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Several extensions of Blomqvist’s absorption process are presented. Inherent in 
some of the associated distributions is a method for establishing q-identities 
ranging from properties of Gaussian polynomials to product expansions of basic 
hypergeometric series to extensions of results on Mahonian statistics. One process 
links the comajor index to Russian roulette. Also given are examples involving the 
Rogers�Ramanujan identities that demonstrate how q-expressions may be mod­
eled with absorption processes. 

1. INTRODUCTION 

Blomqvist’s � � absorption process may be modified so as to provide a4 
common experimental setting for a wide range of q-identities. The first 
innovation considered herein is the variation of particle size. 

A sequence of j dots connected by a line will be referred to as a 
j-particle. The j-absorption process consists of sequentially propelling j-
particles into a chamber l cells long according to the following Bernoulli 
trials scheme. 

To begin, a first j-particle PP is placed in the leftmost j cells, one dot per
cell. A coin with probability q � 1 of landing tails up is then tossed until Ž .i 
a heads occurs or Ž . PP occupies the rightmost j cells and a tails occurs.ii 
In case Ž .i , PP is advanced one cell to the right each time tails appears and 
comes to rest when the heads occurs. In case Ž . PP is removed from theii , 
chamber. Successive j-particles are similarly propelled into the chamber as 
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if occupied cells had been remo�ed. When j exceeds the number of empty 
cells, subsequent j-particles are partially inserted and immediately re­
moved without a single coin toss. 

A j-particle that comes to rest in the chamber is deemed an absorption. 
If not absorbed, a j-particle is said to have escaped. To illustrate, suppose 
that three 2-particles are propelled into a chamber 7 cells long. If the three 
Bernoulli sequences are TH, H, and TT, then the final outcome is 

The tally of absorptions is 2 and one 2-particle escaped Žnot shown . The . 
1-absorption process is the original one of Blomqvist Žalso see �6, 10, 21 �.. 

The probability generating functions associated with the j-absorption 
process may be expressed in terms of basic hypergeometric series. For an 
integer n � 1, the q-shifted factorial of a is defined as 

Ž a; q. n � Ž1 � a. Ž1 � aq. ��� Ž1 � aqn�1 . . 

By convention, Ža; q.0 � 1. For integers n, k � 0, the q-binomial coefficient 
Žalso known as the Gaussian polynomial . is defined by 

n �1Žq ; q . kn 
q 

� 
Ž q ; q. k 

.
k 

The basic hypergeometric series r �s with r upper and s lower parameters is 

a , . . . ,  a 
1  r  ;  q ,  z 
r �s b1 , . . . ,  bs  

Ž a ; q. Ž  a ; q. ��� Ž a ; q. k 1�s�r
1 k 2 k r k k Ž . n� Ý Ž�1. q 2 z ,

Ž q ; q. Ž  b ; q. ��� Ž b ; q. ž / /
k�0 k 1 k s k 

Ž . Ž  .where k
2 � k k  �  1  �2. In section 2, the following results will be verified. 

THEOREM 1. Gi�en that n � 1 j-particles are propelled into a chamber of 
length l � 1, let Ab denote the number of absorptions. If 0 � q � 1 and 
l � jn or l � �1 mod j, then the probability of k absorptions is 

nŽn�k .Ž l�jk�j�1. l�j�1 �jP �Ab � k4 � q Žq ; q . . 1Ž .j , l , n k jk q 



� 

� �  
� �

Moreo�er, when l � jn, the probability generating function of Ab is 

�jn l�1 q q
l� j�1 �j n jP z � q ; q z � ; q , . 2Ž .  j , l , nŽ . Ž . n 1 1 l�jn�1q z 

THEOREM 2 Negative Ž q-binomial distribution . . For a chamber of length 
l � j and a positi�e integer k � l�j, let N denote the number of j-particles 
required to achie�e k absorptions. If 0 � q � 1, then the probability of the nth 
j-particle being the kth one absorbed is 

n � 1Žn�k .Ž l�jk�1. l�j�1 �jQ � N � n4 � q Žq ; q . . 3Ž .j , l , k k jn � k q 

Moreo�er, the probability generating function of N is 

jk
l� j�1 �j k q j l�jk�1Q z � Žq ; q z � ; q , zq . 4Ž .  j , l , k Ž .  . k 1 0 

Theorem 1 for j � 1 is due to Blomqvist 4 and Theorem 2 for j � 1 
was discovered by Dunkl 6 . Other modifications of Blomqvist’s absorption 
process are considered in Sections 5 through 8. 

