Restricted words by adjacencies

Don Rawlings

Abstract

A recurrence, a determinant formula, and generating functions are presented for enumerating
words with restricted letters by adjacencies. The main theorem leads to refinements (with up to
two additional parameters) of known results on compositions, polyominoes, and permutations.
Among the examples considered are (1) the introduction of the ascent variation on compositions,
(2) the enumeration of directed vertically convex polyominoes by upper descents, area, perimeter,
relative height, and column number, (3) a tri-variate extension of MacMahon’s determinant
formula for permutations with prescribed descent set, and (4) a combinatorial setting for an
entire sequence of bibasic Bessel functions.
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1. The main theorem: preliminary examples and an overview

An alphabet X is a non-empty set whose elements are referred to as letters. A
finite sequence (possibly empty) of letters is said to be a word. The length of a word
w, denoted by /(w), is the number of letters in w. The set of all words X* formed
with letters in X along with the concatenation product is known as the free monoid
generated by X. The set of words of positive length is denoted by X+.

The concatenation product of non-empty subsets Wy, Ws,..., W,, in X* is defined by
W\Wy -+« Wy={wiwy - - wy,: w; € W; for 1 <i<m}. The n-fold product of a non-empty
subset W with itself is denoted by W". In particular, X" is the set of words in X* of
length n. See [24] for more detail.

An adjacency alphabet a = {a;y,: x,y € X, i>1} is associated to X. In C(a), the
ring of non-commutative polynomials in a with complex coefficients, the adjacency



monomial and the sieve polynomial with index i for a word w =x1x;...x, € X" of
length n>2 are defined, respectively, by

Aiw = Aixix, Ait1,xox3 ° " Aidn—2,x,_1x,>

éi,w = (ai,xlxz - 1)(ai+l,xz)(3 - 1) o (ai+n—2,x,,,1x,, - 1)

For a word w of length n<1, a;,, = a;,, = 1. The index is motivated by the major
index of MacMahon [26, Vol. I, p. 135].

Example 1. Let X={u,v} and U={u}. Then UX? is the set of words in X* of length 3
that begin with the letter u : UX?= {uuu, uuv, uvu, uvv}. Consider the adjacency alphabet
a for X with
P tg ifx=y=u,
Y711 otherwise,

where i>1, x, y € X, and ¢ and ¢ are commuting indeterminates. Then a; ,,, = t*¢* !,
Qi = (g — 1)(tg" — 1), and @ = (t¢' — 1)(1 — 1) =0.
Fix n non-empty subsets Li,L;,...,L, CX. In the algebra of formal power series of

words C{a)<X >, let

A= E @ W

WEL;Liy-+-Lj

for 1 <i<j<n. By convention, 4; ;=1 if i > j. The elements in C(a) are stipulated to
commute with words in X*. Note that 4, , enumerates words restricted to L1L;---L,
by adjacencies. In Example 1, if we select L;=U and L,=X =L, then 41 3=1>¢ uuu+
tquuv 4+ uvu + uvv. In Section 2, the following recurrence and determinant for A4; , will
be established.

Theorem 1. For n>1,

(a) Ar,n= Zz‘Il,iAiH,n and (b) A1, = det(’ai,j);‘l,jzl
i—1

where
S Gw if 1<i<j<n,
1;' o WEL;Liyy-+-Lj
b -1 if 1<i=j+1<n,
0 otherwise.

In brief, the proof of (a) involves removal of first letters from words. Part (b) is then
deduced from (a) using a non-commutative version of Cramer’s rule. As the concate-
nation product is in general non-commutative, the terms that occur in the expansion of
the determinant must be written in the form A4 1,0—(1)/12,0(2) . ~/I,,,,7(n) where ¢ denotes a
permutation of {1,2,...,n}.



Example 2 (Fibonacci polynomials). Let X and a be as in Example 1. Define the set
of u-adjacencies in w =x1x;---x, € X" as

Adj,w={k:xy =x)1 =u, 1 <k < n}.

