
Restricted words by adjacencies

Don Rawlings

Abstract

A recurrence, a determinant formula, and generating functions are presented for enumerating
words with restricted letters by adjacencies. The main theorem leads to re�nements (with up to
two additional parameters) of known results on compositions, polyominoes, and permutations.
Among the examples considered are (1) the introduction of the ascent variation on compositions,
(2) the enumeration of directed vertically convex polyominoes by upper descents, area, perimeter,
relative height, and column number, (3) a tri-variate extension of MacMahon’s determinant
formula for permutations with prescribed descent set, and (4) a combinatorial setting for an
entire sequence of bibasic Bessel functions. .
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1. The main theorem: preliminary examples and an overview

An alphabet X is a non-empty set whose elements are referred to as letters. A
�nite sequence (possibly empty) of letters is said to be a word. The length of a word
w, denoted by l(w), is the number of letters in w. The set of all words X ∗ formed
with letters in X along with the concatenation product is known as the free monoid
generated by X . The set of words of positive length is denoted by X+.
The concatenation product of non-empty subsets W1; W2; : : : ; Wm in X ∗ is de�ned by

W1W2 · · ·Wm={w1w2 · · ·wm: wi ∈ Wi for 16i6m}: The n-fold product of a non-empty
subset W with itself is denoted by Wn. In particular, X n is the set of words in X ∗ of
length n. See [24] for more detail.
An adjacency alphabet a = {ai;xy: x; y ∈ X; i¿1} is associated to X . In C〈a〉, the

ring of non-commutative polynomials in a with complex coe�cients, the adjacency



monomial and the sieve polynomial with index i for a word w = x1x2 : : : xn ∈ X n of
length n¿2 are de�ned, respectively, by

ai;w = ai;x1x2ai+1; x2x3 · · · ai+n−2; x n−1xn ;

�ai;w = (ai;x1x2 − 1)(ai+1; x2x3 − 1) · · · (ai+n−2; x n−1xn − 1):
For a word w of length n61, ai;w = �ai;w = 1. The index is motivated by the major
index of MacMahon [26, Vol. I, p. 135].

Example 1. Let X={u; v} and U={u}. Then UX 2 is the set of words in X ∗ of length 3
that begin with the letter u :UX 2={uuu; uuv; uvu; uvv}. Consider the adjacency alphabet
a for X with

ai;xy =
{

tqi if x = y = u;
1 otherwise;

where i¿1, x; y ∈ X , and t and q are commuting indeterminates. Then ai;uuu= t2q2i+1,
�ai;uuu = (tqi − 1)(tqi+1 − 1), and �ai;uuv = (tqi − 1)(1− 1) = 0.
Fix n non-empty subsets L1; L2; : : : ; Ln ⊆X . In the algebra of formal power series of

words C〈a〉�X �, let
Ai;j =

∑
w∈LiLi+1···Lj

ai;ww

for 16i6j6n. By convention, Ai;j=1 if i¿ j. The elements in C〈a〉 are stipulated to
commute with words in X ∗. Note that A1; n enumerates words restricted to L1L2 · · ·Ln

by adjacencies. In Example 1, if we select L1=U and L2=X=L3, then A1;3=t2q3uuu+
tquuv+ uvu+ uvv: In Section 2, the following recurrence and determinant for A1; n will
be established.

Theorem 1. For n¿1;

(a) A1; n =
n∑

i=1

�A1; iAi+1; n and (b) A1; n = det( �Ai;j)ni; j=1

where

�Ai;j =




∑
w∈LiLi+1···Lj

�ai;ww if 16i6j6n;

−1 if 16i = j + 16n;
0 otherwise:

In brief, the proof of (a) involves removal of �rst letters from words. Part (b) is then
deduced from (a) using a non-commutative version of Cramer’s rule. As the concate-
nation product is in general non-commutative, the terms that occur in the expansion of
the determinant must be written in the form �A1;�(1) �A2;�(2) · · · �An;�(n) where � denotes a
permutation of {1; 2; : : : ; n}.



Example 2 (Fibonacci polynomials). Let X and a be as in Example 1. De�ne the set
of u-adjacencies in w = x1x2 · · · xn ∈ X n as

Adju w = {k: xk = xk+1 = u; 16k ¡n}:
Further, de�ne the u-adjacency number and the u-adjacency index of w respectively
by adju W = |Adju w| and indu w =

∑
k∈Adjuw k: For n¿3, put

Fn(t; q) =
∑

w∈X n−2

tadjuwqinduw:

Set F1(t; q) = F2(t; q) = 1. The number Fn(0; 1) is the nth Fibonacci number.
Formulas for Fn(t; q) are readily deduced from Theorem 1. Let Li=X for i¿1. For

w ∈ Li · · ·Lj, note that

ai;w = (tqi−1)adjuwqinduw and �ai;w =
{
(−1)j−i(tqi; q)j−i if w = uu · · · u;
0 otherwise;

where (t; q)k = (1− t)(1− tq) · · · (1− tqk−1) is the q-shifted factorial. By convention,
(t; q)0 = 1. Under the map w 7→ 1, we have