Beyond their intrinsic appeal, such distributions afford a method for 
establishing q-identities. To illustrate, Theorems 1 and 2 are used in 
Section 3 to give probabilistic proofs of known properties of Gaussian 
polynomials and of known product expansions for � and � . In Sec­1 0 1 1 
tion 9, distributions on an absorption ring are used to verify and extend 
two of MacMahon’s � � fundamental results concerning the inversion 14 
number and the comajor index. One absorption ring distribution inciden­
tally reveals some information about Russian roulette. 

Absorption processes also serve to model a variety of q-expressions. 
Included in Sections 5 and 6 are processes for the Rogers�Ramanujan 
identities. 

Although not of primary interest here, two asymptotic distributions 
involving q-analogs of the Bessel function J0 and the cosine function are 
derived in Section 4 from Theorem 1. These are referred to respectively as 
the q-Bessel and Cauchy distributions, the former being discovered by 
Griffin � �9 . 

2. PROOF OF THEOREMS 1 AND 2 

To prove Ž . n � 1 and suppose that are1 , fix k of the n j-particles
Ž .absorbed. Note that, after the i � 1 st absorption occurs where 1 � i � 

l� ji�1Ž . Ž .k � 1 , the probability associated with the next absorption is 1 � q . 
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Also, the probability of an escape occurring between the Ž i � 1 st and . ith 
l� ji�1 l�jk�j�1 jŽk�1�iabsorptions is q � q q .. As the Žn � k. escapes may be 

distributed in any manner whatsoever between the absorptions, it follows 
that 

P �Ab � k4j , l , n
 

k
 
s ml�ji�1 Žn�k .Ž l�jk�j�1. j� ŁŽ1 � q . q Ý Ž .  q 
Ž .

, 
i�1 0�m �m � ��� �m �k1 2 n�k 

where s mŽ . � m � m � ��� �m . Since the sum on the above right is 1 2 n�k
 
n
equal to � �  Žsee Theorem 3.1 in 1 � �., the proof of Ž .  is complete. k q j 1
 

n n �1
To verify 2 , first use the identity Ž .  � � � Žq ; q . �Žq; q. and the k q n�k n�k 

k�1 �1 kŽa; q . Ž ; q. Ž  a q  �Ž . to rewrite formula Ž .  fact that k � a k � . 2 1 as 

l� j� �j jn ; q�jŽq 1 ; q . Žq .Žn�k .Ž l�jk�j�1. n n�k
P �Ab � k4 � qj , l , n l�jn�1 j j jŽq ; q . Žq ; q .n�k n�k 

l� j� �j �j n ;  q jŽq 1 ; q . Žq . n�kn n�k n�k Ž l�1.Žn�k .� jŽ 2 .� Ž�1. q .l� jn�1 j j jŽq ; q . Žq ; q .n�k n�k 

Then, 
n
 

z � P �Ab� 4 k
P Ž .  Ý  k zj , l , n j , l , n
 
k�0
 

n�k n�k n �jn j n�k jŽ . l�1Žq ; q . n�k Ž�1. q 2 q
l�j�1 �j n� Žq ; q . zn j j l�jn�1 jÝ ž /Žq ; q . Žq ; q . zk�0 n�k n�k 

�jn l�1 q q
l� j�1 �j n j� Žq ; q . z � ; q , .n 1 1 l�jn�1q z 

Ž .  Ž .Formula 3 also follows from 1 . For a fixed positive integer k � l�j, 
the probability of the nth j-particle being the k th absorption is clearly 

l� jk�1Q Ab � k � 1 1  � qj , l , k� N � n4 � Pj , l , n�1� 4 Ž . 
n � 1Žn�k .Ž l�jk�1. l�j�1 �j l�jk�1� q Žq ; q . k�1 Ž1 � q . 

jk � 1 q 

n � 1Žn�k .Ž l�jk�1. l�j�1 �j� q Žq ; q . k . 
jn � k q 

Ž .4 may then be easily derived from Ž .The generating function in 3 . 



