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The project seeks to develop a dynamic model similar to that present near a solar system 

small body, and to design a controller suggested in other resources that will allow a 

spacecraft operating in this environment to hover in a fixed location in the relative reference 

frame of the small body. The paper discusses the derivation of the equations of motion used 

in the non-linear dynamic model, the design of the controller that will allow the spacecraft to 

hover, and the development of the control loop that will simulate the spacecraft hovering in 

the dynamic environment of the asteroid 1999 JU3. A phase plane analysis is conducted to 

validate the stability of the system, as well as provide a means for adjusting the accuracy to 

which the controller hovers about the desired set point. The project is successful in all the 

stated goals, and improvements to the project are discussed. 

I. Introduction 

As unmanned space exploration expands to include asteroids and comets in the list of possible destinations, it 

becomes vital to find new ways to stably remain in orbit about these small bodies. One of the proposed methods for 

remaining stable about these small bodies is hovering. Hovering has an advantage over more conventional orbits in 

that they can better handle the unpredictable and varying nature of a small bodies' dynamic environment
1,3,4

. 

This project seeks to develop a control algorithm and a controller that will enable a spacecraft to hover in a 

fixed position between the Sun and a small solar system body. The challenges in developing this controller will be in 

establishing the dynamic environment of the small body, and validating that the controller works effectively in a 

non-linear dynamic model. Overall the project can be broken down into three phases: research, development, and 

validation. 

Before work began on the controller, research on the topic was conducted, however there will be no discussion 

of the details of these resources. They have been included in the references section of this paper, and any reference 

to them within the paper will be noted with the appropriate source. Next some of the methods and techniques 

discussed in the papers were implemented and tested in a dynamic model that I assembled in MATLAB and 

SIMULINK. This paper seeks to discuss the development, testing, and validation of the dynamic model and the 

controller that operates therein. 

II. Governing Equations of Motion 

A. Primary Body's Gravitational Effects 

 

The basic dynamics of the system that the spacecraft will need to operate in are governed by gravitational 

effects from asteroid so long as the spacecraft is positioned well within the Hill Sphere of the body. The radius of 

the Hill Sphere can be calculated using the equation 

 

 �� � ��1 � �	
 � ��
3����
�

 (1) 

 

The Hill Sphere of the asteroid 1999 JU3, with a semi-major axis, a, of 1.7788e8 km and an eccentricity, e, of 

0.19, and a standard gravitational parameter, ��
, of approximately 4.28e-8 
���

�� , is approximately 68.5 km. Of 

course, the actual effectiveness of the asteroid's gravity within this sphere will vary depending on the proximity of 

the asteroid to the sun throughout the period of its orbit. For the purposes of this project, a position well within the 
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asteroid's Hill Sphere was selected to ensure that the asteroid's gravitational pull was the dominant force. With this 

assumption made, we can use Newton's universal law of gravitation  with Newton's second law of motion as given 

in the equation 

 

 ��� � � ��
�
 �� (2) 

 

where ���� is the acceleration due to the primary body's gravity and �� is the position vector of the orbiting 

secondary body, to describe the primary motion of the satellite in the asteroid's frame of reference. The small nature 

of the primary body suggests that gravitational effects alone will not be the predominating terms in the forcing 

function. Therefore, in an effort to ensure that the controller will be robust, a more accurate environment model was 

incorporated, taking into account additional perturbing forces, namely third body gravitational effects, solar 

radiation pressure, and a non-uniform primary gravity field, that will be discussed in the following sections. 

B. Third Body Effects 

 

The next term of the forcing function that will be discussed are the effects that a third body will have on the 

dynamics of the operating environment. The only third body that was used in the model was the Sun, since both the 

spacecraft and the asteroid it is hovering above will be completely subject to its gravitational pull. In an effort to 

more accurately model the effects over time, the dynamic model incorporated both the asteroid's and the satellites 

motion about the Sun. Simply put, this motion can be described using Eq. 2, substituting the Sun's standard 

gravitational parameter, ����, for the asteroid's and using the asteroid's and spacecraft's position where appropriate. 

