
Modeling an Algebraic Stepper 

John Clements, Matthew Flatt�, and Matthias Felleisen�� 

Department of Computer Science
 
Rice University
 
6100 Main St.
 

Houston, TX 77005-1892
 

Abstract. Programmers rely on the correctness of the tools in their 
programming environments. In the past, semanticists have studied the 
correctness of compilers and compiler analyses, which are the most im­
portant tools. In this paper, we make the case that other tools, such as 
debuggers and steppers, deserve semantic models, too, and that using 
these models can help in developing these tools. 

Our concrete starting point is the algebraic stepper in DrScheme, our 
Scheme programming environment. The algebraic stepper explains a 
Scheme computation in terms of an algebraic rewriting of the program 
text. A program is rewritten until it is in a canonical form (if it has one). 
The canonical form is the final result. 

The stepper operates within the existing evaluator, by placing break­
points and by reconstructing source expressions from source information 
placed on the stack. This approach raises two questions. First, do the 
run-time breakpoints correspond to the steps of the reduction seman­
tics? Second, does the debugging mechanism insert enough information 
to reconstruct source expressions? 

To answer these questions, we develop a high-level semantic model of the 
extended compiler and run-time machinery. Rather than modeling the 
evaluation as a low-level machine, we model the relevant low-level fea­
tures of the stepper’s implementation in a high-level reduction semantics. 
We expect the approach to apply to other semantics-based tools. 

1 The Correctness of Programming Environment Tools 

Programming environments provide many tools that process programs semanti­
cally. The most common ones are compilers, program analysis tools, debuggers, 
and profilers. Our DrScheme programming environment [9,8] also provides an 
algebraic stepper for Scheme. It explains a program’s execution as a sequence of 
reduction steps based on the ordinary laws of algebra for the functional core [2, 
�	 Current Address: School of Computing, 50 S. Central Campus Dr., Rm. 3190, Uni­

versity of Utah, SLC, UT 84112-9205 
��	 Work partially supported by National Science Foundation grants CCR-9619756, 

CDA-9713032, and CCR-9708957, and a state of Texas ATP grant. 



21] and more general algebraic laws for the rest of the language [6]. An alge­
braic stepper is particularly helpful for teaching; selective uses can also provide 
excellent information for complex debugging situations. 

Traditionally researchers have used semantic models to verify and to develop 
compilation processes, analyses, and compiler optimizations. Other semantics-
based programming environment tools, especially debuggers, profilers, or step­
pers, have received much less attention. Based on our development of DrScheme, 
however, we believe that these tools deserve the same attention as compilers or 
analyses. For example, a debugging compiler and run-time environment should 
have the same extensional semantics as the standard compiler and run-time 
system. Otherwise a programmer cannot hope to find bugs with these tools. 

The implementation of an algebraic stepper as part of the compiler and run­
time environment is even more complex than that of a debugger. A stepper must 
be able to display all atomic reduction steps as rewriting actions on program text. 
More specifically, an embedded stepper must be guaranteed 

1. to stop for every reduction step in the algebraic semantics; and 
2. to have enough data to reconstruct the execution state in textual form. 

To prove that an algebraic stepper has these properties, we must model it at a 
reasonably high level so that the proof details do not become overwhelming. 

In this paper, we present a semantic model of our stepper’s basic operations 
at the level of a reduction semantics. Then we show in two stages that the step­
per satisfies the two criteria. More precisely, in the following section we briefly 
demonstrate our stepper. The third section introduces the reduction model of the 
stepper’s run-time infrastructure and presents the elaboration theorem, which 
proves that the stepper infrastructure can keep track of the necessary informa­
tion. The fourth section presents the theory behind the algebraic stepper and 
the stepper theorem, which proves that the inserted breakpoints stop execution 
once per reduction step in the source language. Together, the two theorems prove 
that our stepper is correct modulo elaboration into a low-level implementation. 
The paper concludes with a brief discussion of related and future work. 