Further, define the wu-adjacency number and the u-adjacency index of w respectively
by adj, W = |Adj, w| and ind, w =3, g ,, k- For n=3, put

Fn(t,q) — Z tadjquind“w-
weEX—2

Set F\(t,q) = F(t,q) = 1. The number F,(0,1) is the nth Fibonacci number.
Formulas for F,(¢,q) are readily deduced from Theorem 1. Let L; =X for i >1. For
w € L;---L;, note that

Qi = (tqi—l )adjqumd,,w and di,w _

—IY*i(tqi;q)j_l- ifw=uu---u,
0 otherwise,

where (¢;q)r = (1 —t)(1 —tq)--- (1 —tg*~") is the g-shifted factorial. By convention,
(¢;9)0 = 1. Under the map w — 1, we have

Aip2= Z i = Fu_ivi(tg' ™" q)
w,eXn—i—]
and, for 1<i<j<n,
A;j= Z Gy = { g—l)/—l(tq’;Q)jfi 1? 1ilj]§n,
wexi—itl SE=JSH
For n>3, Theorem 1 then implies that
n—2
Fut.q) =2F,1(ig,q) + Y _ (=1~ (tq: )1 Fui(tg', q) = det(A; )] 2.
i=2

Theorem 1 is an extension of the work of Fedou and Rawlings [16]. Other theories
that deal with adjacencies include the pattern algebra of Goulden and Jackson [20]
and the theory of Mdbius inversion as developed by Rota [30] and Stanley [31]. A
closed formula for rearrangements by adjacency type was obtained by Hutchinson and
Wilf [21].

In contrast, Theorem 1 has two unique features. First, it enumerates words with
restrictions on all letters. This feature is used in Section 3 to derive a generating
function for words ending with a finite sequence of restricted letters and is further
exploited in Section 4 (Example 8) to obtain a combinatorial interpretation for an entire
sequence of bibasic Bessel functions. Previous treatments only consider restrictions on
one or two letters.

Second, the index is not explicit in other treatments. Tracking it leads to natural
refinements (with up to two additional parameters) of known results on compositions,
directed vertically convex polyominoes, and permutations. The primary example in this
regard, a tri-variate extension of MacMahon’s [26, Vol. I, p. 190] determinant formula
for permutations with prescribed descent set, is presented in Section 6.



Several other examples illustrating and extending the approach of Fedou and
Rawlings [15,16] are also included in Sections 4—6. In Example 5, the ascent variation
of a composition is introduced.

2. Proof of Theorem 1

With a few changes, the proof given for Theorem 2 in Fedou and Rawlings [16]
may be used to establish Theorem 1(a). For n = 1, Theorem 1(a) is obviously true.
Assume n>2. From Section 1,

Al,n: E aLWW

w

where the sum is over words w = x1xp---x, € LiLy---L,. Since a;,, =1 and
a1y, = A1y, — 1, We see that

Al,n: g dl,xlaZ,xz...x,,W+ E él,xleQZ,xzmon-
w w
Similarly, the second sum on the above right splits as
§ dl,xlxza3,X3...x,,W + § dl,xleX3a3,x3...on'
w w

Thus,

2
Al,n = § § 51,x1..xiai+1,x,~+1...xnw + E dl,X1X2X3a3,X3..x,,W'
=1 w w

Iterating and then factoring completes the proof of Theorem 1(a):

n—1 n
Ay, = E E Ay i 1y oW+ g ayww = E A idisi,n-
=1 w w i=1

For part (b), observe that Theorem 1(a) implies that

Ak =Y Agidisin. (1)
i=k
Writing (1) out for £ =1,2,...,n leads to the system of equations
Ay — Ay Aoy — A1 o A3 — -+ — Ay Apn = Ay,
Aoy — App A3y — -+ — Ay Apn = Ao,
An,n :/In,rr

Solving for A4, , (by applying a non-commutative version of Cramer’s rule or by simply
backsolving) gives Theorem 1(b).



3. Generating functions

Theorem 1 may be used to obtain generating functions for words with specified re-
strictions. To this end, the index is dropped: For w = xix;---x, € X", let
Ay = Ay x,Axyy * " Ay xy, and dw = (axlxz - 1)(a)C2X3 - 1) o (ax,,,lx,, - 1) With Ai,w
replaced by a,,, Theorem 1 remains valid and implies that the generating function for
words by adjacencies ending in a finite sequence of restricted letters is given by

Corollary 1. For non-empty subsets U,Ly,Ly,...,L, CX,
-1
Z a,w = (1 — Z §Ww> l( Z dww> det(Bi,j)Z’ij}
weU*Ly++-Ly, weUt k=1 weU*Ly---Ly

where the empty determinant is 1 and

Z ayw If 1<i<j<m,
g' o welL;---L;
" -1 if 1<i=j+1<m,
0 otherwise.

