon State College, 1941; M.S., 1943.
Experience: Instructor, mechanical and aeronautical engineering, Oregon State College; assistant airworthiness requirements engineer, Boeing Aircraft Co.; assistant professor, aeronautical engineering, Montana State College; registered professional engineer, California.

ZIMMERMAN, HOWARD (1955) Electronic Engineering
Experience: Radar technician, U. S. Navy; design and repair of electronic devices, self-employed; chief technician and communication field engineer, RCA Service Co.; instructor, Penn-Ohio Technical School.

* Kellogg-Voorhis Staff.
The State Bureau of Agricultural Education is a division of the State Department of Education. The bureau is in charge of all vocational agriculture instruction in the State. Some of the bureau offices are located on the campus, and the college and its staff participate actively in in-service training for vocational agriculture teachers.

Members of the bureau staff are well informed on activities of the college, and are always willing to discuss the college with prospective students. The State Bureau of Agricultural Education staff directory is listed below:

DIRECTORY STATE BUREAU OF AGRICULTURAL EDUCATION

B. J. McMahon, Chief of Bureau State Education Bldg., Sacramento

E. W. Everett, Assistant Chief of Bureau and

Supervisor Veterans Training State Education Bldg., Sacramento

H. H. Burlingham, Teacher-Trainer California Polytechnic, San Luis Obispo

H. F. Chappell, Regional Supervisor State Education Bldg., Sacramento

George P. Couper, Special Supervisor California Polytechnic, San Luis Obispo

K. B. Cutler, Regional Supervisor 809-C California State Building, Los Angeles

B. R. Denbigh, Regional Supervisor 2082 Center St., Berkeley

G. A. Hutchings, Regional Supervisor California Polytechnic, San Luis Obispo

M. K. Luther, Regional Supervisor 809-C California State Bldg., Los Angeles

W. J. Maynard, Special Supervisor State Education Bldg., Sacramento

R. H. Pedersen, Special Supervisor Fresno State College, Fresno

A. G. Rinn, Regional Supervisor Fresno State College, Fresno

S. S. Sutherland, Teacher-Trainer University of California, Davis

J. Everett Walker, Regional Supervisor 47 Warner Ave., Chico
INDEX

A
Absences, 34
Administration, college, 9
Accreditation, 14
 state board of education, 9
 state department of education, 9
Admissions, 28, 30, 205
 agriculture division, 57
 graduate courses, 41
Advanced standing, graduate, 30
 undergraduate, 28
Advisory system, 21
Aeronautical engineering, 100
Agricultural courses, related, 234
Agricultural division, 57, 208
Agricultural engineering, 59, 234
Agricultural inspection, 224
Agricultural journalism, 143
Agricultural management and sales, 210
Agricultural teaching credentials, 43, 44
Air conditioning and refrigeration engineering, 104
Alumni association, 19
Animal husbandry, 65, 213
Application for graduation, 40
Architectural engineering, 108
Art, 160
Arts and sciences division, 143
Athletics, 18, 203
 eligibility, 36, 205
Attendance, 34
Auditing of courses, 36

B
Biological science, 147, 237
Board, costs, 31, 206
Building and equipment, 15, 202
Bureau of Agricultural Education, 281
Cafeterias, 15
Calendar, school, 4-5
Change of program, 34
Chemistry, 185, 244
Citrus fruit production, 217
Class attendance, 34
Classification of students, 30
College, accreditation, 14
 aims of, 13
 buildings and equipment, 15, 202
 history of, 13, 201
 lands and location, 14, 201
Counseling center, 21, 204
Course numbering system, 37
Course symbols, 38
Credentials, 42-54
Credit by examination, 36
Crops, field, fruit and truck, 78
 general, 221
 Curriculum, change of, 33

D
Dairy husbandry and manufacturing, 69
Deciduous fruit production, 82, 219
Degrees and credentials, 39
Department heads, 249
Deposits, 31, 206
Dismissal, 37
Dormitories, 15, 202
Double majors, 40
Economics, 194, 242
Education and psychology, 153, 244
Electrical engineering, 112
Electronic engineering, 117
Elementary education, 42
Employment, students, 22, 204
Engineering division, 99-139
English and speech, 162, 238
Entrance requirements, 28-30, 205
Examination, credit by, 36
 physical, 21
Expenses, 31, 206
Expulsion, 37
Extension, courses, 20
 services, 21
Extracurricular activities, 18, 203

F
Faculty, list of, 250
Family, housing, 15, 32, 202, 207
Farm management, 74
Fees and expenses, 31, 206
Field crops, curriculum, 78
Field, fruit, and truck crops, 78
Foundation, California State Polytechnique College, 17, 203
Fruit production, 79, 217

G
General crops, 221
General education requirements, 39
General information, 166-170, 13, 201
Grade requirements, 34
Grades, 35
Graduation, application for, 40
 requirements, 39

H
Health center, 21, 204
History, courses, 195, 243
 of college, 13, 201

[283]
Holidays, school, 4
Home economics, 166
Honors, 36
Horticultural services and inspection, 224
Horticulture, ornamental, 85, 228
Housing, dormitory, 15, 31, 202, 206
Housing, family, 15, 32, 202, 207
Incomplete, grade of, 35
Industrial engineering, 122
Infirmary, 21
Inservice program, 20
Journalism, 143, 239
Kellogg-Voorhis campus, 201
Lands, of college, 14, 201
Library, 15, 202
Life science, 149, 237
Living expenses, 31, 206
Loan funds, 26, 204
Machine shop, 125
Master of arts degrees, 40
Mathematics, 170, 240
Maximum and minimum load, 35
Mechanical engineering, 127, 235
Medical service, 21, 204
Military science and tactics department, 21, 175
Military service, credit for, 36
Music, 178, 241
Organizations, student, 18, 167, 203
Ornamental horticulture, 85, 228
Personal conduct, 37
Physical education, 180, 239
Physical examination, 21
Physical sciences, 185, 244
Physics, 185, 244
Placement service, 22, 204
Placement, teacher, 54
Political science, 196, 243
Poly Royal, 19
Poly Vue, 203
Poultry husbandry, 89, 235
President's list, 36
Printing, 133
Probation, 37
Project facilities, 18
Psychology, 161, 244
Public speaking and English, 162, 238
Publications, student, 19, 203
R
Refrigeration and air conditioning engineering, 104
Refunds, 31, 206
Registration, 33
Regulations, 33
Requirements, general education, 36
residence, 42
scholarship, 34, 41
Room, costs, 31, 206
R.O.T.C., 21, 175
S
Scholarship requirements, 34, 41
Scholarships, 22, 205
Secondary school teaching, credentials, 42
preparation for, 42
Social science, 193, 242
Soil science, 92, 232
Student body, membership, 18, 203
organization, 18, 203
Student personnel services, 21, 168, 204
Student teaching, 52
Student's classification of, 30
Study list, change of, 34
Study load, maximum and minimum, 35
Summer conference, agricultural teacher, 20
Summer quarter, 20
Teacher candidates, approval of, 52
selection of, 42
Teaching, majors and minors, 45
Technical curricula, 39, 58
Tests, entrance, 28
Transcripts, required for admission, 28
Transfer, credit, 30
from other schools, 30
to other schools, 36
Truck crops, curriculum, 80
Veterans, fees for, 31, 206
Veterinary science, 95, 236
Voorhis-Kellogg campus, 201
W
Welding, 138
Withdrawal from courses, 34