In the model however, the system needed to propagate the absolute position of the asteroid and the spacecraft 

together first, before examining the gravitational effect the asteroid had on the spacecraft. As a result, the state 

vector for the equations of motion is given in terms of the absolute position and velocity of the asteroid and the 

spacecraft, rather than the spacecrafts position and velocity relative to the asteroid. For this we substitute the 

absolute positions of the spacecraft and the asteroid, defined in the model as ��1 and ��2 respectively, in for the value 

of �� in Eq. 2. This yields a new equation for the primary body's acceleration due to gravity
4 

 

 ����1 � � ���3��1 � �2	3 ���1 � ��2	 (3) 

 

leaving the acceleration due to third body effects from the Sun in the form of Eq. 2. Together the acceleration 

due to gravitational effects in terms of the inertial position of the spacecraft and the asteroid can be described by the 

equation
4 

 

 ����1 � ����1  ���3!1 � ���3��2 � �1	3 ���2 � ��1	 � �"#$�1
 ��1. (4) 

 

A similar system of equations exists for the asteroid's motion, however since the mass of the spacecraft is so 

insignificant when compared to the mass of the asteroid, it is assumed that the spacecraft's gravitational force 

exerted on the asteroid is negligible. As a result, the asteroid's acceleration due to gravity, needed to update the value 

of ��&, can be expressed in the form of Eq. 2, rewritten as 
 

 ����2 � ����2 � � �"#$�&
 ��2. (5) 

 

With these two equations, the model in its most basic form is ready for analysis. The next two sections will 

describe two additional perturbations that were included in the model for the purpose of evaluating the robustness of 

the controller. 

C. Solar Radiation Pressure 

 

Although not usually considered a significant source of translational acceleration due to its categorization as a 

conservative force for conventional orbits, solar radiation pressure was included in this model because of the nature 
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of the anticipated trajectory. The controller is designed to keep a spacecraft in a fixed position with respect to the 

Sun and the asteroid. This means that solar radiation pressure can no longer be considered a conservative force, 

since it will always be acting in the same relative direction for the entire duration of the controller's operation. The 

acceleration due to solar radiation pressure can be determined form the equation
4 

 

 ���'�(1 � � )")*+)", ��1�13 (6) 

 

where )-, is the solar constant 1367 1��, )2 is the assumed coefficient of reflectivity of the spacecraft of 1.5, +3- is the assumed cross-sectional area of the sun facing side of the spacecraft of 3 m&, and c is the speed of light, or 2.998e � 8 �� . 

The inclusion of this specific term in the forcing function is optional depending on the location of the small 

body the spacecraft will hover around. For example, the asteroid examined in this report, JU3, is a Near Earth 

Asteroid, and its distance from the Sun ranges from 0.96 AU to 1.4 AU. This leads to a wide variation in the 

magnitude of the solar radiation pressure, since the value itself varies inversely as a function of the square of the 

distance from the Sun. 

D. Non-Uniform Gravity Field (not implemented) 

 

The biggest challenge in developing the environmental dynamic model was developing a means to incorporate a 

non-uniform gravity field. The earliest versions of the controller were tested assuming the central body to be a point 

mass rather than an actual volume of mass. Since the exact models of the asteroid's could not be found or developed, 

a randomized asteroid model was going to be developed to generate a volume to test the control algorithm with. This 

model would introduce the perturbing effects due to a non-uniform gravity field, and validate whether the controller 

is in fact robust. 

Unfortunately, time limitations prevented the incorporation of the randomized asteroid model that was 

developed by the author. Instead, the controller was verified using only a point mass assumption, and the 

incorporation of a non-uniform gravity field will be left as a possible expansion for a future project. 