Proof. For n>=0, Theorem 1(a) implies that

Z ayw = z”: Z a,,w Z a,w

weULy+-Ly, k=1 \weU* weUr—kLy---L,
m
+ g E a,,w E a,w
k=1 weU"Ly---Ly WELjyy+-Ly

The desired result follows since the above and Theorem 1(b) together give

S

weU*Ly--- weU+ weU*Ly---
m
- - m —
+ E E a,w det(Bi,j)i,j:kJFl . L]
k=1 weU*Ly---Ly

Some special cases are noteworthy. For m =1 and L = L;, Corollary 1 reduces to

> aw= (1 -y 5ww>_l ( > dww>. (2)

weU*L weU+ weU*L

Furthermore, if L = U, (2) becomes

> ayw= (1 -y ﬁww>_l (Z dww>.

weU+ weU+ weU+



Equivalently,

—1
> aw= (1 -y dww> . (3)

weU* weU+

Identities (2) and (3) are due to Fedou and Rawlings [16] and are more or less
equivalent to several formulas in other algebraic settings (see [11, pp. 96-99]; [13, pp.
96-99]; [20, pp. 131, 238], [31-33]). An explicit connection with Diekert’s work is
given in [16].

Generating functions with other restrictions may also be derived from Theorem 1.
For instance, to obtain the generating function for words by adjacencies with restricted
first and last letters, let F, U, L be nonempty subsets of X. Theorem 1(a) implies that

n+1
g aww:g E a,,w g aww | + g ayw.
weFU"L k=1 weFUk—1 weun—k+1p weFU"L
Thus,
E aww—< E dww>< E aww>+ E a,,W.
weFU*L weFU* weU*L weFU*L

The last equality and (2) together give a result

e (z e me) (59

weFU*L weFU* welUt weU*L

+ Z a,w

weFU*L

that is comparable to one of Bousquet-Mélou’s [5].

Example 3 (A generating function for the Fibonacci polynomials). Let X,a, and
F,(t,q) be as in Example 2. Replace a;,, by a, and set ¢ = 1. As the map sending
w > z/") extends to a continuous homomorphism from C(a)((X)) to C[£][[z]], it
follows from (3) that

—1
ZF,,(t, 1)z =2? Z a,z/ ™ = 72 (1 _ Z dwz[(w)>

n=2 wex* weXT
z? 2(14+z—1t2)

T2z =y Tzl 22— 1)

Adding z to both sides above and setting =0 gives the well-known generating function
> po1 Fu(0,1)2" =z/(1 — z — 22) for the Fibonacci numbers.



4. Compositions

Let N =10,1,2,...} and N, ={1,2,3,...}. The weak rise set, weak rise number,
descent set, descent number, level set, and number of levels of a word w=x1x;---x, €
N" are respectively defined by

WRisw = {k: 1<k <n, xpy <x11}, wrisw=|WRisw|,
Desw = {k: 1<k <n,x; >x41}, desw=|Desw|,

Levw={k: 1<k <n,x; =xt11}, and levw=|Levw|.

Also, put ||w||=x1 +x2+ -+ + x,.

A word we N} is said to be a composition of k with n parts if ||w| = k. By
convention, 0 has a single composition with no parts. In Examples 4—8, Corollary 1
and its special cases are used to enumerate compositions by number of parts (bounded
and unbounded), rises, levels, and descents. In Example 5, a new statistic referred to as
the ascent variation is considered. The associated recurrences and determinant formulas
implied by Theorem 1 are not stated; only generating functions are presented.

The g-binomial coefficient is defined by

(g 9)n

[ k} = (DG Dk
0 otherwise.

if 0<k<n,

Repeated use will be made of the partition identities (see [2])

C . 1
i+ Fip
> 4 =

. 9
0<i <h < <ig (439D

i1 igt o) m+k
S 4)

0<i << <ir<m

In all that follows, s,t,¢, p,z, and z, denote commuting indeterminates.