2 An Algebraic Stepper for Scheme 

Most functional language programmers are familiar with the characterization of 
an evaluation as a series of reduction steps. As a toy example, consider the first 
few steps in the evaluation of a simple factorial function in Scheme: 

(fact 3) 

= (if (= 3 1) 1 (� (fact (− 3 1)) 3)) 

= (if false 1 (� (fact (− 3 1)) 3)) 

= (� (fact (− 3 1)  ) 3)  

· · ·  



An arithmetic reduction A procedure application
 

Fig. 1. The stepper in action
 

Each step represents the entire program. The boxed subexpression is the stan­
dard redex. The sequence illustrates the reduction of function applications (�v), 
primitive applications (�v), and if expressions. 

DrScheme implements a more sophisticated version of the same idea. The two 
screen dumps of fig. 1 show the visual layout of the stepper window. The window 
is separated into three parts. The top shows evaluated forms. Each expression or 
definition moves to the upper pane when it has been reduced to a canonical form. 
The second pane shows the redex and the contractum of the current reduction 
step. The redex is highlighted in green, while the contractum—the result of the 
reduction—is highlighted in purple. The fourth pane is reserved for expressions 
that are yet to be evaluated; it is needed to deal with lexical scope and effects. 

The two screen dumps of fig. 1 illustrate the reduction of an arithmetic 
expression and a procedure call. The call to the procedure is replaced by the 
body of the procedure, with the argument values substituted for the formal 
parameters. Other reduction steps are modeled in a similar manner. Those of the 
imperative part of Scheme are based on Felleisen and Hieb’s work on a reduction 
semantics for Scheme [6]; they require no changes to the infrastructure itself. For 
that reason, we ignore the imperative parts of Scheme in this paper and focus 
on the functional core. 

3 Marking Continuations 

The implementation of our stepper requires the extension of the existing com­
piler and its run-time machinery. The compiler must be enriched so that it emits 
instructions that maintain connections between the machine state and the origi­
nal program text. The run-time system includes code for decoding this additional 
information into textual form. 

To model this situation, we can either design a semantics that reflects the 
details of a low-level machine, or we can enrich an algebraic reduction framework 



with constructs that reflect how the compiler and the run-time system keep track 
of the state of the evaluation. We choose the latter strategy for two reasons. 

1. The reduction model is smaller and easier to manage than a machine model 
that contains explicit environments, stacks, heaps, etc. The research com­
munity understands how compilers manage associations between variables 
and values. Modeling this particular aspect would only pollute the theorems 
and proofs, without making any contribution. 

2. Furthermore, it is possible to derive all kinds of low-level machines from a 
high-level semantics [5,13]. These derivations work for our extended frame­
work, which means the proof carries over to several implementations of the 
low-level mechanism. 

The goal of this section is to introduce the source-level constructs that model 
the necessary continuation-based information management and to show that 
they can keep track of the necessary information. The model is extended in the 
next section to a model of a stepper for the core of a functional language. 

Section 3.1 presents continuation marks, the central idea of our model. Sec­
tion 3.2 formalizes this description as an extension of the functional reduction 
semantics of Scheme. Section 3.3 introduces an elaboration function that inserts 
these forms into programs and states a theorem concerning the equivalence of a 
program, its elaborated form, and the annotations in the reduction semantics. 

3.1 Introduction to Continuation Marks 

It is natural to regard a program’s continuation as a series of frames. In this 
context, a continuation mark is a distinct frame that contains a single value. 

Continuation-mark frames are transparent to the evaluation. When control 
returns to such a frame, the mark frame is removed. When a program adds a 
mark to a continuation that is already marked (that is, when two marks ap­
pear in succession), the new mark replaces the old one. This provision preserves 
tail-optimizations for all derived implementations. Not all machines are tail-
optimizing, e.g., the original SECD machine [17], but due to this provision our 
framework works for both classes of machines. 