E. Implementation of the Equations of Motion 

 

Finally the full expression for the perturbing accelerations on the spacecraft in the asteroid's dynamic 

environment can be written. Using Eqs. 4, 5, 6, and 8, the equations of motion can be written as 

  

 ���1 � ����1  ���'�(1 (7) 

   

 ��& � ��8&. (8) 
 

These equations of motion were written in an embedded MATLAB function within the SIMULINK model and 

can be seen in the Appendix. To verify that the equations of motion were in fact working properly, the system was 

allowed to operate without an operating controller for an extended period of time. The output can be seen in Figure 

1. The result is as expected, as the motion seen is exactly what the motion of a slowly orbiting object in three body 

system would look like
4
. The slight variation in the eccentricity and semi-major axis of the orbit, evident in Figure 2 

can be attributed to the perturbations in the system. 
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Figure 1. The uncontrolled motion of an object starting at 40 km altitude above the surface in the relative 

frame for 100 days looks like the motion of an object in a three body system. 

 
Figure 2. The same uncontrolled motion of an object starting at 40 km altitude in the inertial frame shows 

variances in the orbital elements due to third body effects and the changing value of the Hill Sphere. 
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This motion is exactly what the controller needed to be designed to counteract, effectively creating an 

equilibrium point at a fixed point in the relative frame. 

III. Controller Design 

A. The Plant 

 

The equations of motion covered in the previous section are set up in such a way that the states are propagated 

in the inertial frame with the Sun as the primary central body. This is not suitable for this controller, as the design 

intends to utilize the relative position as the primary indicator of whether or not a correction needs to be made. This 

meant that a series of coordinate transformations needed to be included within the plant to convert the state output 

from the equations of motion from the inertial frame into the relative frame. Then decisions whether or not to 

implement control would be made with information supplied in terms of the relative frame, and control added in the 

same manner. Before the control input could be fed back into the equations of motion, the input had to be converted 

from an acceleration in the relative frame into an acceleration in the inertial frame. Figure below shows exactly this 

process with the necessary plant inputs and outputs. 

 

 
Figure 3. The plant required a transformation from the inertial frame that the state is propagated in, to the 

relative frame in which the control is applied. 

B. Controller 

 

1. The Schmitt Trigger 

 

The main mode of control used is the Schmitt trigger. The Schmitt trigger, composed of two relays, establishes 

a dead band on the control region. Dead bands are necessary in implementing hovering control because without 

them there is the potential for too much energy to be added to the system
2
. 

Schmitt triggers, like the one shown in Figure 4 were placed in the system to turn on or off based on the 

spacecraft's distance from the point mass. A relay is used to check the relative position and will enable if the 

position is outside of the set point in either direction. 

 

 
Figure 4. A Schmitt trigger was used to control the relative hovering position. 



7 

 

 

These first attempts at open loop hovering drove the system to instability. The control pulses would have to be 

ridiculously small in order for open loop hovering control to be effective, or the system would need to use 

continuous correction with a very low gain. This controller is intended to work with a higher gain non-continuous 

system, and can be thought of utilizing small thrust attitude control system thrusters to hover. As a result, control 

only on the relative position is not enough. 

 

2. Pulse-Width Pulse-Frequency Modulation 

 

In order to establish a tighter control on the position of the hovering spacecraft, a form of pulse-width and 

pulse-frequency (PWPF) modulation needs to be implemented to prevent the stabilizing thrusters from adding too 

much energy to the system. I implemented a form of PWPF modulation by introducing a second tier of Schmitt 

triggers on the relative velocity of the hovering spacecraft with respect to the small body. This acts as a mode for 

controlling pulse-width of the thruster firings, while the combination of the first and second tier of Schmitt triggers 

controls the frequency of these pulses. 

Figure 5 shows the second tier of Schmitt triggers controlling the components of the relative velocity. These 

triggers act as a go or no go check for the thruster firing. If the spacecraft velocity is higher than a value specified by 

the user, then the second tier of triggers will disable the thruster, even if the sensor says that the relative position is 

outside of the dead band specified by the first tier. The same thing could be done in only the opposite direction of 

gravitational acceleration, as this is the primary thrust direction, with a single relay, however I wanted to ensure that 

all three axes would be rate limited. 

 

 
Figure 5. The relative velocity components were also controlled with Schmitt triggers to ensure that there 

would be a small range of acceptable velocities at which the controller would not be disabled. 