Example 4 (Compositions with bounded parts by weak rises). Let Ni, =
{1,2,...,m}. The number of compositions of k¥ with i weak rises and n parts, each
bounded by m, is equal to the coefficient of t'¢g¥ in

)= Y 2
weNY

Identity (3) furnishes a generating function for ¢, ,. For integers x,y € N, set
ax, =t if x<y and a,, =1 otherwise. For w=xx,---x, € N ,, note that a,, = fris w
and that

_ (=1 ifl<x << <,
w = .
0 otherwise.



The definition of a,, (3), and (4) imply that

1
n__ [lwll ,I(w) _
g Cn,m(h‘I)Z - E awq 'z - l_z Nt dwq”WHZI(W)
w +,m

n=0 weNy
B 1
1 — Zn>1(t _ 1)n—lzn Zlé)q <m<xn<qul+m+xﬂ
1—1¢
> solgt = D2y [ — 1
1—1 (=gt = Dz;q)m

= - = : (5)
(gt =Dz’ =t 1—=1(q(t — 1)z3q)m
The g-binomial series (see [2, p. 36]) was used in the next to last step.
The generating function for compositions with no bound on part size follows from
(5) by letting m — oo: Define

(t:@)oe = [ J(1 — 1),
i=0

cn(t,g) = ZweNﬁ pviswglvl s and El(z) = 350, 422" /(¢;q),. By Corollary 2.2 on
p. 19 of [2], Ey(z) = (—2;¢)c0- As m — 00, (5) becomes

o (L =0E(g(1 —1)z)
D> altg)z = l—tquq(l—t)Z) '

Incidently, the right-hand side of the last equality with zg replaced by z is the generat-
ing function for g-Eulerian polynomials (e.g., see [16]). To be precise, ¢~"(q; ¢)ncn(t; q)
enumerates permutations of the symmetric group by rise and inversion numbers. In
Examples 6-8, it will become clear that many of the generating functions for enumer-
ating permutations also occur in the context of compositions.

n=0

Example 5 (Compositions by weak rises and ascent variation). The ascent variation
of a composition w =xx; - --x, € NI is defined to be

avarw = Z (a1 — x).
keWRis w
For w=152561 € N3, avarw =3 + 1 =4. The ascent variation is motivated by the
perimeter of a directed vertically convex polyomino (Example 9).
To enumerate compositions by weak rises and ascent variation, first note that

n—1 n n—1 k
Z qX"Hqu(tpka_x/‘—l)_ q H ((1 q )t—l). (6)
k=1

=1 —4
1<) <o <+ <y (@@ oy \ 1= pq

To see why, rewrite the sum in (6) as

Z qnxl Z (lpx27x1 . l)q(nfl)(xzfxl) . Z (tpxnfxnfl _ l)qx"7Xn71.

x1 =1 X2 =X] XpZXp—1

Iteratively summing the sequence of geometric series gives the desired result.



Let
Cn(t, q, P) = Z tWris WqHWHpaVarw.

weEN!
For integers x,y € N, set a,, = tp’™* if x<y and a,, = 1 otherwise. For

w=x1x X, € N", note that a,, = """ p™" and that

n—1

Gy = Ilk [ T =) i < <o < <o

w — =
0 otherwise.

It therefore follows from (3) and (6) that

S altg )= Y angZ = [ 1= 3 G,qMze

n=0 WwEN wENJr

(- ¥ e llewo)

n=1 1<x < <xyy

—1
g2 T (=g >
=(1- e
< Z(QQQ)nlﬂ(l_qu )

n=1

1

Setting # =1 gives

-1
(—1)'¢'>) (¢(1 — p)z)" 1
n 1) b " = 1 -
> enlg.p)z < +2 (P (G5 D > Jo.g.(p,a(1 = p)z)

n=0 n>1
where J,, , is the vth bibasic Bessel function defined in (8). Further study of the
ascent variation and related statistics is made in [29].

Example 6 (Down-up alternating compositions with bounded parts). A composition
W=2x1X3 X, € NI such that x| =>x, <x32x4 < - is said to be down—up alternating.
Let U = {xix2 ENim: x1=2x2}4, L=Nyy, and X = U UL. For w=x1xp X2, € U"
or w e U"L, let des, w denote the number of even indices k& such that x; > x;,;. Put
donn(t.q) =D 1°"gM" and  dyypymtg)= D 19 gl
weUu” welU"L

The coefficient of ¢ in d,,(0,q) is equal to the number of down-up alternating
compositions of £ having n parts, each part bounded by m.