In addition to the usual constructs of a functional language, our model con­
tains two new continuation operations: 

(with-continuation-mark mark-expr expr) : mark-expr and expr are ar­
bitrary expressions. The first evaluates to a mark-value, which is then placed 
in a marked frame on top of the continuation. If the current top frame is al­
ready marked, the new frame replaces it. Finally, expr is evaluated. Its value 
becomes the result of the entire with-continuation-mark expression. 

(current-continuation-marks) : The result of this expression is the list of values 
in the mark frames of the current continuation. 

The two programs in fig. 2 illustrate how an elaborator may instrument a 
factorial function with these constructs.1 Both definitions implement a factorial 
1	 For space reasons, with-continuation-mark and current-continuation-marks are ab­

breviated as w-c-m and c-c-m from now on. 



Fig. 2. The relationship between continuation-marks and tail-recursion 

function that marks its continuation at the recursive call site and reports the 
continuation-mark list before returning. The one in the left column is properly 
recursive, the one on the right is tail-recursive. The boxed texts are the outputs 
that applications of their respective functions produce. For the properly recursive 
program on the left, the box shows that the continuation contains four mark 
frames. For the tail-recursive variant, only one continuation mark remains; the 
others have been overwritten during the evaluation.2 

3.2 Breakpoints and Continuation Marks 

To formulate the semantics of our new language constructs and to illustrate their 
use in the implementation of a stepper, we present a small model and study its 
properties. The model consists of a source language, a target language, and a 
mapping from the former to the latter. 

The source and target language share a high-level core syntax, based on 
the τ-calculus. The source represents the surface syntax, while the target is a 
representation of the intermediate compiler language. The source language of this 
section supports a primitive inspection facility in the form of a (breakpoint) 
expression. The target language has instead a continuation mark mechanism. 
2	 This elision of continuation marks is the principal difference between our device and 

that of Moreau’s dynamic bindings [19]. If we were to use dynamic bindings to pre­
serve runtime information, the resulting programs would lose tail-call optimizations, 
which are critical in a functional world. 



Fig. 3. Grammar and Reduction rules for the source language 

The translation from the source to the target demonstrates how the continuation 
mark mechanism can explain the desired breakpoint mechanism. 

The syntax and semantics of the source language are shown in fig. 3. The 
set of program expressions is the closed subset of M . The primitives are the 
set P . The set of values is described by V . The semantics of the language is 
defined using a rewriting semantics [6].3 E denotes the set of evaluation contexts. 
Briefly, a program is reduced by separating it into an evaluation context and an 

3	 Following Barendregt [2], we assume syntactic �-equivalence to sidestep the problem 
of capture in substitution. We further use this equivalence to guarantee that no two 
lexically bound identifiers share a name. 



Fig. 4. Extension of the source language M to the target language Mt 

instruction—the set of instructions is defined implicitly by the left-hand-sides of 
the reductions—then applying one of the reduction rules. This is repeated until 
the process halts with a value or an error. 

To model output, our reduction semantics uses a Labeled Transition Sys­
tem [18], where L denotes the set of labels. L includes the evaluation contexts 
along with � , which denotes the transition without output. The only expres­
sion that generates output is the (breakpoint) expression. It displays the cur­
rent evaluation context. Since the instruction at the breakpoint must in fact be 
(breakpoint), this is equivalent to displaying the current program expression. 
The expression reduces to 13, an arbitrarily chosen value. When we write �� 
with no superscript, it indicates not that there is no output, but rather that the 
output is not pertinent. 

The relation �� is a function. That is, an expression reduces to at most one 
other expression. This follows from the chain of observations that: 

1. the set of values and the set of instructions are disjoint, 
2. the set of values and the set of reducible expressions are therefore disjoint, 



� 

�
 
� 

�

3. the instructions may not be decomposed except into the empty context and 
the instruction itself, and therefore that 

4. an expression has at most one decomposition. 