 

3. Position and Velocity Control Interface 

 

An example interface between the two tiers of Schmitt triggers for each of the components can be seen in 

Figure 6. In the figure below, the X Thrust Trigger block is the Schmitt trigger shown previously in Figure 4. An 

additional level of manual control has been added in the form of an on/off switch so that control in specific 

directions can be completely disabled in a higher subsystem. 
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Figure 6. The interface between the second tier of Schmitt Triggers, input through Ports 4 and  5 can be seen 

for the x axis thrust control. 

 

4. Assembled Thrust Controller 

 

A total of three of the interfaces shown in Figure 6 were used in parallel to control the x, y, and z axis thrusters 

in the relative frame. Combining the three interfaces and the velocity controller shown in Figure 6, we arriving at the 

basic controller used to force the spacecraft to hover in the relative frame at the desired position. In Figure 7 we can 

see the assembled controller with all of the inputs, outputs, and the implemented thrust control direction switches. It 

may be difficult to see, but the magnitude of the thrust (expressed as a specific thrust here in terms of acceleration) 

is not added into the system until after the control state of every component is already determined. The outputs of 

each of the Schmitt triggers within the system only need to output a one or zero as a result. Setting the correct set 

points for the dead bands on each of these Schmitt triggers will be discussed in a later section. 

 

 
Figure 7. The thrust controller requires realtive position and velocity knowledge, but gives the user the option 

of disabling control in any specific direction. 

 

This completes the discussion of the controller design. The only remaining piece of the control loop to address 

is the way in which the controller is supposed to interface with sensors located on the spacecraft. 

C. Sensor and System Interface 

 

In order to use the controller onboard, the system will need to interface with sensors that can actually provide 

the controller with the information needed to accurately control hovering. Since this is designed to be a closed loop 

system, the error between the desired hovering location and the actual spacecraft relative position with respect to the 

small body also needs to be found. Both of these concerns are assumed to be taken care of in the implementation of 
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this controller, but sensor compatibility is a serious concern when deciding how tight of a dead band the hovering 

controller is designed to have. 

For this controller, it is assumed that the sensors onboard the spacecraft are capable of providing the command 

and data handling system (C&DH)  with the relative position and velocity knowledge required. With this assumption 

a simple difference between the state output in the relative frame and the desired relative position is all that is used, 

and can be thought of as being supplied in this format by the C&DH system. 

D. The Control Loop 

 

With the plant, controller, and sensor interface established, we can see the assembled control loop below in 

Figure 8 There is a delay incorporated so that the spacecraft may fall towards the asteroid initially before the system 

activates and corrects the spacecrafts position. 

 
Figure 8. The control loop incorporates the plant, the thruster controller, and the system interface and 

outputs the necessary information for analysis. 

IV. Results 

The controller was tested using a number of constant parameters. The small body used was the asteroid 1999 

JU3, which has the orbital elements shown in Table 1 for the date May 4, 2018. The radius of the Hill Sphere for 

this asteroid is approximately 68.5 km, so a point well within this region is required to minimize the effect of the 

Sun's gravitational pull. An altitude of 4 km was selected as the operating position for its position well within the 

Hill Sphere and its distance of nearly 4 radii from the asteroid's surface. 

 

Table 1. The physical properties and orbital elements for the asteroid 1999 JU3 can be seen below. 

Small Body Asteroid 1999 JU3 

Physical Properties 

Mean Radius R 0.550 km 

Mass M 6.4143x10
11

 kg 

Standard Gravitational Parameter µ 4.27x10
-8

 
9:;

<=  

Classical Orbital Elements 

Semi-Major Axis a 1.778x10
8
 km 

Eccentricity e 0.19 

Inclination i 5.88° 

Right Ascension of the Ascending Node Ω 251.7° 

Argument of Perigee ω 211.3° 

Period T 473.6 days 
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The controller was run for a period of one hundred days with a desired altitude of 4 km, and asteroid sun angle 

of 180°, putting the hovering location between the Sun and the asteroid in the relative frame. The result can be seen 

below in Figure 9. The lack of a trajectory in the relative frame is an indication that hovering has been achieved, as 

the spacecraft remains in the same approximate position for the duration of the simulation. The motion in the inertial 

frame can clearly be seen in Figure 10. where the spacecraft completes one period of it's very slow orbit about the 

asteroid in the amount of time it takes the asteroid to orbit the Sun. Since the simulation was only run for 100 days, 

the spacecraft has only completed a portion of its 473 day orbit.  