Identities (2) and (3) may be used to obtain a generating function for d, .(t,q).
Only the analysis associated with an odd number of parts is presented. For x = xjxp,
y=ymeU,and [ € L, set

G — t ifxy >y and  au — t if x> 1,
711 otherwise 71 otherwise.

For w =x1x3 - - -X2,41 € U"L, note that a,, = 19" and that

G — (t—l)n ifm=x;=2x, >x3= 0 > Xope1 =1,
v 0 otherwise.



Thus, 3,2 danttm(t )z =271 1y awgM1Z210). From (2) and (4),

_ n.2n+1 X1+ xop1
2n+1 Zn}O(t 1) z Zm;xl =Xy >x32 0 >Xopp =1 q "
§ d2n+1,m(ta C])Z =

T 1— —_ 1\y—1,2n X142
n=0 1 anl(t 1) z Zm;x12)c2>x_32~->xzn>lq "

1)+2n+1 + 2n+1
anoqn(fﬁL )+2n+ (t _ 1)/1 [;}lﬁ_r;] Z2n+

1 — Zn)l qn(n+l)(t _ l)n—l [m;’;n] Zzn .

A similar argument for the even case and the last result give

w L=t + V1 =18, u(zvV1 — 1)
2 dunlt:4)" = ComeV/I—1)—1

n=0

(7)

where

Coml2) = 3 (~1yg"+) [m + ”} 2,

2n
n=0

Sym(z) =D (=1)'g" ! [ . i’” 2,
n=0

Carlitz’ [9] result for down—up alternating compositions with unbounded parts fol-
lows from (7): First set # = 0. Then, as m — oo, note that C, ,(z) and S, ,.(z) ap-
proach the g-cosine function -, _(—1)"¢"""1z*"/(¢;¢)2, and the g-sine function
2:,120(—1)”q”zﬂ%”“zz”+1 /(q;q)ans1 respectively. Carlitz’ result parallels the work of
André [1] on alternating permutations.

Example 7 (Compositions by rises, levels, and descents). For w=x1x,---x, € N", an
index k such that x; < x;,; is said to be a rise in w. The coefficient of st/ qk in

guls, t,q) _ Z Slev wtdesquwH
weEN!

equals the number of compositions of £ with n parts, i levels, j descents, and n—1—i—j
rises.

For x,yeN,, set ay, =1 if x <y, a,,=sifx=y, and a,, =t if x>y If w=
X1X2 -+ x, € N7, then a,, = ' V19" Observe that

D5 tg)" =Y anglZ.
n>0 wen:

In view of (3), we have
—1

S i tq) = [1= 3 angllzon

n=0 weN;

By noting for w=x;x---x, € N" that @, = (¢ — 1)" ""i(s = 1) if x; > --- >x,>1
with equality holding exactly i times and that a,, = 0 otherwise, it is not difficult to



see that the series
S=(-1) Z Gy Zi
weN;

counts non-empty partitions by their weight (g), number of parts (z), number of distinct
parts (¢ — 1), and repeated parts (s — 1). Constructing these partitions by concatenating
a block of parts equal to 1, then a block of parts equal to 2, and so on, we further
see that

ST (1 o)y

LU =61z (s — Dzg: oo
Putting the pieces together gives a result due to Carlitz [8]:
n (I —)((s — 1)zq; 9) oo
Zgn(s,t,q)z _ . X )qq] . )
Z (5 — D24 e — 1((5 — 1gi @)oo

Example 8 (Pairs of compositions and (q, p)-Bessel functions). For v € {0,1}, the
bibasic Bessel functions defined by

Jugp(s:2) =Y (=1

n=0

(rH»\ ) H+V
q zZ

_ 8
(859 nv( D5 PIn ®)

appear in several combinatorial contexts (see [10,12,14—16,18]). An interpretation in-
volving the entire sequence {J, 4 »}+>0 may be given in terms of pairs of compositions.

