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INTRODUCTION - To develop a noninvasive method of detecting
arterial occlusive disease, pulse waveforms were recorded at
two locations on the 1lower extremities of young normal
volunteers and patients with arteriographically confirmed
arterial occlusive disease. Pulses were monitored using
impedance plethysmography at the knee  and the iliac regions.
The frequency spectra of the abnormal iliac waveforms contained
4-5 harmonics as compared to the 2-3 harmonics present in
normals’. It was hypothesized that the occurance of high
frequencies resulted from pulse wave interactions with diseased
portions of the vessel. This paper will present the results of
a theoretical and experimental model developed to test this
hypothesis.

CLINICAL BACKGROUND - Pulses were monitored at two levels
of the extremities in 4 normal volunteers and 13 patients.
Information about distal flow in the 1leqgq was provided by
waveforms obtained when pairs of strip electrodes were placed
directly proximal and distal to the knee. Volume pulses from
the iliac arteries were acquired using an original electrode
array, consisting of two ECG electrodes placed just below the
navel and two electrodes placed on the top of the thigh.
Figure 1 shows sample pulse waveforms recorded at each location
in: a normal volunteer, a patient with severe disease at one
level of the 1limb, and a patient with severe disease at a

combination of levels.
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Figure 1 - Sample Tracings

KNEE

The knee pulses of the normal volunteer exhibited a large
primary peak and a second, smaller peak. Patient tracings
display a damped primary peak and a highly attenuated or absent
second wave. This observation may indicate disease and
correlates well with the findings of other investigators [1].
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The morphology of the iliac pulses reveals some anomalies.
The normal volunteer waveforms showed clear primary pulses with

solitary secondary pulses. The pulses for the patient with
single disease location had many smaller peaks present. This
was an unexpected finding. It is hypothesized that these

harmonics are the result of pulse interactions with arterial

obstsructive disease (AOD). -
This observation can be quantified by performing spectral

analysis on this signal. Figure 2 shows the power spectrum of

a normal volunteer and a patient with AOD. The normal spectrum
shows no significant peaks beyond the second harmonic. Five
harmonics are present in the diseased case. The goal of the

present study is to understand the fundamental basis of this
difference in arterial pulse characteristics.
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Figure 2 - Power Spectrum Comparison

EXPERIMENTAL ANALYSIS - An experimental model was developed
to study wave propagation in a straight compliant tube. A
silicone rubber tube was used to model the aorta. Experiments
modeling a perfect reflecting site, were achieved with a 96 cm.
tube having a completely closed end. An oscillating diaphragm
provided a sinusoidal input of specified frequency. Flow was
monitored at the proximal end of the tube with an
electromagnetic flowmeter and transducers located a distance 15
and 92 cm. away from the diaphragm recorded pressure. The two
pressure readings provided a means of comparing variations in
pulse morphology and allowed calculation of wave speed and
attenuation.

Experiments were performed using oscillations from 1 to 10
Hz. Flow, pressure and sinusoidal input were monitored with a
4-channel signal processor. The signal processor provided a
means of obtaining averaged time and frequency domain data. A
plotter, provided a permanent record of results.

Figure 3 depicts the results obtained from the model at a
frequency of 8 Hz. All driving frequencies tested displayed
similar results, an essentially sinusoidal signal for both
pressure and flow. The power spectrum {(average of 50 records)
had one major peak at the fundamental driving frequency and
only minor peaks at the harmonics.
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Figure 3: Experimental Results

THEORETICAL MODEL - The theoretical model developed to
simulate wave propagation incorporated a frequency response
analysis based upon steady oscillatory forced vibrations. The

linearized equations for oscillatory flow were solved by a
separation of wvariables technique to determine constitutive
equations for flow and pressure head. The functions were
represented as the product of spatial and time varying
quantities [2]:
Press. Head h°

Re [H(x)e'“"] (1)
Flow q'

Re [Q(x)e'“*] (2)

Transfer equations for the complex valued spatial component
of flow and pressure head were determined from the particular
solutions. The equations were:

H(x) = Hp,y coshyx = Z.Qp,uv sinhyx (3)
Q(x) = —-(Hp,u/Z:) sinhyx = Qp,y coshyx (4)
where:
Hp,u = downstream or upstream pressure head
Qb,u = downstream or upstream flow
Y = propagation constant, a function of:
resistance, capacitance, and inertance
Z. = characteristic impedance, a parameter

based on constants of the system

Hydraulic impedance, the ratio of pressure head to flow,
was the basis of the third constitutive equation. The transfer
equation for impedance was:

(ZD,U * Zc tanhYx)
Z(X) = ——=———mmm e (5)
(1 * (ZD,U/ZC) tanhyx)

The impedance at any point along the tube may also be
determined from the reflection coefficient. Reflection in the
system is caused by a change in characteristic impedance and is
quantified through the complex valued reflection coefficient.
An open end tube has a coefficient of (-1.0,0.0), a closed end
tube (1.0,0.0), and an infinitely 1long tube a coefficient of
(0.0,0.0). The hydraulic impedance and reflection coefficient
are related by:

2(x) = Z. ((I'(x) + 1)/(I'(x) - 1)) (6)
where : I = reflection coefficient
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STRAIGHT ELASTIC TUBE RESULTS - To solve these equation,
boundary conditions were stated at the proximal and distal

points of the tube. The proximal end boundary condition
specified flow magnitude from the experimental data. At the
distal end, impedance was specified from the reflection
coefficient for a closed end. Upstream impedance was
calculated using equation (5) and upstream pressure Wwas
determined from the impedance and known flow. With the
upstream parameters evaluated, the pressure and flow profile
along the tube was calculated from egns. (3) and (4). The

pressures at 15 and 92 cm. were compared to the values obtained
experimentally, Figure 4.
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Figure 4 - Comparison of Theory and Experiment

Both models displayed a steady pressure with one resonante
peak, at about 5 Hz. The theory and model agree quantitatively
with both pressures being of the same order of magnitude.
Broader resonance peaks in the experimental model may be due to
the uncontrolled source impedance induced by the oscillator and
electromagnetic flowmeter.

CONCLUSIONS - The behavior of sinusoidal pulses in a
straight compliant tube has been demonstrated in both a
theoretical and an experimental model study. While the
amplitude of the pulses was seen to vary with 1location along
the tube as well as with the source frequency; higher
harmonics, similar to those seen in human data, were not
demonstrated. It is concluded that these harmonics are not due
to the effect of a complete arterial obstruction. Further
experiments are underway to evaluate the contribution of
nonlinear elements, including less than complete obstruction,
branching and variable compliance.
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