 
Figure 9. The hovering controller appears to work as the motion in the relative frame has been stopped. 

 

 
Figure 10. The spacecraft appears to be in a an orbit with a period that matches that of the asteroid's period 

about the Sun. 
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The motion with the controller disabled in Figure 11 is a stark contrast with the motion seen when the controller 

is turned on as seen in Figure 9. Here, in the relative frame, the spacecraft completes several full orbits about the 

asteroid with a few very small perturbations visible due to the Sun's gravitational pull. 

 

 
Figure 11. The uncontrolled relative motion of the spacecraft beginning at an altitude of 4 km. 

 

Now let's take a closer look at what is actually happening in the relative frame when the controller is enabled. If 

we look at Figure 12, we can confirm that the desired position and system output are virtually identical. If we look at 

the right side of the figure, we can see very small fluctuations in the y-component of the relative position. This is 

due to a less stringent dead band in the y-direction. This was intentional, since for the position chosen, the primary 

acceleration direction will be in the positive x-direction, the direction in which the asteroid is relative to the 

spacecraft. 

If you look back up in the controller design section at Figure 7, you can actually see that the control in the 

positive y-direction has been disabled. The dynamics of the system will naturally stabilize the motion of the 

spacecraft, so a thruster firing in that direction is not necessary for stability. The same phenomenon is true for the z-

axis as well, control is disabled in the stabilized direction. If a fixed position is not a concern, and only the altitude 

of the spacecraft needs to be maintained, then the off axes directions can actually be completely disabled, and the 

spacecraft will naturally drift about in the stability region
7
, oscillating indefinitely about the equilibrium point at 

zero for both the y and z axes while control will continue to exist in the positive x direction. 
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Figure 12. The actual hovering position shown on the right closely matches the desired hovering position 

shown on the left. 

 

Now let's shorten the duration of the simulation, since we have verified that it is effective at supporting 

extended periods of hovering. If we shorten the simulation time to one day, we can see the motion that occurs in the 

x direction in Figure 13. The y and z outputs are not shown so that we can focus on just the primary control 

direction. 

 

 
Figure 13. The activity of the controller is plainly visible in the x-direction when the simulation time is only 

one day. 

 

The controller appears to be effective, and can be adjusted to exercise more or less control as the user desires. 
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V. Analysis 

The controller appears to be working effectively, and stabilizing the spacecraft's motion in the relative frame. In 

this section we will take a look at the phase plane of the state vector to verify that the motion is in fact stable. Upon 

immediate inspection, the signature parabolic shape of an oscillation about a dead band can be seen in the phase 

plane
6
. 

If we examine the phase plane of the state vector for a duration of one day, we see the graph in Figure 14. Here 

the simulation has only been run for 79 minutes and 15 seconds to get a better resolution on the phase plane. At this 

point, nearly one cycle in the hovering oscillatory motion has been completed, and we can get an idea of the stability 

of the controller. The starting location is plainly visible, and immediately a thruster fires accelerating the spacecraft 

from a relative velocity of virtually zero to a relative velocity of a 0.5 
>��  away from the asteroid. The limit of 0.5

>��  

was set as the velocity limit in the second tier of Schmitt triggers. This limit translates to an oscillation in the 

position of the spacecraft of 6 m. 

 

 
Figure 14. The phase plane diagram for a position dead band of 6 m and a velocity dead band of 1

?:< . 

 

Immediately a relationship can be developed between the limit posed on the duration of the thruster firings. The 

parabola shown in the phase plane gives a baseline to develop other velocity limits depending on the size of the 

position dead band. For example, assume we want the dead band to be increased to 20 m. If we flip the axes of the 

plot, the phase plane can be approximated by the equation of a parabola 

 

 @ � �A&  ! (9) 
 

since we know the roots to be roughly ±0.5
>��  and the x-intercept to be -6 m, we can solve for the coefficient a. 