Multi-step evaluation ��� is defined as the transitive, reflexive closure of the 
Orelation ��. That is, we say that M0 ��� Mn if there exist M0, . . . , Mn such that 

liMi ��� Mi+1 and O � L� = l0l1 . . . ln−1. 
The evaluation function eval(M) is defined in the standard way: 

V if M ���V 
eval(M) =  error if M ��� error 

For a reduction sequence S = (M0 �� M1 �� · · · �� Mn), we define trace(S) to  
be the sequence of non-empty outputs: 

⎧ () if S = (M)
 
trace(S) =  trace(M1 �� · · · �� Mn) if S = (M0 �� M1 �� · · · �� Mn) ⎧ � E(E .  trace(M1 �� · · · �� Mn)) if S = (M0 �� M1 �� · · · �� Mn) 

The target language of our model is similar to the source language, except 
that it contains w-c-m and c-c-m, and an output instruction that simply 
displays a given value. The grammar and reduction rules for this language are 
an adaptation of that of the source language. They appear in fig. 4. 

The evaluation of the target language is designed to concatenate neighboring 
w-c-m’s, which is critical for the preservation of tail-call optimizations in the 
source semantics. Frame overwriting is enforced by defining the set of evaluation 
contexts to prohibit immediately nested occurrences of w-c-m-expressions. In 
particular, the set Et may include any kind of continuation, but its w-c-m 
variant Ft requires a subexpression that is not a w-c-m expression. 

Note also the restriction on the w-c-m reductions that the enclosing context 
must not end with a w-c-m. This avoids two ambiguities: one that arises when 
two nested w-c-m expressions occur with a value inside the second, another that 
occurs when three or more w-c-m expressions appear in sequence. 

For the target language, the set of labels is the set of values plus � . The 
output instruction is the only instruction that generates output. 

The standard reduction relation ��t is a function. This follows from an argu­
ment similar to that for the source language. Multiple-step reduction is defined 
as in the source language by the transitive, reflexive closure of ��t, written as 
���t. The target language’s evaluation function evalt and trace function tracet 

are adapted mutatis mutandis from their source language counterparts, with �� 
and ��� replaced by ��t and ���t. 

Roughly speaking, (breakpoint) is a primitive breakpoint facility that dis­
plays the program’s execution state. The purpose of our model is to show that 
we can construct an elaboration function A from the source language to the 
target language that creates the same effect via a combination of continuation 
marks and a simple output expression. 



Fig. 5. The annotating function, A : M � Mt 

The elaboration function is defined in fig. 5.4 It assumes that the identifier 
F does not appear in the source program. It also relies upon a quoting function, 
Q, which translates source terms to values representing them, except for the 
unusual treatment of variable names. These are not quoted, so that substitution 
occurs even within marks. 

3.3 Properties of the Model 

The translation from the breakpoint language to the language with continua­
tion marks preserves the behavior of all programs. In particular, terminating 
programs in the source model are elaborated into terminating programs in the 
target language. Programs that fail to converge are elaborated into programs 
that also fail to converge. Finally, there is a function T , shown in fig. 6, map­
ping the values produced by output in the target program to the corresponding 
4	 The list constructor is used in the remainder of the paper as a syntactic abbreviation 

for a series of conses. 



Fig. 6. The Translation function, T : V � E 

evaluation contexts produced by (breakpoint) expressions. We extend T to 
sequences of values in a pointwise fashion. 

Theorem 1 (Elaboration Theorem). For any program in the source lan­
guage M , the following statements hold for the program M0 and the elaborated 
program N0 = A[[M ]]0: 

1. eval(M0) =  V iff evalt(N0) =  A[[V ]]. 
2. eval(M0) =  error iff evalt(N0) =  error. 
3. if	 S = (M0 �� · · · �� Mn), there exists St = (N0 ��t · · ·  ��t Nk) s.t. 

trace[[S]] = T (trace[[St]]) 

Proof Sketch: The relevant invariant of the elaboration is that every non-value 
is wrapped in exactly one w-c-m, and values are not wrapped at all. The w-c-m 
wrapping of an expression indicates what kind of expression it is, what stage of 
evaluation it is in, and all subexpressions and values needed to reconstruct the 
program expression. 

