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The article describes the computational evaluation of the effect a belly mounted sting on 
the aerodynamics characteristics of an X-31 wind tunnel model. The investigation includes 
results of steady and time-dependent CFD analysis of the X-31 model with and without 
sting. The values of the steady lift and pitching moment coefficients as well as the pitching 
moment of model undergoing a manuever are compared to each other and to the wind 
tunnel data. The results of this analysis show the detrimental effect of sting on stability of 
the vortical structure above the wing as well as a substantial increase of noise in pitching 
moment data. 

Nomenclature 

α angle of attack (deg)
 
cM pitching moment coefficient (m/gAC)
 
cN normal force coefficient N/GA
 
hi Volterra kernels
 
M Mach number v/a
 
t time (s)
 

I. Introduction 

Defining the Stability and Control (S&C) characteristics of an airplane are probably one of the most 
difficult and expensive aspects of an aircraft development. The difficulties are partially due to the fact 

that the S&C phase of design is extended to the very end of the development process, and sometimes even 
beyond it, causing occasionally unexpected and expensive twists along the project paths requiring changes 
on the aircraft. Since these can occur in the very late stages of the project, they are very expensive and 
often comes with detrimental effect to the expected performance. It is therefore of utmost importance to be 
able to predict S&C characteristics of the aircraft in the early stages of its development. One tool used to 
predict S&C characteristics of an aircraft is a wind tunnel measurement. Wind tunnel testing is accurate 
and cheaper then flight test, however usually works in different limits of the physical space then real world 
situations - ie. different Reynolds number, different Strouhal number, smaller dimensions of the physical 
space biased by uncertainties in boundary conditions, etc. In addition, wind tunnel testing is often biased 
by the wind tunnel equipment necessary to keep the wind tunnel model in the wind tunnel test section. 
One such example is an X-31 model tested in the DLR wind tunnel.1 The model is connected to the wind 
tunnel support by a belly mounted sting. The second setup includes a rear mounted sting. This article 
investigates the effect of a belly mounted sting on the aerodynamic characteristics of the X-31 wind tunnel 
model using time dependent CFD calculations. The effect is measured in terms of differences in the values 
of the lift and pitching moment of steady and maneuvering model as well as the amount of noise in the CFD 
data due to presence of the belly mounted sting. 
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II. Computational Models
 

A. Cobalt CFD code 

Cobalt2 is a cell-centered, finite volume CFD code. It solves the unsteady, three-dimensional, compressible 
Reynolds Averaged Navier-Stokes (RANS ) equations on hybrid unstructured grids. Its foundation is based 
on Godunov’s first-order accurate, exact Riemann solver. Second-order spatial accuracy is obtained through 
a Least Squares Reconstruction. A Newton sub-iteration method is used in the solution of the system of 
equations to improve time accuracy of the point-implicit method. Strang et al.2 validated the numerical 
method on a number of problems, including the Spalart-Allmaras model, which forms the core for the 
Detached Eddy Simulation (DES ) model available in Cobalt. Tomaro et al.3 converted the code from 
explicit to implicit, enabling CFL numbers as high as CFL ≈ 106 . Grismer et al.4 parallelized the code, 
with a demonstrated linear speed-up on as many as 4,000 processors. The parallel METIS (PARMETIS) 
domain decomposition library of Karypis et al.5 is also incorporated into Cobalt. New capabilities include 
rigid-body and 6 DOF motion, equilibrium air physics. An overset grid capability and a coupled aeroelastic 
simulation capability is also implemented. The code has been extensively used for S&C analysis of a number 
of aircraft.6–10 

The results of unsteady calculations were filter using low/high pass frequency filter.11 

III. X-31 aircraft model 

The X-3112–14 is a typical case of an advanced fighter aircraft. It has been a subject of numerous flight 
tests,15–19 wind tunnel tests20, 21 and CFD.22, 23 This test case has been provided to the partners participating 
in NATO RTO task group AVT-161 Assessment of Stability and Control Prediction Methods for NATO Air 
and Sea Vehicles. The objective of this task group is to evaluate CFD codes against wind tunnel data sets of 
two different aircraft configurations. A wind tunnel model used in experiments at DLR contains the canard, 
the LEX, the wind, the fuselage flap, the horizontal stabilizator and the rudder.21 The test setup does not 
consider any flow through the inlet. The wind tunnel model was equipped with the moving lift and control 
surfaces. Between each of the surface and the main body of the model were enabling mechanical movement 
of the surface. The effect of the gaps has been investigated in the wind tunnel21 and using CFD.23 It has 
been found that gaps substantially alter the flow-field above the wing giving rise to two co-rotating primary 
vortices.23 The values of the global lift, drag and momentum coefficients were, however, changed only mildly. 
Considering this mild dependence of the global forces/moments and in order to avoid having prohibitively 
large meshes used for unsteady CFD tests, the gaps in the model were sealed. The model is mounted in the 
wind tunnel using two setups. The first setup uses a belly mounted sting connecting the model to the support 
desk in the wind tunnel ceiling. The sting - model fuselage junction is located right under the main wing. 
This setup enables six degrees of freedom motions. The second setup uses an aft mounted sting connected 
to an arm in the wind tunnel. 