Ai;n−2 =
∑

w∈X n−i−1

ai;w = Fn−i+1(tqi−1; q)

and, for 16i6j6n,

�Ai;j =
∑

w∈X j−i+1

�ai;w =
{
(−1)j−i(tqi; q)j−i if 16i¡ j6n;
2 if 16i = j6n:

For n¿3, Theorem 1 then implies that

Fn(t; q) = 2Fn−1(tq; q) +
n−2∑
i=2

(−1)i−1(tq; q)i−1Fn−i(tqi; q) = det( �Ai;j)n−2i; j=1:

Theorem 1 is an extension of the work of Fedou and Rawlings [16]. Other theories
that deal with adjacencies include the pattern algebra of Goulden and Jackson [20]
and the theory of M�obius inversion as developed by Rota [30] and Stanley [31]. A
closed formula for rearrangements by adjacency type was obtained by Hutchinson and
Wilf [21].
In contrast, Theorem 1 has two unique features. First, it enumerates words with

restrictions on all letters. This feature is used in Section 3 to derive a generating
function for words ending with a �nite sequence of restricted letters and is further
exploited in Section 4 (Example 8) to obtain a combinatorial interpretation for an entire
sequence of bibasic Bessel functions. Previous treatments only consider restrictions on
one or two letters.
Second, the index is not explicit in other treatments. Tracking it leads to natural

re�nements (with up to two additional parameters) of known results on compositions,
directed vertically convex polyominoes, and permutations. The primary example in this
regard, a tri-variate extension of MacMahon’s [26, Vol. I, p. 190] determinant formula
for permutations with prescribed descent set, is presented in Section 6.



Several other examples illustrating and extending the approach of Fedou and
Rawlings [15,16] are also included in Sections 4–6. In Example 5, the ascent variation
of a composition is introduced.

2. Proof of Theorem 1

With a few changes, the proof given for Theorem 2 in Fedou and Rawlings [16]
may be used to establish Theorem 1(a). For n = 1, Theorem 1(a) is obviously true.
Assume n¿2. From Section 1,

A1; n =
∑
w

a1;ww

where the sum is over words w = x1x2 · · · xn ∈ L1L2 · · ·Ln. Since �a1; x1 = 1 and
�a1; x1x2 = a1; x1x2 − 1, we see that

A1; n =
∑
w

�a1; x1a2; x2 :::x nw +
∑
w

�a1; x1x2a2; x2 :::x nw:

Similarly, the second sum on the above right splits as∑
w

�a1; x1x2a3; x3 :::x nw +
∑
w

�a1; x1x2x3a3; x3 :::x nw:

Thus,

A1; n =
2∑

i=1

∑
w

�a1; x1 :::xi ai+1; xi+1 :::x nw +
∑
w

�a1; x1x2x3a3; x3 :::x nw:

Iterating and then factoring completes the proof of Theorem 1(a):

A1; n =
n−1∑
i=1

∑
w

�a1; x1 :::xi ai+1; xi+1 :::x nw +
∑
w

�a1;ww =
n∑

i=1

�A1; iAi+1; n:

For part (b), observe that Theorem 1(a) implies that

Ak;n =
n∑

i=k

�Ak; iAi+1; n: (1)

Writing (1) out for k = 1; 2; : : : ; n leads to the system of equations

A1; n − �A1;1A2; n − �A1;2A3; n − · · · − �A1; n−1An;n = �A1; n;

A2; n − �A2;2A3; n − · · · − �A2; n−1An;n = �A2; n;
...

An;n = �An;n:

Solving for A1; n (by applying a non-commutative version of Cramer’s rule or by simply
backsolving) gives Theorem 1(b).



3. Generating functions

Theorem 1 may be used to obtain generating functions for words with speci�ed re-
strictions. To this end, the index is dropped: For w = x1x2 · · · xn ∈ X n, let
aw = ax1x2ax2x3 · · · axn−1xn and �aw = (ax1x2 − 1)(ax2x3 − 1) · · · (axn−1xn − 1). With ai;w

replaced by aw, Theorem 1 remains valid and implies that the generating function for
words by adjacencies ending in a �nite sequence of restricted letters is given by

Corollary 1. For non-empty subsets U; L1; L2; : : : ; Lm ⊆X;

∑
w∈U∗L1···Lm

aww =

(
1−

∑
w∈U+

�aww

)−1 m∑
k=1

[( ∑
w∈U∗L1···Lk

�aww

)
det( �Bi;j)mi; j=k+1

]

where the empty determinant is 1 and

�Bi;j =




∑
w∈Li···Lj

�aww if 16i6j6m;

−1 if 16i = j + 16m;
0 otherwise:

Proof. For n¿0, Theorem 1(a) implies that

∑
w∈UnL1···Lm

aww=
n∑

k=1


∑

w∈Uk

�aww




 ∑

w∈Un−kL1···Lm

aww




+
m∑

k=1


( ∑

w∈UnL1···Lk

�aww

) ∑
w∈Lk+1···Lm

aww




 :

The desired result follows since the above and Theorem 1(b) together give

∑
w∈U∗L1···Lm

aww=

(∑
w∈U+

�aww

)( ∑
w∈U∗L1···Lm

aww

)

+
m∑

k=1

[( ∑
w∈U∗L1···Lk

�aww

)
det( �Bi;j)mi; j=k+1

]
:

Some special cases are noteworthy. For m= 1 and L= L1, Corollary 1 reduces to

∑
w∈U∗L

aww =

(
1−

∑
w∈U+

�aww

)−1( ∑
w∈U∗L

�aww

)
: (2)

Furthermore, if L= U , (2) becomes

∑
w∈U+

aww =

(
1−

∑
w∈U+

�aww

)−1(∑
w∈U+

�aww

)
:



Equivalently,

∑
w∈U∗

aww =

(
1−

∑
w∈U+

�aww

)−1
: (3)

Identities (2) and (3) are due to Fedou and Rawlings [16] and are more or less
equivalent to several formulas in other algebraic settings (see [11, pp. 96–99]; [13, pp.
96–99]; [20, pp. 131, 238], [31–33]). An explicit connection with Diekert’s work is
given in [16].
Generating functions with other restrictions may also be derived from Theorem 1.

For instance, to obtain the generating function for words by adjacencies with restricted
�rst and last letters, let F;U; L be nonempty subsets of X . Theorem 1(a) implies that

∑
w∈FUnL

aww =
n+1∑
k=1


 ∑

w∈FUk−1

�aww




 ∑

w∈Un−k+1L

aww


+ ∑

w∈FUnL

�aww:

Thus,

∑
w∈FU∗L

aww =

( ∑
w∈FU∗

�aww

)( ∑
w∈U∗L

aww

)
+

∑
w∈FU∗L

�aww:

The last equality and (2) together give a result

∑
w∈FU∗L

aww=

( ∑
w∈FU∗

�aww

)(
1−

∑
w∈U+

�aww

)−1( ∑
w∈U∗L

�aww

)

+
∑

w∈FU∗L

�aww

that is comparable to one of Bousquet-M�elou’s [5].

Example 3 (A generating function for the Fibonacci polynomials). Let X; a, and
Fn(t; q) be as in Example 2. Replace ai;w by aw and set q = 1. As the map sending
w 7→ zl(w) extends to a continuous homomorphism from C〈a〉〈〈X 〉〉 to C[t][[z]], it
follows from (3) that

∑
n¿2

Fn(t; 1)zn = z2
∑
w∈X ∗

awzl(w) = z2
(
1−

∑
w∈X+

�awzl(w)
)−1

=
z2

1− 2z −∑n¿2(t − 1)n−1zn
=

z2(1 + z − tz)
1− z(1 + t) + z2(t − 1) :

Adding z to both sides above and setting t=0 gives the well-known generating function∑
n¿1 Fn(0; 1)zn = z=(1− z − z2) for the Fibonacci numbers.



4. Compositions

Let N = {0; 1; 2; : : :} and N+ = {1; 2; 3; : : :}. The weak rise set, weak rise number,
descent set, descent number, level set, and number of levels of a word w=x1x2 · · · xn ∈
Nn are respectively de�ned by

WRisw = {k: 16k ¡n; xk6xk+1}; wrisw = |WRisw|;

Desw = {k: 16k ¡n; xk ¿xk+1}; desw = |Desw|;

Levw = {k: 16k ¡n; xk = xk+1}; and levw = |Levw|:
Also, put ‖w‖= x1 + x2 + · · ·+ xn.
A word w∈Nn

+ is said to be a composition of k with n parts if ‖w‖ = k. By
convention, 0 has a single composition with no parts. In Examples 4–8, Corollary 1
and its special cases are used to enumerate compositions by number of parts (bounded
and unbounded), rises, levels, and descents. In Example 5, a new statistic referred to as
the ascent variation is considered. The associated recurrences and determinant formulas
implied by Theorem 1 are not stated; only generating functions are presented.
The q-binomial coe�cient is de�ned by

[n
k

]
=




(q; q)n
(q; q)k(q; q)n−k

if 06k6n;

0 otherwise:

Repeated use will be made of the partition identities (see [2])

∑
06i16i26···6ik

qi1+i2+···+ik =
1

(q; q)k
;

∑
06i16i26···6ik6m

qi1+i2+···+ik =
[
m+ k

k

]
: (4)

In all that follows, s; t; q; p; z, and zx denote commuting indeterminates.

Example 4 (Compositions with bounded parts by weak rises). Let N+;m =
{1; 2; : : : ; m}. The number of compositions of k with i weak rises and n parts, each
bounded by m, is equal to the coe�cient of tiqk in

cn;m(t; q) =
∑

w∈Nn
+; m

twris wq‖w‖:

Identity (3) furnishes a generating function for cn;m. For integers x; y ∈ N+, set
axy = t if x6y and axy =1 otherwise. For w= x1x2 · · · xn ∈ Nn

+;m, note that aw = twris w

and that

�aw =
{
(t − 1)n−1 if 16x16x26 · · ·6xn;
0 otherwise:



The de�nition of aw, (3), and (4) imply that∑
n¿0

cn;m(t; q)zn =
∑

w∈N∗
+; m

awq‖w‖zl(w) =
1

1−∑w∈N+
+; m
�awq‖w‖zl(w)

=
1

1−∑n¿1(t − 1)n−1zn
∑

16x16···6xn6m qx1+···+xn

=
1− t∑

n¿0(q(t − 1)z)n
[m+n−1

n

]− t

=
1− t

(q(t − 1)z; q)−1m − t
=
(1− t)(q(t − 1)z; q)m
1− t(q(t − 1)z; q)m : (5)