The proof of the theorem is basically a simulation argument upon the two 
program evaluations. It is complicated by the fact that one step in the source 
program corresponds to either one, two, or four steps in the elaborated program. 
The additional steps in the elaborated program are w-c-m reductions, which 
patch up the invariant that the source program and the elaborated program are 
related by A. 



  

4 Stepping with Continuation Marks 

The full stepper is built on top of the framework of section 3, and also comprises 
an elaborator and reconstructor. The elaborator transforms the user’s program 
into one containing breakpoints that correspond to the reduction steps of the 
source program. At runtime, the reconstructor translates the state of the evalu­
ation into an expression from the information in the continuation marks. 

In this section we develop the model of our stepper implementation and its 
correctness proof. Subsection 4.1 describes the elaborator and the reconstructor, 
and formalizes them. Subsection 4.2 presents the stepper theorem, which shows 
that the elaborator and reconstructor simulate algebraic reduction. 

4.1 Elaboration and Reconstruction 

The stepper’s elaborator extends the elaborator from section 3.2. Specifically, 
the full elaborator is the composition of a “front end” and a “back end.” In fact, 
the back end is simply the function A of section 3. 

The front end, B, translates a plain functional language into the source lan­
guage of section 3. More specifically, it accepts expressions in Ms, which is the 
language M without the (breakpoint) expression. Its purpose is to insert as 
many breakpoints as necessary so that the target program stops once for each 
reduction step according to the language’s semantics. Fig. 7 shows the definition 
of B. The translation is syntax-directed according to the expression language. 
Since some expressions have subexpressions in non-tail positions, B must elabo­
rate these expressions so that a breakpoint is inserted to stop the execution after 
the evaluation of the subexpressions and before the evaluation of the expression 
itself. We use I0, I1, and I2 as temporary variables that do not appear in the 
source program. In this and later figures we use the let* expression as syntactic 
shorthand.5 

The full elaborator is the composition of B and A. It takes terms in Ms to 
terms in Mt, via a detour through M . 

Like the elaborator, the reconstructor is based on the infrastructure of sec­
tion 3. The execution of the target program produces a stream of output values. 
The function T of fig. 6 maps these values back to evaluation contexts of the 
intermediate language, that is, the source language of section 3. Since the in­
struction filling these contexts must be breakpoint, the reconstruction function 
R is defined simply as the inversion of the annotation applied to the context filled 
with breakpoint. In other words, R[[E]] = B−1[[E[(breakpoint)]]]. 6 Like T , R 
is extended pointwise to sequences of expressions. 

The full reconstructor is the composition of R and T . It takes terms in Et 

to terms in Ms. 

5 The let* expression is roughly equivalent to the sequential let of ML. It is used as 
syntactic shorthand for a corresponding set of applications like those in fig. 5. 

6 Inspection of the definition of B demonstrates that it is invertible. 



Fig. 7. The stepper’s breakpoint-inserting function, B : Ms � M 

4.2 Properties of the Stepper 

To prove that the stepper works correctly, we must show that the elaborated 
program produces one piece of output per reduction step in the source semantics 
and that the output represents the entire program. 

Theorem 2 (Stepping Theorem). For an evaluation sequence S = (M0 �� 
· · ·  � ), there exists an evaluation sequence St = (A[[B[[M0]]]] ��t · · ·  �t Nk)� Mn �
such that S = R[[T [[trace[[St]]]]]]. 

Proof Sketch: By the Elaboration theorem, it suffices to prove that, given a 
sequence S as in the theorem statement, there exists Sa = (B[[M0]] �� · · · �� Nk� ) 
such that S = R[[tracet[[Sa]]]]. 

The proof again uses a simulation argument. Evaluation of the source pro­
gram for one step and evaluation of the target program for either one or two 
steps maintains the invariant that the source program and the target program 
are related by B. 