A. Computational Meshes 

The mesh generation process consists of two steps. In the first step, the inviscid tetrahedral mesh is generated 
using IcemCFD code. This mesh is then used as a background mesh in the second step in the mesh generator 
TRITET.24, 25 TRITET first builds prism layer using frontal technique and then rebuilds the inviscid mesh 
while respecting size of the original inviscid mesh from IcemCFD. The mesh has nominally 18 prism layers 
with the stretching ratio of 1.18. The total number of cells is 13 million. Figure 1 shows the unstructured 
mesh around the X-31 geometry without and with the belly mounted sting. 

IV. Steady Analysis 

The comparison of pitching moment shows the results of rhe steady analysis of the X-31 model with and 
without belly mounted sting using two different turbulence models - SA and SARC The effect of sting on the 
static values of lift is an offset of abou 0.1. There is, however, a very strong effect of the sting on pitching 
moment. The sting moves the moment by a constant offset of about 0.03. 
As shown in figure 2 this trend is reproduced by steady CFD calculations. The graph includes the results 
of steady analysis using two different turbulence models - SA and SARC. SARC model improves results 
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(a) Wind tunnel model without sting (b) Wind tunnel model with sting 

Figure 1. Mesh around X-31 aircraft models 

(a) cL, cD (b) cM 

Figure 2. Lift, drag and pitching moment, different turbulence models 
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at angles above α = 15dgr indicating drop of pitching moment, however does not change character of the 
pitching moment curve of the model without and with sting. 

V. Unsteady Analysis 

A. Flow Topology With Sting 

Figure 3 shows the the flow around X-31 at angle of attack α = 20.06◦ The flow has a vortical structure 

Figure 3. Vorticity around X-31 aircraft configuration 

above the canard and main wing. Some of the smaller vortical structures arise from the place where the inlet 
cover is located. There is a wake structure behind the model sting. It is moving downstream and depending 
on the angle of incidence of entire model, it may colide with the aircraft surface. 
Figure 4 shows Power Density Spectra (PDS) of the lift of the wing. The spectrum is rather noisy, however 
some important frequencies corresponding to certain features in the flow (see Cummings et al.26 for details) 
can be distinguished, mainly: Strouhal numbers in range of Sh ≈ 0.05 and Sh ≈ 0.11 corresponding to vortex 
breakdown, several distinctive peaks in range of Sh ≈ 0.2 and Sh ≈ 0.4 corresponding to vortex shedding 
at high α and Sh ≈ 1 and Sh ≈ 2 corresponding to Helical mode instability. Several peaks can be located 
above the value of Strouhal number Sh > 3 possibly corresponding to Helical mode instability and shear 
layer instabilities. 

B. Noise in the Steady Data 

Figure 5 shows a time history of the normal and axial force and pitching moment coefficients of the wing, 
fuselage and of entire geometry. The angle of attack for this particular case were obtained at angle of attack 
α = 0dgr. As can be seen, adding a belly mounted sting introduced a substantial amount of noise to both 
the forces and moment coefficient. As an example Figure 6 shows DFT of the pitching moment of the wing 
of the geometry without and with sting and of the sting itself. Rather flat spectrum of the normal force 
coefficient of the wing (Figure 6(a)) and fuselage (Figure 6(b)) of the geometry without sting is dramatically 
changed by adding the sting. Peaks in spectrum of the wing and fuselage of the geometry with sting is 
similar to the spectrum of the sting itself at frequencies up to f = 5Hz suggesting that large, low frequency 
structures have profound effect on aerodynamics characteristics of at least the two major parts of aircraft. 

C. Noise due to model vibrations 

Another possible source of noise in the wind tunnel data are vibration of the model in the wind tunnel. The 
exact model position is measured by the optical positioning system. 
In order to investigate an effect of the model vibration, we use the Volterra ROM developed in.27 Figure 
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Figure 4. PDS of the wing and sting 

(a) cN (b) cA (c) cM 

Figure 5. Noise in normal force and pitching moment, X31 

(a) Wing (b) Fuselage 

Figure 6. DFT of the pitching moment on the wing, X31 
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7(a) shows the values of actual angle of attack measure in the wind tunnel. Figure 7(b) shows actual values 
of the pitching moment as a result of Volterra ROM. As can be seen the amount of noise in pitching moment 

(a) Actual angle of attack (b) Pitching moment 

Figure 7. Low frequency data of the pitching moment 

data due to model vibrations is very small and is of higher frequency then what we can see in the actual 
pitching moment data. It can be therefore concluded that model vibrations have negligible effect and does 
not have to be considered in the future CFD analysis. 