� 
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3. THE PROBABILISTIC APPROACH TO q-IDENTITIES 

Absorption distributions may be used to translate facts of probability 
into q-identities. First, let us consider Blomqvist’s distribution P .1, l, n 
Suppose k of Ž r � s. 1-particles are absorbed. Evidently, � of the first r 
1-particles and Žk � � . of the remaining s 1-particles are absorbed where 
0 � � � k. Thus, 

k 

P1,  l ,  r�s�Ab � k4 � Ý P1,  l ,  r�Ab � � 4 P1,  l�� ,  s�Ab � k � � 4 . 
��0 

Replacing the probabilities above by the right-hand side of Ž . and cancel­1 
ing like terms gives the q-analog of the Chu�Vandermonde identity �1, 
p. 37 :�

k 
r � s sŽ r�� .Ž k�� . r� Ý q .

k k � �qq q��0 

As an application of Dunkl’s distribution Q , fix k � 1 and let AA Ž .n1, l, k k 
denote the event that the nth 1-particle is the k th absorption. For 
Žk � 1. � m � n, the conditional probability of AAk�1Žm. occurring given 

kŽ .  Ž .3 :that � n occurs may be computed with the aid of 

Prob� AA m � AA n 4k�1Ž .  k Ž .  
Prob � k m � � k n 4 �� �1Ž .  Ž .  

Prob� AAkŽn.4 
Q , k�1� N � m Q4 1, l � N � n � m41,  l �k�1,  1� 

Q1,  l ,  k� N � n4 
�1 

m� k�1 m � 1 n � 1� q . 
m � k � 1 n � kq q 

n�1Combining the observation that Ý � k�1 Prob�� k Ž .m � � kŽ .4  m �1 n � 1 with 
the above result implies that 

n�1
 
m� k�1
 m � 1 n � 1Ý q . 

m � k � 1 n � kq qm�k�1 

� of theA few cosmetic changes then reveal a standard property 1, p. 37� 
Gaussian polynomials: 

Ý
r

q r � k � 1� � k .
k � 1q q��0 
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Theorems 1 and 2 also imply product expansions for 1�1 and 1�0. From 
the trivial observation that 1 � P Ž .1 , we have j, l, n 

�j n  1q  j l�1; q , q � , 51 1 l�j�1 �j Ž .l�jn�1 Žq ; q . nq 

where 0 � q � 1. Similarly, Ž .4 implies 

1jkq j l�jk�1; q , q1 0 l�j�1 �j� Žq ; q . . 
k 

More general results for � and � � �may be found in 8, p. 236 . 1 1 1 0 
� �6 remark that the identity 1 � Q Ž . ‘‘expresses Evident in Dunkl’s 11, l, j 

the known ŽHeine. sum of the 1�0 series,’’ the probabilistic method 
provides an experimental setting for establising q-identities. Further exam­
ples are given in 18 and in sections 7, 8, and 9. A probabilistic derivation 
of a formula for Ramanujan’s � � �1 1  sum was given by Kadell 11 . 

For later reference, two cases of the expansion for 1�1 are singled out. 
Ž . Ž .  Ž .  Setting j, l � 1, n and letting n � � in 5 yields the identity 

q k 2
1 

2 � Ł i , Ž .Ý 6
k�0 Ž q ; q. k i�1 Ž1 � q . 

� � Ž . Ž .which has been attributed to Euler 1, p. 20 . Selecting j, l � 2, 2 n and 
Ž .  � �then allowing n � � in 5 leads to an identity due to Cauchy 1, p. 20 : 

2 k 2�kq 1 
� Ł . Ž .Ý 72 i�1Ž q ; q. 2 k i�1 Ž1 � q .k�0 

4. THE q-BESSEL AND CAUCHY DISTRIBUTIONS 

Before further modifying Blomqvist’s absorption process, a pause is 
taken to extract two asymptotic distributions from Theorem 1. For the
j-absorption process, let Es denote the number of escapes. For Ž j, l. � 
Ž1, n., define B�Es � k4 to be the probability of having k escapes as 
n � �. From Ž .1 , 

2 nk n �1B�Es � k4 � lim P �Ab � n � k4 � lim q Žq ; q .1,  n ,  n n�k kn�� n�� q 

k 2 n k 2 
q q

i i� lim Ł Ž1 � q . � 2 ŁŽ1 � q . .
Ž q ; q. k n�� i�k�1 Ž q ; q. k i�1 
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Making use of the definition 

k 2 
qk 2 kJ0,  q Ž .z �	 Ý Ž�1. 2 Ž z�2. 

k�0 Ž q ; q. k 

given by Jackson 8, p. 25 for one of the q-analogs of the Bessel function 
0Ž .  Ž .  6 , it follows that J z  and also in view of 

q k 2	 2�Ž q ; q. k
B�Es � k4 � . 8Ž .  