Solving for a, we get a value of � � 24. Next we write the new equation for the phase plane 
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 @ � 24A& � 20. (10)  

 

Solving for the roots of this new equation gives the values of the new velocity limits, A � D0.912 >�� . When the 

dead band on the velocity values was adjusted to the new values, and the duration of the simulation extended to 150 

minutes, the phase plane in Figure 15 was obtained. 

 

 
Figure 15. The phase plane for a dead band of 20 m was achieved by adjusting the parabola fitted to the 6 m 

dead band velocity limits. 

 

The phase plane analysis has both provided a means of verifying the stability of the controller as well as a 

means for establishing reasonable values for the velocity limits by specifying a desired position dead band. 

VI. Conclusion 

This project sought to develop a controller that was capable of allowing a spacecraft to hover between a solar 

system small body and the Sun, and the results indicated that the attempt was successful. The phase plane analysis 

indicates that the controller induces stable harmonic motion about a set point, and the plots of the motion in the 

relative reference frame indicate that the spacecraft does indeed hover in a fixed location with respect to the Sun and 

the asteroid 1999 JU3. 

Although the project is a success, there are a number of improvements that could certainly be made to the 

controller. The first, as mentioned earlier in the report, is the incorporation of a non-uniform gravity field model into 

the equations of motion to verify that the controller can handle additional perturbations in the system and that the 

controller is robust. Additional tests could be made with the controller, verifying that it works at several locations 

within the Hill Sphere of the asteroid. It is during these tests that the limitations of the controller become apparent. 

In hindsight, the controller was developed with a serious shortcoming. All of the controller's components are based 

in the small body's relative frame. A drastic improvement to this implementation would be to switch the controller to 

operate in the spacecraft's body frame, and have an additional coordinate transformation from the body frame to the 
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relative frame of the asteroid. This would require to have additional knowledge of the spacecraft's attitude in the 

relative reference, not simply it's relative position. One final improvement that could go with this change is the 

incorporation of an attitude controller to constantly adjust the spacecraft's attitude with respect to the asteroid and 

Sun, keeping the same faces of the spacecraft always facing the same bodies at all points during its orbit. This 

project merely assumed that such a controller already existed and operated within the system. 

Despite these limitations, the controller at the very least proves that the control algorithm for hovering in a fixed 

location in the relative reference frame is theoretically possible, and that using dead band control is a valid means of 

establishing a hovering trajectory. 
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Appendix 

A. Source Code for the Embedded MATLAB Functions within the Control Loop 

 

The Equations of Motion Block: 

 
function [dS1,dS2] =   EOM(S1,S2,Ts,Other) 

% This block supports an embeddable subset of the MATLAB language. 

% See the help menu for details. 

  

%CONSTANTS 

Sun.mu = Other(1,1);  %1.32712e11 km^3/s^2 

JU3.mu = Other(2,1);  %4.28e-8    km^3/s^2 

Fsrp   = Other(3,1);  %Solar Radiation Pressure Constant 

  

%STATE INPUT 

r1 = S1(1:3,1);     %Spacecraft Position State [x;y;z]km 

v1 = S1(4:6,1);     %Spacecraft Velocity State [x;y;z]km 

  

r2 = S2(1:3,1);     %Asteroid Position State   [x;y;z]km 

v2 = S2(4:6,1);     %Asteroid Velocity State   [x;y;z]km 

  

%EQUATIONS OF MOTION 

%Acceleration terms currently incorporate: 

%   Perturbations due to Solar 3rd Body Effects 

%   Perturbations due to Solar Radiation Pressure 

%Need to incorporate: 