VI. Dynamic Motion 

The dynamic motion used to investigate the effect of sting is a pitching motion denoted Sino4. Figure 8 
shows angle of attack versus time. Figure 9 shows the comparisons of the CFD results and wind tunnel test. 

Figure 8. Angle of attack versus time, Sino4 motion 

During the analysis, the data were split into the low and high-frequency part. Figure 10 shows comparison of 
the lift and pitching moment for CFD solution of both geometries to the wind tunnel data. In addition, the 
figure includes the results of linear Volterra ROM.27 It is evident that the presence of the sting has detrimental 
effect on the stability of the vortical structure above the wing inducing premature vortex breakdown which 
occurs at angle of attack 15 deg and results in larger pitching moment drop. Such tendency negatively effect 
predictability of any reduced order model built using this data set. It should be noted though, that this 
tendency is not seen in the wind tunnel test results which are obtained using the geometry with the sting. 
On the lift side, the presence of noise is relatively small for both geometries, the effect of sting is visible as 
a constant increase of lift ΔCL ≈ 0.1. 
Plotting the high-frequency component versus time as done in Figure 11 shows that adding sting to the 
model geometry gives rise to a larger amount of noise data at all angles which suggests that the biggest 
source of the noise is the wake behind the sting and its interaction with model. The amount of noise in 
result of model without sting geometry shown in figure 11(b) varies with angle of attack and thus can be 
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Figure 9. Pitching moment vs. time for X-31 with and without sting 

(a) Lift (b) Pitching moment 

Figure 10. Low frequency data of the pitching moment 

(a) Sting geometry (b) No sting geometry 

Figure 11. High-frequency component of the pitching moment 
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directly attributed to increased amount of unsteadiness in the flow above wing after the vortex breaks down. 
In such case the measure of noise can be directly related to the instabilities of the flow above the wing where 
the vortical structure takes place. 

A. Analysis of the dynamic motion using SIDPAC 

The Sino4 motion was analyzed using System IDentification Program for AirCraft, SIDPAC code developed 
by Morelli.28, 29 SIDPAC is a global nonlinear parameter modeling technique based on regression methods 
specifically for aircraft applications. This technique is used to estimate the functional relationship between 
the independent variables of the aircraft motion (α, β, p, q, r, etc.) and the computed aerodynamic loads. 
The resulting SIDPAC model can then be used to interpolate aerodynamic loads within the parameter space. 
Both raw and filtered data were used for analysis. Figure 12 shows raw and filtered data set along with 
SIDPAC model for both geometries. The model for geometry with sting and raw CFD data set resulted in 

(a) Raw data - sting geometry (b) Filtered data - sting geometry 

(c) Raw data - no sting geometry (d) Filtered data - no sting geometry 

Figure 12. DATA and SIDPAC model comparisons 

29 term with a final value of R2 around 54%. Adding other terms did not improve R2 . The SIDPAC analysis 
of the sting geometry with CFD data filtered prior to use in SIDPAC resulted in a model having 12 term 
and R2 nearly 90%. Comparing the four most important terms in both model, they are different. 
The geometry without sting has considerably lower amount of noise in data producing a model with 38 terms 
and R2 around 96% for raw data and 11 terms with R2 almost 99% for filtered data. Comparing five the 
most important terms in the model shows the models have identical structure. Also, comparing figures 12(c) 
and 12(d) shows the noise is present only around angle 15 which is the angle at which the vortex breakdown 
occurs. In this case, the presence of noise did not change substantially the outcome of the SIDPAC analysis. 
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VII. Conclusion
 

This article investigates the effect of the sting on the aerodynamic characteristics of an X-31 wind tunnel 
model. Although inevitable, it was found that using sting as a mean of positioning the model in the wind 
tunnel plays a significant role on the pitching moment. It adds a constant offset to the lift and pitching 
moment data and is a source of a substantial amount of noise. In addition, the highly unsteady flow behind 
sting interferes with the flow around the model which, can, gives rise to premature vortex breakdown and 
stronger drop in pitching moment. It is suggested that future investigation does not consider the geometry 
of the sting. 

Acknowledgment 

The authors would like to thank the Air Force Office of Scientific Research, AFOSR, the United States 
Air Force Academy, USAFA - Modeling and Simulation Research Center and the National Research Council 
(NRC) for their generous financial support throughout this project. The Arctic Region Supercomputing 
Center is acknowledged for providing access to high performance computing facilities. The authors want to 
thank David McDaniel of University of Birmingham for help with SIDPAC code. 

References 
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