The q-binomial series (see [2, p. 36]) was used in the next to last step.
The generating function for compositions with no bound on part size follows from

(5) by letting m → ∞: De�ne

(t; q)∞ =
∞∏
i=0

(1− tqi);

cn(t; q) =
∑

w∈Nn
+
twris wq‖w‖, and Eq(z) =

∑∞
n=0 q

( n2 )zn=(q; q)n. By Corollary 2:2 on
p. 19 of [2], Eq(z) = (−z; q)∞: As m → ∞, (5) becomes∑

n¿0

cn(t; q)zn =
(1− t)Eq(q(1− t)z)
1− tEq(q(1− t)z)

:

Incidently, the right-hand side of the last equality with zq replaced by z is the generat-
ing function for q-Eulerian polynomials (e.g., see [16]). To be precise, q−n(q; q)ncn(t; q)
enumerates permutations of the symmetric group by rise and inversion numbers. In
Examples 6–8, it will become clear that many of the generating functions for enumer-
ating permutations also occur in the context of compositions.

Example 5 (Compositions by weak rises and ascent variation). The ascent variation
of a composition w = x1x2 · · · xn ∈ Nn

+ is de�ned to be

avarw =
∑

k∈WRis w
(xk+1 − xk):

For w = 525 6 1 ∈ N 5
+; avarw = 3 + 1 = 4. The ascent variation is motivated by the

perimeter of a directed vertically convex polyomino (Example 9).
To enumerate compositions by weak rises and ascent variation, �rst note that

∑
16x16x26···6xn

qxn

n−1∏
k=1

qxk (tpxk+1−xk − 1) = qn

(q; q)n

n−1∏
k=1

(
(1− qk)t
1− pqk − 1

)
: (6)

To see why, rewrite the sum in (6) as∑
x1¿1

qnx1
∑
x2¿x1

(tpx2−x1 − 1)q(n−1)(x2−x1) · · ·
∑

xn¿xn−1

(tpxn−xn−1 − 1)qxn−xn−1 :

Iteratively summing the sequence of geometric series gives the desired result.



Let

cn(t; q; p) =
∑
w∈Nn

+

twris wq‖w‖pavar w:

For integers x; y ∈ N+, set axy = tpy−x if x6y and axy = 1 otherwise. For
w = x1x2 · · · xn ∈ Nn

+, note that aw = twris wpavar w and that

�aw =

{∏n−1
k=1
(tpxk+1−xk − 1) if 16x16x26 · · ·6xn;

0 otherwise:

It therefore follows from (3) and (6) that

∑
n¿0

cn(t; q; p)zn =
∑
w∈N∗

+

awq‖w‖zl(w) =


1− ∑

w∈N+
+

�awq‖w‖zl(w)



−1

=

(
1−

∑
n¿1

zn
∑

16x16···6xn

qxn

n−1∏
k=1

qxk (tpxk+1−xk − 1)
)−1

=

(
1−

∑
n¿1

qnzn

(q; q)n

n−1∏
k=1

(
(1− qk)t
1− pqk − 1

))−1
:

Setting t = 1 gives

∑
n¿0

cn(1; q; p)zn =

(
1 +

∑
n¿1

(−1)nq( n2 ) (q(1− p)z)n

(p; q)n(q; q)n

)−1
=

1
J0; q;q(p; q(1− p)z)

where J�;q;p is the �th bibasic Bessel function de�ned in (8). Further study of the
ascent variation and related statistics is made in [29].

Example 6 (Down-up alternating compositions with bounded parts). A composition
w= x1x2 · · · xn ∈Nn

+ such that x1¿x26x3¿x46 · · · is said to be down–up alternating.
Let U = {x1x2 ∈N 2

+;m: x1¿x2}; L = N+;m, and X = U ∪ L. For w = x1x2 · · · x2n ∈Un

or w ∈ UnL, let dese w denote the number of even indices k such that xk ¿xk+1. Put

d2n;m(t; q) =
∑
w∈Un

tdese wq‖w‖ and d2n+1;m(t; q) =
∑

w∈UnL

tdese wq‖w‖:

The coe�cient of qk in dn;m(0; q) is equal to the number of down–up alternating
compositions of k having n parts, each part bounded by m.
Identities (2) and (3) may be used to obtain a generating function for dn;m(t; q).

Only the analysis associated with an odd number of parts is presented. For x = x1x2;
y = y1y2 ∈ U , and l ∈ L, set

axy =
{

t if x2¿y1
1 otherwise

and axl =
{

t if x2¿l;
1 otherwise:

For w = x1x2 · · · x2n+1 ∈ UnL, note that aw = tdese w and that

�aw =
{
(t − 1)n if m¿x1¿x2¿x3¿ · · ·¿x2n+1¿1;
0 otherwise:



Thus,
∑

n¿0 d2n+1;m(t; q)z
2n+1 = z−1

∑
w∈U∗L awq‖w‖z2l(w). From (2) and (4),

∑
n¿0

d2n+1;m(t; q)z2n+1 =

∑
n¿0(t − 1)nz2n+1

∑
m¿x1¿x2¿x3¿···¿x2n+1¿1 q

x1+···+x2n+1

1−∑n¿1(t − 1)n−1z2n
∑

m¿x1¿x2¿x3¿···¿x2n¿1 q
x1+···+x2n

=

∑
n¿0 q

n(n+1)+2n+1(t − 1)n [ m+n
2n+1

]
z2n+1

1−∑n¿1 q
n(n+1)(t − 1)n−1 [m+n

2n

]
z2n

:

A similar argument for the even case and the last result give

∑
n¿0

dn;m(t; q)zn =
1− t +

√
1− tSq;m(z

√
1− t)

Cq;m(z
√
1− t)− t

(7)

where

Cq;m(z) =
∑
n¿0

(−1)nqn(n+1)
[
m+ n
2n

]
z2n;

Sq;m(z) =
∑
n¿0

(−1)nqn2+3n+1
[
m+ n
2n+ 1

]
z2n+1:

Carlitz’ [9] result for down–up alternating compositions with unbounded parts fol-
lows from (7): First set t = 0. Then, as m→∞, note that Cq;m(z) and Sq;m(z) ap-
proach the q-cosine function

∑
n¿0(−1)nqn(n+1)z2n=(q; q)2n and the q-sine function∑

n¿0(−1)nqn2+3n+1z2n+1=(q; q)2n+1 respectively. Carlitz’ result parallels the work of
Andr�e [1] on alternating permutations.

Example 7 (Compositions by rises, levels, and descents). For w=x1x2 · · · xn ∈Nn, an
index k such that xk ¡xk+1 is said to be a rise in w. The coe�cient of sitjqk in

gn(s; t; q) =
∑
w∈Nn

+

slev wtdes wq‖w‖

equals the number of compositions of k with n parts, i levels, j descents, and n−1−i−j
rises.
For x; y∈N+, set axy = 1 if x¡y; axy = s if x = y, and axy = t if x¿y. If w =

x1x2 · · · xn ∈ Nn
+, then aw = slev wtdes w. Observe that∑

n¿0

gn(s; t; q)zn =
∑
w∈N∗

+

awq‖w‖zl(w):

In view of (3), we have

∑
n¿0

gn(s; t; q)zn =


1− ∑

w∈N+
+

�awq‖w‖zl(w)



−1

:

By noting for w = x1x2 · · · xn ∈ Nn
+ that �aw = (t − 1)n−1−i(s − 1)i if x1¿ · · ·¿xn¿1

with equality holding exactly i times and that �aw = 0 otherwise, it is not di�cult to



see that the series

S = (t − 1)
∑
w∈N+

+

�awq‖w‖zl(w)

counts non-empty partitions by their weight (q), number of parts (z), number of distinct
parts (t− 1), and repeated parts (s− 1). Constructing these partitions by concatenating
a block of parts equal to 1, then a block of parts equal to 2, and so on, we further
see that

S =
∏
i¿1

(
1 +

(t − 1)zqi

1− (s− 1)zqi

)
− 1 = ((s− t)zq; q)∞

((s− 1)zq; q)∞ − 1:

Putting the pieces together gives a result due to Carlitz [8]:∑
n¿0

gn(s; t; q)zn =
(1− t)((s− 1)zq; q)∞

((s− t)zq; q)∞ − t((s− 1)zq; q)∞ :

Example 8 (Pairs of compositions and (q; p)-Bessel functions). For � ∈ {0; 1}, the
bibasic Bessel functions de�ned by

J�;q;p(s; z) =
∑
n¿0

(−1)n q(
n+�
2 )zn+�

(s; q)n+�(p;p)n
(8)

appear in several combinatorial contexts (see [10,12,14–16,18]). An interpretation in-
volving the entire sequence {J�;q;p}�¿0 may be given in terms of pairs of compositions.

To see how, consider the alphabet X = {( x
y

)
: x; y ∈ N+}. Elements of X will be

referred to as biletters and are not be be confused with binomial coe�cients. Let U=X
and L= {( 1y ): y ∈ N+}. A biword( v

w

)
=
(

x1x2 · · · xn

y1y2 · · ·yn

)
∈ X n

may be viewed as a pair of compositions v; w ∈ Nn
+. The mixed weak descent and

strict rise number of
( v
w

) ∈ X n is de�ned as

dr
( v
w

)
= |{k: 16k ¡n; xk¿xk+1; yk ¡yk+1}|:

For m¿0, let bn;m =
∑
( v

w )∈UnLm tdr(
v
w )q‖w‖p‖v‖. Identity (3) and Corollary 1 imply

that ∑
n¿0

bn;mzn+m

=




1− t
J0; q;p(q; qp(1− t)z)− t

if m= 0;

−∑m
k=1 (−1)kdet( �Bi;j)mi; j=k+1Jk;q;p(q; qp(1− t)z)

J0; q;p(q; qp(1− t)z)− t
if m¿ 0;

(9)



where

�Bi;j =



(t − 1)j−i(qpz)j−i+1q(

j−i+1
2 )=(q; q)j−i+1 if 16i6j6m;

−1 if 16i = j + 16m;
0 otherwise:

The proof of (9) goes as follows. For biletters
(

x
y

)
;
(

l
k

)
∈ X , set a( xl

yk

)= t if x¿l

and y¡k. Otherwise, let a( xl
yk

) = 1. If
( v
w

)
=
(

x1x2 · · · xn

y1y2 · · ·yn

)
∈ X n;

then

�a( v
w ) =

{
(t − 1)n−1 if x1¿x2¿ · · ·¿xn¿1 and 16y1¡y2¡ · · ·¡yn;
0 otherwise:

Note that∑
n¿0

bn;mzn+m =
∑

( v
w )∈U∗Lm

a( v
w )q

‖w‖p‖v‖zl(
v
w ):

The result in (9) then follows routinely from (3), Corollary 1, and (4).
Other mixtures of descents and rises lead to di�erent generalized Bessel functions.