4.3 From Model to Implementation 

From an implementation perspective, the key idea in our theorems is that the 
stepper’s operation is independent of the intermediate state in the evaluation 
of the elaborated program. Instead, the elaborated program contains informa­
tion in the marked continuations that suffices to reconstruct the source program 



from the output. The correctness theorem holds for any evaluator that properly 
implements the continuation-mark framework. That is, the stepper’s correct op­
eration is entirely orthogonal to the implementation strategy and optimizations 
of the evaluator; as long as that evaluator correctly implements the language 
with continuation marks, the stepper will work properly. 

5 Related Work 

The idea of elaborating a program in order to observe its behavior is a familiar 
one. Early systems included BUGTRAN [7] and EXDAMS [1] for FORTRAN. 
More recent applications of this technique to higher-order languages include 
Tolmach’s smld [24], Kellomaki’s PSD [14], and several projects in the lazy FP 
community [12,20,22,23]. None of these, however, addressed the correctness of the 
tool — not only that the transformation preserves the meaning of the program, 
but also that the information divulged by the elaborated program matches the 
intended purpose. 

Indeed, work on modeling the action of programming environment tools is 
sparse. Bernstein and Stark [3] put forward the idea of specifying the semantics 
of a debugger. That is, they specify the actions of the debugger with respect to 
a low-level machine. We extend this work to show that the tool preserves the 
semantics and also performs the expected computation. 

Kishon, Hudak, and Consel [15] study a more general idea than Bernstein and 
Stark. They describe a theoretical framework for extending the semantics of a 
language to include execution monitors. Their work guarantees the preservation 
of the source language’s semantics. Our work extends this (albeit with a loss of 
generality) with a proof that the information output by the tool is sufficient to 
reconstruct a source expression. 

Bertot [4] describes a semantic framework for relating an intermediate state 
in a reduction sequence to the original program. Put differently, he describes 
the semantic foundation for source tracking. In contrast, we exploit a practical 
implementation of source tracking by Shriram Krishnamurthi [16] for our im­
plementation of the stepper. Bertot’s work does not verify a stepper but simply 
assumes that the language evaluator is a stepper. 

6 Conclusion 

Our paper presents a high-level model of an algebraic stepper for a functional 
language. Roughly speaking, the model extends a conventional reduction se­
mantics with a high-level form of weak continuation manipulations. The new 
constructs represent the essence of the stepper’s compiler and run-time actions. 
They allow programs to mark continuations with values and to observe the mark 
values, without any observable effect on the evaluation. Using the model, we can 
prove that the stepper adds enough information to the program so that it can 
stop for every reduction step. At each stop, furthermore, the source information 
in the continuation suffices for a translation of the execution state into source 
syntax—no matter how the back end represents code and continuations. 



Because the model is formulated at a high level of abstraction, the model and 
the proofs are robust. First, the model should accommodate programming envi­
ronment tools such as debuggers and profilers that need to associate information 
about the program with the continuation. After all, marking continuations and 
observing marks are two actions that are used in the run-time environment of 
monitoring tools; otherwise, these tools are simply aware of the representations 
of values, environments, heaps, and other run-time structures. Indeed, we are 
experimenting at this moment with an implementation of a conventional debug­
ger directly based on the continuation mark mechanism. Performance penalties 
for the debugger prototype run to a factor of about four. 

Second, the proof applies to all implementations of steppers. Using conven­
tional machine derivation techniques from the literature [5,6], one can translate 
the model to stack and heap machines, conventional machines (such as Landin’s 
SECD [17] machine) or tail-optimizing machines (such as Felleisen’s CE(S)K 
machine). In each case, minor modifications of the adequacy proofs for the trans­
formations show that the refined stepper is still correct. 

The model of this paper covers only the functional kernel of Scheme. Using 
the extended reduction semantics of Felleisen and Hieb [6], the model scales to 
full Scheme without much ado. We also believe that we could build an algebraic 
stepper for Java-like languages, using the model of Flatt et al. [11]. In contrast, 
it is an open question how to accommodate the GUI (callback) and concurrency 
facilities of our Scheme implementation [10], both in practice and in theory. We 
leave this topic for future research. 