J  Ž2' � 1 .0,  q 

Ž ' Implicit in Blomqvist � �  Ž .8Note that B�Es � 04 � 1�J0, q 2 � 1 .. 4 , was 
� �9 and used to prove Ž .rediscovered by Griffin 6 . The connection with J0 

perhaps justifies referring to B�Es � �4 as the q-Bessel distribution. 
For the second distribution, let 

2 k �k 2 kŽ�1. k q 
2 

z 
cos q z � Ý . 

k�0 Ž q ; q. 2 k 

Ž .Note that cos q 1 � q z  �  cos z as q � 1�. Other q-cosine functions have 
been considered by Jackson and Hahn 8, p. 23 . From Ž .7 , we have 

cos Ž' � 1 . � Ł 
1

.q	 2 i�1 
i� Ž1 � q1 . 

For the case Ž j, l. � Ž2, 2 n. of the j-absorption process, let C�Es � k4 be 
Ž .the asymptotic probability of having k escapes. By 1 , 

2 k 2�q k �Ž q ; q. 2 k
C�Es � k4 � lim P �Ab � n � k4 � .2,  2  n ,  n	  ' n��	 cos q Ž � 1 . 

Note that C�Es � 04 � 1�cos q Ž' � 1 .. In view of Ž .  7 , C�Es � �4. may be 
reasonably referred to as Cauchy’s distribution. A ‘‘modular’’ analog of 
C�Es � �4 is given in Theorem 5 of Section 8. 

Bernoulli schemes for the reciprocals of a q-analog of the number e and 
of a q-analog of the Riemann-zeta function are presented in �17, 18 . � 
Although not done so here, they may be easily reformulated in the context 
of the absorption ring considered in Section 7. 
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5. REBOUND ABSORPTION PROCESSES: MODELING 
q-SERIES 

In a relatively straightforward manner, absorption processes may be 
used to model many q-series and q-products. In this section and the next, 
processes are described for both sides of the identity 

q k 2 1
Ý Ł Ž .5 i�4 5 i�1Ž q ; q. 

� 
i�1 Ž1 � q . Ž1 � q . 9

k�0 k 

of Rogers and Ramanunjan 1, p. 104 . 
The rebound absorption process involves sequentially propelling 1-par­

ticles into a chamber, as in Section 1, with the following modifications. 
Upon reaching the rightmost cell, the ‘‘active’’ 1-particle PP immediately 
reverses direction. If PP returns to the leftmost empty cell and a tails is 
tossed, it is then removed. Furthermore, a new cell is adjoined to the right 
of the chamber in the event that PP ever occupies the rightmost cell during 
the course of its run. For instance, suppose two 1-particles are sent into an 
empty chamber of length 3. If the sequences TH and TTT are tossed, then 
the result is 

where one 1-particle escapes and the chamber length is increased to 4. 
Let Ts denote the number of tails required of a newly inserted 1-particle 

to reach the rightmost cell Žthat is, Ts is the number of empty cells minus 
. �1 . The asymptotic probability of Ts being equal to k, denoted by RR Ts � 

k4, may be computed using the theory of Markov chains. 
Propelling the nth 1-particle is to be viewed as the nth step in the chain. 

Considering the number of tails required to reach the rightmost cell as the 
state, let pk , m be the transition probability of moving from state k to state 
m in one step. Since pk , m � 0 whenever � k � m � � 1, the chain is a 

k 2 k�1birth-and-death process. Note that p � Ž1 � q . and p � q .k , k�1 k , k�1 
From the theory of Markov chains Že.g., see �5, p. 283�., it follows that 

p p ��� p �p p ��� p0, 1 1, 2 k�1,  k 1, 0 2, 1 k ,  k�1 

ÝRR�Ts � k4 �
 
k�0
 

p0,  1 p1, 2 ��� pk�1,  k�p1, 0 p2, 1 ��� pk , k�1 

q k 2�Ž q ; q. k� 
q k 2�Ž q ; q. k 

.
Ý k�0 

Ž k 2 5 i�1Ž . � 4 Ž . . Ž 5 i�4 .Ž .By 9 , RR Ts � k � q � q; q � 1 � q 1 � q .k i�1 
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A minor alteration of the rebound absorption process leads to a mea­
sure involving the identity 

kŽk�1.q 1
Ý � Ł ,5 i�3 5 i�2Ž q ; q. k i�1 Ž1 � q . Ž1 � q .k�0 

also of Rogers and Ramanujan 1, p. 104 : To wit, a direction change in the 
rightmost cell requires a tails Ži.e., rebound is not immediate as time is 

.allotted for ‘‘turning around’’ . The modified chain is still a birth-and-death 
� kprocess. The relevant transition probabilities are pk , k�1 � Ž1 � q . and 

� 2 k� �pk , k�1 � q 2. Letting SS Ts � k4 be the stationary probability of k tails 
being required to reach the rightmost cell, we see that 

kŽk�1.q �Ž q ; q. k 
SS �Ts � k4 � kŽk�1.q �Ž q ; q. kÝ k�0 

kŽk�1. 
5 i�3 5 i�2�

q
ŁŽ1 � q . Ž1 � q . .