To see how, consider the alphabet X = {(]): x,» € N;}. Elements of X will be
referred to as biletters and are not be be confused with binomial coefficients. Let U=X
and L = {(;) y € N;}. A biword

v X1Xp X
( ) _ ( 1X2 n) c X"
W yl y2 ... yn
may be viewed as a pair of compositions v,w € N. The mixed weak descent and
strict rise number of () € X" is defined as

v
dr (W) = |{k 1<k <n, xp =2x541, i < yk+1}‘-

For m>=0, let b, = Z(",)euwm td"(l)q”‘”“p””“. Identity (3) and Corollary 1 imply

that
Z Bom Ztm

n=0
1—t
Jo,g.p(q.qp(1 —1)z) — 1t
=i (=1 det(Bi )y 1k p(g-g (1 = )2)
Jo.g. p(¢-qp(1 —1)z) — ¢

if m=0,

if m>0,




(= 1Y (gpzy =g D g g) i i 1<i<j<m,
Bij=4 -1 ifl<i=j+1<m,
0 otherwise.

The proof of (9) goes as follows. For biletters (’}‘) , (,i) € X, set a(x,) =tifx=I

vk

and y < k. Otherwise, let a(x,) =1.1If

vk

(") - () ex",
W ylyz...yn

then
i — - ifxyznz-oz2xzland 1<y <y < <y,
()70 otherwise.
Note that
N bt = S0 gy,
n=0 (5)eu=rm

The result in (9) then follows routinely from (3), Corollary 1, and (4).

Other mixtures of descents and rises lead to different generalized Bessel functions.
Also, bounding the parts of the composition provides another combinatorial context for
the finite bibasic Bessel functions in [15,18].

5. Directed vertically convex polyominoes

A polyomino P is a finite union of unit squares in the plane such that P is connected,
P has no finite cut set, and the vertex coordinates of each square are integers. Two
polyominoes are equivalent if there exists a translation that maps one onto the other.
Generating functions and asymptotic estimates have been given for many subclasses
of polyominoes [4,6,7,17,23,28]. Bousquet-Mélou [6] provides a survey. In Example 9,
directed vertically convex polyominoes are enumerated by upper descents, perimeter,
area, relative height, and column number.

A polyomino P is vertically convex (VC) if the intersection of any vertical line with
P is connected. Both polyominoes in Fig. 1 are VC. Henceforth, the ith column from
the left in a VC polyomino P will be labeled c;.

An index k is said to be an upper (resp. lower) descent of a VC polyomino P if
the top (resp. bottom) square in column ¢, lies above the top (resp. bottom) square of
column ci;. The sets of upper and lower descents of P are respectively denoted by
UDes P and LDesP. In Fig. 1, UDesP = {2,4} and LDesP = {2}. A VC polyomino
P with LDes P =) is said to be a directed vertically convex (DVC) polyomino. If we
also have UDes P = (), then P is said to be a staircase or parallelogram polyomino.

Let DVC, denote the set of directed vertically convex polyominoes with n columns.
The upper descent number of P € DVC, is udes P=|UDes P|. The area, perimeter, and
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Fig. 1.

relative height of P are, respectively, defined to be the number of squares contained
by P, the length of the boundary of P, and the change in the y-coordinate from the
lower left-hand vertex of ¢; to the the upper right-hand vertex of ¢,. These statistics
of P will be, respectively, denoted by area P, per P, and h(P). For Q € DVCs of
Fig. 1, udes O =2, area Q=13, per 0=26, and #(Q)=5. If P is a staircase polyomino,
then 4(P) is equal to the number of rows in P. The following identities will be useful:

(n;l) | .
— 1—
q 2:1((1—% —1)
(g5 9)n(q; @ )n

n—1
Z (sq)xnfynqyn H(Sq)xk*yquk(tpyk*xkﬂ _ 1) —
k=1
where the sum is over x; =y > x>y > --- =2 y,>1 and

n+2
( ) Hk 1((1 q" )tl’ 1)
(sq,q)n+1(q,q)n

> Gy g [T6sgy g ep e = 1) =
k=1
(10)

where the sum is over x; = y; > x>y, > -+ =y, = 1. They may be verified in the
same way as was (0).

Essentially, each example in Section 4 could be redone in the context of DVC
polyominoes. Only one example is considered here.

Example 9 (DVC polyominoes by upper descents, perimeter, area, relative height
and column number). First, consider the alphabets of biletters U = {(; ): X,y €
Ni, x=y}, L={({):x € N}, and X = U. A bijection used in [7] may be eas-
ily extended to one from DVC, | to U"L: For O € DVC,.; with columns labeled
C1,C2,...Cns1, let x; be the number of squares in column ¢; for 1 <i<n+ 1, y; be the
number of squares in ¢; at and above the square in ¢; that is adjacent to the bottom
square of ¢;; for 1<i<n, and y,; = 1. For instance, see Fig. 2.