References 

1. Balzer, R. M. EXDAMS — EXtendable Debugging And Monitoring System. In 
AFIPS 1969 Spring Joint Computer Conference, volume 34, pages 567–580. AFIPS 
Press, May 1969. 

2. Barendregt, H. P.	 The Lambda Calculus: Its Syntax and Semantics, volume 103 
of Studies in Logic and the Foundations of Mathematics. North-Holland, revised 
edition, 1984. 

3. Bernstein, K. L. and E. W. Stark. Operational semantics of a focusing debugger. In 
Eleventh Conference on the Mathematical Foundations of Programming Semantics, 
Volume 1 of Electronic Notes in Computer Science. Elsevier, March 1995. 

4. Bertot, Y. Occurrences in debugger specifications. In ACM SIGPLAN Conference 
on Programming Language Design and Implementation, 1991. 

5. Felleisen, M. Programming languages and their calculi. Unpublished Manuscript. 
http://www.cs.rice.edu/˜matthias/411/mono.ps. 

6. Felleisen, M. and R. Hieb. The revised report on the syntactic theories of sequential 
control and state. Theoretical Computer Science, 102:235–271, 1992. 

7. Ferguson, H. E. and E. Berner. Debugging systems at the source language level. 
Communications of the ACM, 6(8):430–432, August 1963. 

8. Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler 
and M. Felleisen. Drscheme: A programming environment for Scheme. Journal of 
Functional Programming, 2001. 



9. Findler,	 R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen. 
DrScheme: A pedagogic programming environment for Scheme. In International 
Symposium on Programming Languages: Implementations, Logics, and Programs, 
number 1292 in Lecture Notes in Computer Science, pages 369–388, 1997. 

10. Flatt, M. PLT MzScheme: Language manual. Technical Report TR97-280, Rice 
University, 1997. 

11. Flatt, M., S. Krishnamurthi and M. Felleisen.	 Classes and mixins. In ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 
171–183, January 1998. 

12. Hall, C. and J. O’Donnell. Debugging in a side effect free programming environ­
ment. In ACM SIGPLAN symposium on Language issues in programming envi­
ronments, 1985. 

13. Hannan, J. and D. Miller. From operational semantics to abstract machines. Jour­
nal of Mathematical Structures in Computer Science, 2(4):415–459, 1992. 

14. Kellomaki, P. Psd — a portable scheme debugger, Feburary 1995. 
15. Kishon, A., P. Hudak and C. Consel. Monitoring semantics: a formal framework for 

specifying, implementing and reasoning about execution monitors. In ACM SIG­
PLAN Conference on Programming Language Design and Implementation, pages 
338–352, June 1991. 

16. Krishnamurthi, S. PLT McMicMac: Elaborator manual. Technical Report 99-334, 
Rice University, Houston, TX, USA, 1999. 

17. Landin, P. J. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 
1964. 

18. Milner, R. Communication and Concurrency. Prentice Hall, 1989. 
19. Moreau, L.	 A syntactic theory of dynamic binding. Higher-Order and Symbolic 

Computation, 11(3):233–279, 1998. 
20. Naish, L. and T. Barbour. Towards a portable lazy functional declarative debugger. 

In 19th Australasian Computer Science Conference, 1996. 
21. Plotkin, G. D. Call-by-name, call-by-value and the �-calculus. Theoretical Com­

puter Science, pages 125–159, 1975. 
22. Sansom, P. and S. Peyton-Jones. Formally-based profiling for higher-order func­

tional languages. ACM Transactions on Programming Languages and Systems, 
19(1), January 1997. 

23. Sparud, J. and C. Runciman.	 Tracing lazy functional computations using redex 
trails. In Symposium on Programming Language Implementation and Logic Pro­
gramming, 1997. 

24. Tolmach, A.	 Debugging Standard ML. PhD thesis, Department of Computer 
Science, Princeton University, October 1992. 