Ž q ; q. k i�1 

The Rogers�Ramanujan identities have appeared before in a probabilistic 
context, namely, the hard hexagon model developed by Baxter � �2 . 

Similar absorption models may be given for the Heine�Euler distribu­
tions first considered by Benkherouf and Bather 3� � Žin connection with oil 
exploration. and further investigated by Kemp 12, 13 .� � 

6. ALTERNATELY SIZED PARTICLES: MODELING 
q-PRODUCTS 

Ž .The q-product in 9 arises from a natural variation of the j-absorption 
process: Particles of different sizes are to be alternately sent into the 
chamber. Beginning with a 2-particle, suppose that n 2-particles and n 
3-particles are alternately propelled into a chamber of length l as in 
Section 1. Let Rl, 2  n  �Ab � k4 denote the probability that k absorptions 
occur. For l � 5n, the probability of all 2 n particles being absorbed is 
clearly 

n 
5 i�4 5 i�1R �Ab � 2 n4 � R5n , 2  n�Es � 04 � ŁŽ1 � q . Ž1 � q . .5n , 2  n 
  

i�1
 

Thus lim R �Es � 04 is the reciprocal of the right-hand side of Ž .9 .n�� 5n, 2  n  
The distribution R �Ab � �4 may be recursively determined. We firstl, 2  n  

extend the definition of Rl, m �Ab � �4 to include odd m. Beginning with a 
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3-particle, suppose that n 3-particles and Žn � 1. 2-particles are alter­
nately propelled into the chamber. We let Rl, 2  n�1�Ab � k4 be the proba­
bility of having k absorptions. 

In regards to Rl, 2  n  �Ab � k4, the first 2-particle is either absorbed or 
escapes. Thus, 

l�1R �Ab � k4 � Ž1 � q . R �Ab � k � 14l , 2  n l�2,  2 n�1 

� ql�1Rl , 2  n�1�Ab � k4 

holds for l � 2 and n � 1. Similarly, 

R �Ab�k4 � Ž1 � ql�2 .Rl� �Ab�k � 14l , 2  n�1  3, 2 n�2 

� ql�2 Rl , 2  n�2  �Ab � k4 

is true for l � 3 and n � 1. The initial conditions are Rl, 0�Ab � 04 � 1, 
Rl, m �Ab � 04 � 0, R2, 2 n�1�Ab � 04 � q n�1, R2, 2 n�1�Ab � 14 � Ž1 � 
q n�1., and Rl, m �Ab � k4 � 0 whenever k � min� l�2, m4. 

7. THE ABSORPTION RING: MAHONIAN 
DISTRIBUTIONS AND RUSSIAN ROULETTE 

To further illustrate the probabilistic approach to q-identities, two 
processes from � � are recast here in the context of an absorption ring.16 
Generalizations of the two are sketched in Section 8. These processes are 
then used in Section 9 to prove and extend MacMahon’s 14 results on the 
inversion number and the comajor index. 

To set the stage, let n , n , . . . ,  n  denote a sequence of non-negative1 2 l 
integers. Put n � n1 � n2 � ��� � nl. The set of functions mapping 
�1, 2, . . . , n4 to �1, 2, . . . , l4 that take on the value i exactly ni times will be 

n1 n2 nl �denoted by MM �1 2  ��� l . Such a function f will be expressed as a list 
n1 n2of its range elements: f � f Ž . Ž .1 f 2 ��� f nŽ .. The descent set of f � MM �1 2  

��� l nl � k � Žn � 1 , such, denoted by Des f , consists of the indices k, 1  � . 
Ž . Ž  .that f k  �  f k  � 1 . The in�ersion number and comajor index of f are 

inv f � �� Ž k , m. : k � m , f kŽ . �  f mŽ . 4 � and comaj f � Ý Ž n � k 
k�Des f 