The map ¢, : DVC,; — U”"L that associates Q to the biword

(xle"'XIH—l ) _ (U)
Y1Y2 s Yot w

is a bijection.
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To determine ¢,, we define the adjacency alphabet for X as follows. For biletters
(;), (7) € X, set a(y) =¢p?0=) if y > j and a(y) =1 otherwise. So, for

vk
(1)= (e e
W ylyz...yn

n—1
2(Vk—Xk+1) _ ; > > - >
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" otherwise.

Also, if
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area O = |[vf|, A(Q) = [|v]| — [[w[| + 1, and

perQ=2(n+1+hQ)+ Y (v —xu)

keUDes O

Therefore, in view of (2), (10), and (11), we have
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The case p =1 may be expressed in terms of the Bessel functions of (8):

sJ1,4,4(s¢,q(1 — t)z)
gn(s,t,q, 1)z =
2_nls:tq Togua(sq:q(1 —0)2) — 1

n=0



In 1965, Klarner [22] enumerated DVC polyominoes by area which corresponds to
the above with s =¢ = p =z = 1. Barcucci et al. [3] added the column number in
1991 (s=t= p=1). More recently, Bousquet-Mélou [6] enumerated various classes of
DVC polyominoes by perimeter, number of columns, height, and area (r=1). The case
t=0, s=p=1 is due to Delest and Fedou [12] and counts staircase polyominoes by area
and column number. The height statistic was added to their result by Bousquet-Mélou
and Viennot [7]. With a little more work, Theorem 1(b) may be used to obtain a
determinant formula for

Z ruind Qsh(Q)tudes Qqarea Qpper 0

QeDbVC,

gn(rssst»q’ p) =

where the upper index of Q is uind O =3, cypes o k-

6. The Simon Newcomb problem

For a sequence k = {k;}»>0 C N having only a finite number of nonzero terms, the
set of rearrangements of the word 0% 142% ... is denoted by R;. In other terms, a
word w is in Ry if and only if each letter x € N appears exactly k, times in w. If
ky =1 for 1 <x<n and if k, =0 otherwise, then R; is just the set of permutations S,
of {1,2,...,n}.

The problem of Simon Newcomb is to determine the number of rearrangements with
a prescribed descent set. MacMahon solved the problem, giving seperate treatments [26,
Vol. I, pp. 190, 200] for S, and Rj. Niven [27] rediscovered MacMahon’s solution for
S,,. A lattice path proof for the permutation case was given by Gessel and Viennot [19].
A g-analog of MacMahon’s formula on S, was obtained and generalized to sequences
of permutations by Stanley [31]. As presented in Examples 10 and 11, Theorem 1(b)
affords further extensions of MacMahon’s solutions on S, and Ry.

Some notation and observations are common to both cases. Throughout, fix a
sequence 0 = vy < v <--- <vyy =n of integers. For a word w € N”, let WRis,
w=WRisw N {vi,v,...,v4}, and wris, w = |WRis, w|. Further, fix a map :N — C.
The index of w € N” relative to v and f is defined as

ind,yw=> B0
v;EWRis, w
Two natural choices for ff are (1) f(j)=j for all j € N and (2) p(j)=v; if 0<j<d+1
and () =0 otherwise.
The appropriate alphabets to consider are

Li={xixy- - xy—y,_, EN" " ix; <0< - <y, }

for I<i<d+1land X=L,U---ULyyy. Forx=x1x3---x,, y=y1y2---ys € X, define
aixy =tp"? if x, <y; and a;,, =1 otherwise. For a word w=x1x2 X, € Ly - - - Ly 41,
note that

twrisv wind, g w

alw = p



Also, if w=2x1x3+xy,—y,_, €L;---Lj, then

(YT pgp I OSx <t <Xy,
0 otherwise,

iLw — (12)
where (¢ p)ijp= (1 —tpPD)(1 —tpPi+Dy. .. (1 —tpP)). For the choice ()= for
all j € N, observe that (¢; p); ;5 = (1p'; p)j—i.