Also, bounding the parts of the composition provides another combinatorial context for
the �nite bibasic Bessel functions in [15,18].

5. Directed vertically convex polyominoes

A polyomino P is a �nite union of unit squares in the plane such that P is connected,
P has no �nite cut set, and the vertex coordinates of each square are integers. Two
polyominoes are equivalent if there exists a translation that maps one onto the other.
Generating functions and asymptotic estimates have been given for many subclasses
of polyominoes [4,6,7,17,23,28]. Bousquet-M�elou [6] provides a survey. In Example 9,
directed vertically convex polyominoes are enumerated by upper descents, perimeter,
area, relative height, and column number.
A polyomino P is vertically convex (VC) if the intersection of any vertical line with

P is connected. Both polyominoes in Fig. 1 are VC. Henceforth, the ith column from
the left in a VC polyomino P will be labeled ci.
An index k is said to be an upper (resp. lower) descent of a VC polyomino P if

the top (resp. bottom) square in column ck lies above the top (resp. bottom) square of
column ck+1. The sets of upper and lower descents of P are respectively denoted by
UDesP and LDesP. In Fig. 1, UDesP = {2; 4} and LDesP = {2}. A VC polyomino
P with LDesP= ∅ is said to be a directed vertically convex (DVC) polyomino. If we
also have UDesP = ∅, then P is said to be a staircase or parallelogram polyomino.
Let DVCn denote the set of directed vertically convex polyominoes with n columns.

The upper descent number of P ∈ DVCn is udesP=|UDesP|. The area, perimeter, and



Fig. 1.

relative height of P are, respectively, de�ned to be the number of squares contained
by P, the length of the boundary of P, and the change in the y-coordinate from the
lower left-hand vertex of c1 to the the upper right-hand vertex of cn. These statistics
of P will be, respectively, denoted by area P, per P, and h(P). For Q ∈ DVC5 of
Fig. 1, udesQ=2, areaQ=13, perQ=26, and h(Q)=5. If P is a staircase polyomino,
then h(P) is equal to the number of rows in P. The following identities will be useful:

∑
(sq)xn−ynqyn

n−1∏
k=1

(sq)xk−yk qyk (tpyk−xk+1 − 1) =
q

(
n+1
2

)∏n−1
k=1(

(1−qk )tp
1−pqk − 1)

(sq; q)n(q; q)n

where the sum is over x1¿y1¿x2¿y2¿ · · ·¿yn¿1 and

∑
(sq)xn+1−1q

n∏
k=1

(sq)xk−yk qyk (tpyk−xk+1 − 1) =
q

(
n+2
2

)∏n
k=1(

(1−qk )tp
1−pqk − 1)

(sq; q)n+1(q; q)n
(10)

where the sum is over x1¿y1¿x2¿y2¿ · · ·¿yn+1 = 1. They may be veri�ed in the
same way as was (6).
Essentially, each example in Section 4 could be redone in the context of DVC

polyominoes. Only one example is considered here.

Example 9 (DVC polyominoes by upper descents; perimeter; area; relative height
and column number). First, consider the alphabets of biletters U = {

(
x
y

)
: x; y ∈

N+; x¿y}, L = {( x
1

)
: x ∈ N+}, and X = U . A bijection used in [7] may be eas-

ily extended to one from DVCn+1 to UnL: For Q ∈ DVCn+1 with columns labeled
c1; c2; : : : cn+1, let xi be the number of squares in column ci for 16i6n+ 1, yi be the
number of squares in ci at and above the square in ci that is adjacent to the bottom
square of ci+1 for 16i6n, and yn+1 = 1. For instance, see Fig. 2.
The map �n : DVCn+1 → UnL that associates Q to the biword(

x1x2 · · · xn+1

y1y2 · · ·yn+1

)
=
( v
w

)
is a bijection.



Fig. 2.