2 3  �� � 4For example, the function f � 2 2 1 2 1  � MM  1 2 has Des f � 2, 4 , inv 
f � 5, and comaj f � 4. Also needed is the q-multinomial coefficent: 

Ž q ; q. nn 
n n  ��� n1 2  l  q 

�
Ž q ; q. n Ž q ; q. n ��� Ž q ; q. n 

. 
1 2 l 
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An absorption ring of type n � Žn , n , . . . ,  n  . is constructed by first1 2 l 
stretching a chamber having l cells, consecutively numbered from 1 to l, 
into a ring so that the 1st and lth cells are joined at their outer edges
Žmaking escape impossible .. Cell i is then partitioned into ni subcells, 
thereby expanding its absorption capacity to ni 1-particles. 

The in�ersion number process of type n � Žn , n , . . . ,  n  . consists of1 2 l 
sequentially propelling n � Žn � n � ��� �n . 1-particles from the first1 2 l 
empty subcell. For each 1-particle, a coin with probability q � 1 of landing 
tails up is tossed until heads occurs. The active 1-particle advances to the
next empty subcell each time tails occurs and comes to rest Žis absorbed. 
when heads appears. For expedience, the Bernoulli sequences of the n 
1-particles will be strung together into a single sequence. As a partial 
illustration, suppose that the two 1-particles are accordingly propelled into
an absorption ring of type n � Ž3, 1, 2 .. If the string TTTHTTTTTTH 
occurs, then the result is 

The outcome of the inversion number process of type n � Žn , n , . . . ,  n  .1 2 l 
n1 n2 nl �may be partially encoded by a function f � MM �1 2  ��� l ; just set f iŽ .  

equal to the number of the cell Žcontaining the subcell. in which the ith 
� Ž .1-particle comes to rest. For instance, if l � 3 and n � 2, 1, 2 , then the 

function associated with the sequence HTTHTHTTHH is f � 1 3 2 1 3.  
Let mbs f denote the Bernoulli sequence of minimal length that 

generates f. In general, inv f is equal to the number of tails occurring in 
mbs f. The following result was established in 16 . As the proof given 
therein contains a minor flaw, a corrected version is inlcuded below. For 

Ž� Ž .. Ž .permutations n � 1, 1, . . . , 1 , 10 was first obtained by Rawlings and 
Treadway 20 . 
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THEOREM 3. For the in�ersion number process of type n � 
Žn , n , . . . ,  n  ., let F iŽ . denote the number of the cell in which the ith1 2 l 

n1 n2 nl �1-particle is absorbed. For 0 � q � 1, the probability of f � MM �1 2  ��� l 
occurring is 

�1 
inv f n

II�� F � f 4 � q . 10Ž .n  n n  . . .  n1 2 l q 

n1 n2 nl �Proof. Clearly, 10 is true forŽ .  l � 1. For l � 1 and f � MM �1 2  ��� l , 
the first heads to appear in a Bernoulli sequence that generates f occurs 
either Ž .i after the nth toss or Žii. on or before the nth toss. In case Ž .i , the 
process may be viewed as being restarted on the Žn � 1 st toss. In case. Žii ,. 
if � denotes the toss on which the first heads occurs, then 

n � n � ��� �n � � � n � n � ��� �n . 111 2 f Ž1.�1 1 2 f Ž1. Ž .  

Let g � f Ž . Ž .2 f 3 ��� f nŽ Ž .. and say that f 1 � i. We then have 
n ��1II�� F � f 4 � q II�� F � f 4 � Ý q Ž1 � q. II� � F � g 4 , Ž .12n n n * 

� Ž .where n* � n1, . . . ,  ni � 1,  . . . ,  nl and the sum is over all � satisfying
Ž .11 . Since mbs f � TT . . . TH mbs g, where the sequence immediately 
preceding mbs g contains Žn1 � n2 � ��� �ni�1. tails, it is clear that 

inv f � the number of tails in mbs f � n � n2 � ��� �n � inv g .1 i�1 

Theorem 3 then follows from Ž . by induction.12 

The second process considered in this section, referred to as the comajor 
index process of type n � Žn1, n2 , . . . ,  nl ., proceeds as does the inversion 
number process with one exception: For 2 � i � n, the ith 1-particle is 
inserted into the first empty subcell measured from the beginning of the
cell in which the Ž . 10i � 1 st 1-particle has been absorbed. The proof of Ž . 
may be modified to establish the first half of 