Example 10. (Permutations with prescribed descent set by inversion number). The
inversion number of a word w =x1x,---x, € N" is

invw = [{(k,m): 1<k <m<n, x; > xp}|

Let II,, denote the set of non-decreasing words in N” (i.e., the set of partitions with
at most n parts). A permutation ¢ € S, will be viewed as the word a(1)a(2)---a(n).
As noted in [16], the map , : S, x I, — N” defined by

Yau(a(1)a(2)---a(n), Aily- - Ay)=x1x2- - X,

where xp = Aoy + [{jik + 1<j<n, a(k) > o(j)}| is a bijection. Moreover, if
Y a(o,A) =w, then

WRis 6 =WRisw and inve + |4 = ||w]. (13)

In a permutation, a weak rise is in fact a strict rise. As an example, note that ys
maps the pair (51342,11112) € S5 x II5 to the word 61221 € N>. Further ob-
serve that WRis 51342 = {2,3} = WRis 61221 and that inv 51342 + ||[11112]]
=6+6=61221]|. Fedou and Rawlings [16] used ¥/,, (2), and (3) to deduce some
of Stanley’s [31] extensions of the results of Carlitz et al. [10] for enumerating se-
quences of permutations by various statistics. Along the same lines, Foata and Han
[18] obtained similar results on signed permutations. Although not done so here, this
example may also be extended to sequences of signed permutations.
For integers 0 =vy <v; <--- <vgy; =n and a fixed f: N — C, let

fn,v,[}(t, q, p) _ Z Iwris" aqinv apind‘\/; a
GESuy

where S, denotes the set of permutations o € S, such that Desa C{v;,v2,...,v4}.
Note that £, (0,q,1) enumerates permutations ¢ € S, with Deso={vi,v2,...,v4} by
inversion number.

To obtain a determinant for f),, (%, q, p), first note from (13) that, when
restricted to S, , x II,, ¥, is a bijection onto L, ---Ls1;. Together, (13), (4), (12),
and Theorem 1(b) give

Frnpta, D) =@ q)n Y g™ o e
(0,4)ES,,y xI1,

=(@: 0 Y. anwg"l = (g @) det(d; )
WELy Ly



where /I,»,j:o ifi>j+ 17"Ij+l,j: —1, and, for 1<i<j<d +1,

A= Y awd" = Gy Y gt

welL;..L; 0<x; <~-~<x“j,“’.7|
_ (—1Y~'(z; D)ijp
(@5 @)v;—vie,
As det(4; ;) = det((—1Y " 4;;), it further follows that

d+1

n—yv_i

fn,v,[?(ta% P):det<(f;]7)i,_/,/f |: :|> (14)
Vj — Vi1 ij=1

where, by convention, (¢; p); ;=1 for j —i<0. Setting t=0 and p=1 in (14) gives
Stanley’s [31] g-analog of MacMahon’s formula [26, Vol. I, p. 190].

Example 11. (Rearrangements with prescribed descent set). For a sequence
k={k:}»>0 CN having only a finite number of nonzero terms, put ||k||=>_ .k and
7k = HX>OZ§X. Let Ry, be the set of words w € Ry such that Desw C{v,va,...,v4}.
The coefficient of ° p°Z* in

st p2)= 3 Y s

lkll=n weRw,

is the number of w € R; of length ||k|| =n with Desw = {vi,v2,...,v4}.
For w=xx; - - -x, € N*, define n(w)=zy,zy, - - - zr,. Denoting the complete symmetric
polynomial by 4; (see [25, p. 14]), it follows from Theorem 1(b) and (12) that

Guvp( P Z) = Y arun(w) =det(d; )T

WELy---Lay1

where /I,»,j:o ifi>j+ I,EHL]-: —1, and, for 1<i<j<d +1,

I‘Ii,j = Z 51’,11/’7(”’) = (71)j7i(t; p)i,j,/)’ Z Zx1Zxy * 'va/_vl_l

weL;i---L; 0<x; <+ <x\‘/,\,i7
= (_ 1 )j_i(t; p)i,j,/fh"/—\';fl (ZO,ZI e )

The formula for g, , g may be rewritten as

d+1
gn,v(ta P:Z) = det((t; p)i,j,[fhv_,»—v,_l (ZOaZh .- )) (15)

ij=1

1

with the conventions that (¢; p); ;=1 if j —i<0 and #; =0 if £ <0. For p =1,
Stanley [31] gives another solution involving Mobius inversion. With t =0 and p=1,
(15) reduces to MacMahon’s result [26, Vol. I, p. 200].
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