%   Perturbations due to Non-Spherical Body/Non-uniform Gravity Field 

a3b  = JU3.mu*(r2-r1)/(norm(r2-r1))^3;    %3rd Body Effects 

asrp = Fsrp*r1/norm(r1)^3;                %Solar Radiation Pressure 

ansb = 0;                                 %Non-spherical Body 

ap   = a3b+asrp+ansb;                     %Total Perturbations 

  

a1   = -Sun.mu*(r1)/(norm(r1))^3+ap+Ts;   %Spacecraft acceleration equation 

a2   = -Sun.mu*(r2)/(norm(r2))^3;         %Asteroid acceleration equation 

  

%CONVERSION FROM ABSOLUTE TO RELATIVE (separate block atm) 

% Rrel  = r1-r2; 

% OM    = cross(r2,v2)/norm(r2)^2; 

% OMdot = -2*dot(r2,v2)*OM/norm(r2)^2; 

% Vrel  = v1-v2-cross(OM,Rrel); 

% arel  = a1-a2-cross(OMdot,Rrel)-cross(OM,cross(OM,Rrel))-2*cross(OM,Vrel) 

  

%STATE DERIVATIVE OUTPUT 

%Spacecraft Velocity and Acceleration [x;y;z]km/s;[x;y;z]km/s^2 

dS1 = [v1;a1]; 

  

%Asteroid Velocity and Acceleration   [x;y;z]km/s;[x;y;z]km/s^2 

dS2 = [v2;a2]; 

 

The Absolute to Relative Coordinate Transformation Block 

 
function [Srelout,Rrel]    = Abs2Rel(Sout) 

% This block supports an embeddable subset of the MATLAB language. 

% See the help menu for details.  
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r1=Sout(1:3,1);     %Absolute Position of the spacecraft    km 

v1=Sout(4:6,1);     %Absolute Velocity of the spacecraft    km 

r2=Sout(7:9,1);     %Absolute Position of the asteroid      km/s 

v2=Sout(10:12,1);   %Absolute Velocity of the asteroid      km/s 

  

Rrel=r1-r2;         %Relative Position of the spacecraft    km 

  

OM=cross(r2,v2)/norm(r2)^2;     %Rotation of the relative frame s^-1 

Vrel=v1-v2-cross(OM,Rrel);      %Relative Velocity of the spacecraft km/s 

  

%Assemble the rotation matrix from the Position and Velocity Vectors 

x_test=r2/norm(r2); 

z_test=cross(r2,v2)/norm(cross(r2,v2)); 

y_test=cross(x_test,-z_test); 

%Direction Cosine Matrix 

Q=[x_test,y_test,z_test]'; 

  

%Rotation of the Absolute Frame into the Relative Frame 

Srelout=[Q*Rrel;Q*Vrel]; 

  

The Relative to Absolute Coordinate Transformation Block 

 
function Ts   = Rel2Abs(Sout,Trel) 

% This block supports an embeddable subset of the MATLAB language. 

% See the help menu for details.  

  

r1=Sout(1:3,1);     %Absolute Position of the spacecraft    km 

v1=Sout(4:6,1);     %Absolute Velocity of the spacecraft    km/s 

r2=Sout(7:9,1);     %Absolute Position of the asteroid      km 

v2=Sout(10:12,1);   %Absolute Velocity of the asteroid       km/s 

  

%Assemble the rotation matrix from the Position and Velocity Vectors 

x_test=r2/norm(r2); 

z_test=cross(r2,v2)/norm(cross(r2,v2)); 

y_test=cross(x_test,-z_test); 

%Direction Cosine Matrix 

Q=[x_test,y_test,z_test]'; 

  

%Rotation of the Relative Frame into the Absolute Frame 

Ts=zeros(3,1); 

Ts=Q'*Trel; 

 

Interface Block 

 
function [R,V]    = Int(SC_Position,Srelin) 

  

Rdes=SC_Position(1:3,1);    %Desired Spacecraft Position    km 

Ract=Srelin(1:3,1);         %Actual Spacecraft Position     km 

  

Vdes=SC_Position(4:6,1);    %Desired Spacecraft Velocity    km/s 

Vact=Srelin(4:6,1);         %Actual Spacecraft Velocity     km/s 

R=Rdes-Ract;                %Error in the Position          km 

V=Vdes-Vact;                %Error in the Velocity          km/s 
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