THEOREM 4. For the comajor index process of type n � Žn , n , . . . ,  n  .,1 2 l 
let F iŽ . denote the number of the cell in which the ith 1-particle is absorbed. 

n1 n2For 0 � q � 1, the probability of f � MM �1 2  ��� l n l � occurring is 
�1 

comaj f n
CC�n � F � f 4 � q . 13Ž .n n  . . .  n1 2 l q 

Moreo�er, if des f denotes the number of descents in f , then the probability 
generating function of des relati�e to the measure in Ž .13 is 

�1 l k � nin kCC� z z ; q. z . 14Ž .  Ž  Ž .Ý Łn  � n�1 n n  ��� n n1 2 l iq i�1 qk�0 



� �
� �

Ž .A key point for proving 13 and for Section 9 is that comaj f is equal to 
the number of tails in the shortest Bernoulli sequence that generates f 
relative to the comajor index process. Formula Ž . follows from MacMa­14 
hon’s �14, Vol. 2, p. 211� solution to the q-Simon Newcomb problem. For 

Ž .permutations, 13 was first deduced in other terms by Moritz and Williams 
15 ; the connection with the comajor index was made by Rawlings and 

Treadway 20 . 
� Ž .As the comajor index process for n � 1, 1, . . . , 1 is clearly equivalent to

a game of Russian roulette with n participants Ževen assuming the winner 
.does not take another turn after the runner-up’s death , some macabre 

1 1  1  �information may be extracted from Theorem 4. Let Sn � MM �1 2  . . .  n  Ži.e., 
�1, 2, . . . , n4 . For � Ž . Ž . is thethe set of permutations of . n � 1, 1, . . . , 1 , 13 

� � � Ž1 � q.Ž1 �probability that a given ‘‘order of death’’ occurs; letting n 
2 Ž n�1 � comaj � � �q  � q  . ��� 1 � q � ��� �q ., we have CC� F � � 4 � q � n q! forn 

all � � Sn. Although computationally impractical for large n, the probabil­
ity of participant k winning at Russian roulette is therefore 

1 
comaj �Prob� k wins4 � q ,� � q  !  Ý �n 

Ž .  Ž .where the sum is over all � � Sn satisfying � n � k. From 14 , a 
measure of the courage needed to win may be computed. As des � is 
equal to the minimum number of times that the comajor index process 
must ‘‘wrap around the ring’’ in order to generate � , CC� 

� Ž .1 gives then 
minimum number of times the winner may expect ot pull the trigger. 
Incidentally, the undertaker’s waiting time is just the negative binomial
distribution of order Žn � 1 .. 

8. EXPERIMENTING WITH THE ABSORPTION RING 

The absorption ring provides the context for a range of experimentation. 
Some possibilities include sending in particles of different sizes, varying 
the initial placement of particles, and stipulating that each tails advances
the active particle by c � 1 cells Žwhich may be viewed as a variation on 

.the problem of Josephus . However, experimentation here will be limited 
to the introduction of 2-particles into an absorption ring. 

Some preliminaries are needed. Relative to a sequence i1 � i2 � ��� � 
i of integers, Ž i , i . and pairs of the form Ž i , i . are said to be ringk k 1 m m�1 
consecuti�e. A permutation � � � Ž . Ž .1 � 2 ��� � Ž .2 n � S2 n is said to be 
pairwise ring consecuti�e if, for 1 � i � k, the pair Ž Ž� 2 k � 1 ,. Ž� 2 k.. is 
ring consecutive relative to the sequence obtained by deleting 
�  Ž .  Ž .1 ,�  2  , . . . ,  �  Ž2 k � 2. from 1 � 2 � ��� � 2 n. The set of such permu­
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tations is denoted by PP RRCC . To illustrate, � � 2 3 8 1 7 4 5 6  � PP  RRCC  .2  n  8  
The pairwise in�ersion number of � � PP RRCC2 n, denoted by pinv � , is  
defined to be the number of pairs Žk, m. with 1 � k � n and 2 k � m � 2 n 
that satisfy the condition � Ž . Ž 4 � � m . Observe thatmax � 2 k � 1 ,�  2  k. Ž .  
pinv 2 3 8 1 7 4 5 6  � 9. 

Ž .As the first experiment Exp Y , let us consider sequentially propelling 
n 2-particles into a ring of 2 n cells consecutively numbered from 1 to 2 n. 
A first 2-particle PP is placed in cells 1 and 2, one dot per cell. A coin with 
probability of q � 1 of landing tails up is tossed until heads occurs. 
Particle PP advances a cell each time tails occurs and comes to rest when 
heads appears. Subsequently, the remaining Žn � 1. 2-particles are pro­
pelled around the ring as if any occupied cells had been removed. 