Let

gn(s; t; q; p) =
∑

Q∈DVCn

sh(Q)tudes Qqarea Qpper Q:

To determine gn, we de�ne the adjacency alphabet for X as follows. For biletters( x
y

)
;
( j
k

) ∈ X , set a( xj
yk

) = tp2(y−j) if y¿j and a( xj
yk

) = 1 otherwise. So, for
( v
w

)
=
(

x1x2 · · · xn

y1y2 · · ·yn

)
∈ X n;

�a( v
w ) =

{∏n−1
k=1
(tp2(yk−xk+1) − 1) if x1¿y1¿x2¿y2¿ · · ·¿yn¿1;

0 otherwise:
(11)

Also, if

�n(Q) =
(

x1x2 · · · xn+1

y1y2 · · ·yn+1

)
=
( v
w

)
; then tudes Qp

2
∑

k∈UDes Q (yk−xk+1) = a( v
w );

areaQ = ‖v‖; h(Q) = ‖v‖ − ‖w‖+ 1, and

perQ = 2


n+ 1 + h(Q) +

∑
k∈UDes Q

(yk − xk+1)


 :

Therefore, in view of (2), (10), and (11), we have∑
n¿0

gn+1(s; t; q; p)zn+1 = sp2
∑

( v
w )∈U∗L

a( v
w )(sp

2)‖v‖−‖w‖q‖v‖(p2z)l(
v
w )

=
sp2

∑
( v
w )∈U∗L �a( v

w )(sqp
2)‖v‖−‖w‖q‖w‖(p2z)l(

v
w )

1−∑( v
w )∈U+ �a( v

w )(sqp
2)‖v‖−‖w‖q‖w‖(p2z)l(

v
w )

=
sp2

∑
n¿0

(−1)n(qp2z)n+1q

(
n+1
2

)
(sqp2;q)n+1(q;q)n

∏n
k=1 (1− (1−qk )tp2

1−p2qk )

1 +
∑

n¿1
(−1)n(qp2z)nq(

n
2 )

(sqp2;q)n(q;q)n

∏n−1
k=1 (1− (1−qk )tp2

1−p2qk )
:

The case p= 1 may be expressed in terms of the Bessel functions of (8):∑
n¿0

gn(s; t; q; 1)zn+1 =
sJ1; q;q(sq; q(1− t)z)

J0; q;q(sq; q(1− t)z)− t
:



In 1965, Klarner [22] enumerated DVC polyominoes by area which corresponds to
the above with s = t = p = z = 1. Barcucci et al. [3] added the column number in
1991 (s= t=p=1). More recently, Bousquet-M�elou [6] enumerated various classes of
DVC polyominoes by perimeter, number of columns, height, and area (t=1). The case
t=0; s=p=1 is due to Delest and Fedou [12] and counts staircase polyominoes by area
and column number. The height statistic was added to their result by Bousquet-M�elou
and Viennot [7]. With a little more work, Theorem 1(b) may be used to obtain a
determinant formula for

gn(r; s; t; q; p) =
∑

Q∈DVCn

ruind Qsh(Q)tudes Qqarea Qpper Q

where the upper index of Q is uindQ =
∑

k∈UDes Q k.

6. The Simon Newcomb problem

For a sequence k = {kx}x¿0⊂N having only a �nite number of nonzero terms, the
set of rearrangements of the word 0k01k12k2 · · · is denoted by Rk . In other terms, a
word w is in Rk if and only if each letter x ∈ N appears exactly kx times in w. If
kx = 1 for 16x6n and if kx = 0 otherwise, then Rk is just the set of permutations Sn

of {1; 2; : : : ; n}.
The problem of Simon Newcomb is to determine the number of rearrangements with

a prescribed descent set. MacMahon solved the problem, giving seperate treatments [26,
Vol. I, pp. 190, 200] for Sn and Rk . Niven [27] rediscovered MacMahon’s solution for
Sn. A lattice path proof for the permutation case was given by Gessel and Viennot [19].
A q-analog of MacMahon’s formula on Sn was obtained and generalized to sequences
of permutations by Stanley [31]. As presented in Examples 10 and 11, Theorem 1(b)
a�ords further extensions of MacMahon’s solutions on Sn and Rk .
Some notation and observations are common to both cases. Throughout, �x a

sequence 0 = �0¡�1¡ · · ·¡�d+1 = n of integers. For a word w ∈ Nn, let WRis�
w =WRisw ∩ {�1; �2; : : : ; �d}; and wris� w = |WRis� w|. Further, �x a map � :N → C.
The index of w ∈ Nn relative to � and � is de�ned as

ind�;� w =
∑

�j∈WRis� w
�(j):

Two natural choices for � are (1) �(j)=j for all j ∈ N and (2) �(j)=�j if 06j6d+1
and �(j) = 0 otherwise.
The appropriate alphabets to consider are

Li = {x1x2 · · · x�i−�i−1 ∈ N�i−�i−1 : x16x26 · · ·6x�i−�i−1}
for 16i6d+1 and X =L1∪· · ·∪Ld+1. For x= x1x2 · · · xr; y=y1y2 · · ·ys ∈ X , de�ne
ai;xy= tp�(i) if xr6y1 and ai;xy=1 otherwise. For a word w= x1x2 · · · xn ∈ L1 · · ·Ld+1,
note that

a1;w = twris� wpind�; � w:



Also, if w = x1x2 · · · x�j−�i−1 ∈ Li · · ·Lj, then

�ai;w =
{
(−1)j−i(t;p)i; j;� if 06x16x26 · · ·6x�j−�i−1 ;
0 otherwise;

(12)

where (t;p)i; j;� = (1− tp�(i))(1− tp�(i+1)) · · · (1− tp�( j)). For the choice �(j) = j for
all j ∈ N , observe that (t;p)i; j;� = (tpi;p)j−i.

Example 10. (Permutations with prescribed descent set by inversion number). The
inversion number of a word w = x1x2 · · · xn ∈ Nn is

invw = |{(k; m): 16k ¡m6n; xk ¿xm}|:

Let �n denote the set of non-decreasing words in Nn (i.e., the set of partitions with
at most n parts). A permutation � ∈ Sn will be viewed as the word �(1)�(2) · · ·�(n).
As noted in [16], the map  n : Sn ×�n → Nn de�ned by

 n(�(1)�(2) · · · �(n); �1�2 · · · �n) = x1x2 · · · xn

where xk = ��(k) + |{j: k + 16j6n; �(k)¿�(j)}| is a bijection. Moreover, if
 n(�; �) = w, then

WRis � =WRis w and inv � + ‖�‖= ‖w‖: (13)

In a permutation, a weak rise is in fact a strict rise. As an example, note that  5
maps the pair (5 1 3 4 2; 1 1 1 1 2) ∈ S5 × �5 to the word 6 1 2 2 1 ∈ N 5. Further ob-
serve that WRis 5 1 3 4 2 = {2; 3} = WRis 6 1 2 2 1 and that inv 5 1 3 4 2 + ‖1 1 1 1 2‖
= 6+ 6= ‖6 1 2 2 1‖. Fedou and Rawlings [16] used  n, (2), and (3) to deduce some
of Stanley’s [31] extensions of the results of Carlitz et al. [10] for enumerating se-
quences of permutations by various statistics. Along the same lines, Foata and Han
[18] obtained similar results on signed permutations. Although not done so here, this
example may also be extended to sequences of signed permutations.
For integers 0 = �0¡�1¡ · · ·¡�d+1 = n and a �xed � : N → C, let

fn;�;�(t; q; p) =
∑
�∈Sn;�

twris� �qinv �pind�; � �

where Sn;� denotes the set of permutations � ∈ Sn such that Des�⊆{�1; �2; : : : ; �d}.
Note that fn;�;�(0; q; 1) enumerates permutations � ∈ Sn with Des�={�1; �2; : : : ; �d} by
inversion number.
To obtain a determinant for fn;�;�(t; q; p), �rst note from (13) that, when

restricted to Sn;� × �n;  n is a bijection onto L1 · · ·Ld+1. Together, (13), (4), (12),
and Theorem 1(b) give

fn;�;�(t; q; p) = (q; q)n
∑

(�;�)∈Sn;�×�n

twris� �qinv �+‖�‖pind�; � �

= (q; q)n
∑

w∈L1···Ld+1

a1;wq‖w‖ = (q; q)n det( �Ai;j)d+1i; j=1



where �Ai;j = 0 if i¿ j + 1; �Aj+1; j =−1, and, for 16i6j6d+ 1,

�Ai;j =
∑

w∈Li:::Lj

�ai;wq‖w‖ = (−1)j−i(t;p)i; j;�
∑

06x16···6x�j−�i−1

qx1+···+x�j−�i−1

=
(−1)j−i(t;p)i; j;�
(q; q)�j−�i−1

:

As det( �Ai;j) = det((−1)j−i �Ai;j), it further follows that

fn;�;�(t; q; p) = det
(
(t;p)i; j;�

[
n− �i−1
�j − �i−1

])d+1

i;j=1

(14)

where, by convention, (t;p)i; j;�=1 for j− i60. Setting t=0 and p=1 in (14) gives
Stanley’s [31] q-analog of MacMahon’s formula [26, Vol. I, p. 190].

Example 11. (Rearrangements with prescribed descent set). For a sequence
k={kx}x¿0⊂N having only a �nite number of nonzero terms, put ‖k‖=∑x¿0 kx and
Zk =

∏
x¿0 z

kx
x . Let Rk;� be the set of words w ∈ Rk such that Desw⊆{�1; �2; : : : ; �d}.

The coe�cient of t0p0Zk in

gn;�;�(t; p; Z) =
∑
‖k‖=n

∑
w∈Rk;�

twris� wpind�; � wZk

is the number of w∈Rk of length ‖k‖= n with Desw = {�1; �2; : : : ; �d}.
For w=x1x2 · · · xr ∈ N ∗, de�ne �(w)=zx1zx2 · · · zxr . Denoting the complete symmetric

polynomial by hk (see [25, p. 14]), it follows from Theorem 1(b) and (12) that

gn;�;�(t; p; Z) =
∑

w∈L1···Ld+1

a1;w�(w) = det( �Ai;j)d+1i; j=1

where �Ai;j = 0 if i¿ j + 1; �Aj+1; j =−1, and, for 16i6j6d+ 1,

�Ai;j =
∑

w∈Li···Lj

�ai;w�(w) = (−1)j−i(t;p)i; j;�
∑

06x16···6x�j−�i−1

zx1zx2 · · · zx�j−�i−1

= (−1)j−i(t;p)i; j;�h�j−�i−1 (z0; z1; : : :):

The formula for gn;�;� may be rewritten as

gn;�(t; p; Z) = det
(
(t;p)i; j;�h�j−�i−1 (z0; z1; : : :)

)d+1
i;j=1

(15)

with the conventions that (t;p)i; j;� = 1 if j − i60 and hk = 0 if k ¡ 0. For p = 1,
Stanley [31] gives another solution involving M�obius inversion. With t=0 and p=1,
(15) reduces to MacMahon’s result [26, Vol. I, p. 200].
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