Each outcome of Exp Y corresponds in a natural way to a permutation
� � PP RRCC Ž . Ž .2 n: For 1 � i � n, let � 2 i � 1 and � 2 i , respectively, be the 
cell numbers where the trailing and leading dots of the ith 2-particle come 
to rest. For instance, if the ring has 8 cells and the sequence HTTTT­
THTHH is tossed, then � � 1 2 8 3 5 6 4 7.  By  observing that pinv � is 
equal to the number of tails in the shortest Bernoulli sequence generating

Ž .�  , a minor adaptation of the proof of 10 leads to the following modular 
analog of Cauchy’s distribution. 

THEOREM 5. Ž . and � 2 i , respecti�ely, denoteFor Exp Y, let � 2 i � 1 Ž . 
the cell number in which the trailing and leading dots of the ith 2-particle come 
to rest. For 0 � q � 1, the probability of � � PP RRCC2 n occurring is 

pinv � 

Y2 n�� � � 4 � 
q

� � � �4 � �2 n q2 q q ��� 

where, for a positi�e integer i, � �i q � 1 � q � ��� � qi�1. 

As a second experiment ŽExp Z., let us repeat Exp Y with one 
modification: The ith 2-particle for 2 � i � n is to be inserted in the first 

Ž .two empty cells in front relative to the orientation of motion of where the
Ž .i � 1 st 2-particle has been absorbed. As comaj � equals the number of 
tails in the shortest Bernoulli sequence generating � , the proof of the 
following is routine. 

THEOREM 6. For Exp z, let �Ž2 i � 1. and � 2 i , respecti�Ž . ely denote the 
cell numbers in which the trailing and leading dots of the ith 2-particle come to 
rest. For 0 � q � 1, the probability of a gi�en � � PP RRCC2 n occurring is 

comaj �q
Z �� � � 4 � .2 n � � � �4 � �2 n q2 q q ��� 



� � 

� � 

� �

� �  

� �

9. MORE EXAMPLES OF THE PROBABILISTIC METHOD 

As the measures IIn �F � �4 and CCn �F � �4 of Section 7 trivially satisfy 
Ý II �F � f 4 � 1 � Ý CC �F � f 4, Theorems 3 and 4 imply the advertisedf n f n 
results of MacMahon 14 ; namely, 

ninv f comaj fÝ q � � Ý q .n n  ��� n1 2  ln n n q n n nf� � 1 2 ��� l l �MM 1 2  f� � 1 2 ��� l l �MM 1 2  

� Ž .In the permutation case n � 1, 1, . . . , 1 , a bijection � :Sn � Sn satisfying 

inv � � comaj � �  for all � � SnŽ .  
Ž .may be easily extracted from the processes of Section 7. Just define � �  

to be the result of Ž .i first encoding � � Sn as its Bernoulli sequence of 
minimal length mbs � under the rules of the inversion number process 
and Ž . then decoding mbs � according to the comajor index process. Forii 
instance, 

� � 4 3 1 5 2  � S5 � TTTHTTHHTHH� 4 2 3 1 5  � � �  � S5 .Ž .  
As may be verified, inv 4 3 1 5 2 � 6 � comaj 4 2 3 1 5. Foata 7 gave the 

� Ž .first such bijection for general n � n1,n2 , . . . ,  nl . 
Analogous information may be similarly obtained from the distributions 

of Section 8. In view of Theorems 5 and 6, we see that 
pinv � comaj �Ý � � � �4 ��� � � � Ý q .q � 2 q q 2 n q 

��PP RRCC ��PP RRCC2 n 2 n 

Also, for � � PP RRCC2 n with minimal Bernoulli sequence BB relative to Exp
Ž .Y, let � � be the permutation in PP RRCC2 n having BB as its minimal 

sequence relative to Exp Z. The map �: PP RRCC2 n � PP RRCC2 n is a bijection 
satisfying 

pinv � � comaj � � 2 n .Ž .  for all � � PP RRCC 

As an example, 

� � 3 4 2 5 8 1 6 7  �  TTHTHTTTHH � 3 4 6 7 5 8 1 2  � � �Ž .  
and pinv 3 4 2 5 8 1 6 7 � 6 � comaj 3 4 6 7 5 8 1 2. Further consideration 
of statistics on ring consecutive permutations is given in 19 . 
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