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A time-series autoregressive moving average (ARMA) approach was used to develop 

stochastic models of tree crown profiles for five conifer species of the Sierran mixed conifer 

habitat type. Models consisted of three components: (1) a polynomial trend; (2) an ARMA 

model; and (3) random error. A Bayesian information criterion was used to evaluate alterna- 

tive models. It was found that 70% of the crown profiles could be modeled using first-order 

ARMA [AR(l) or MA(l)] models, and that an additional 25% could be modeled using a 

white noise model [(AR(O)]. When the coefficients of the ARMA models were statistically 

significant, the models proved to be both visually and statistically an improvement over the 

polynomial trend (a Euclidean model). A binary classification system was used to determine 
if model type was related to tree or stand characteristics. Using this classification we found 

that it was possible to relate the appropriate model type to forest tree size and forest stand 

density with acceptable accuracy. 

1. INTRODUCTION 

Models of tree crowns are important in many aspects of ecology because the crown 

contains the photosynthetically active portion of the tree. The amount of carbohydrates 

produced by a tree depends primarily on the size of the crown or crown leaf surface area 

and the capacity of the roots to absorb water and mineral nutrients, synthesize certain 

hormones, and translocate these components to the foliage (Assmann 1970; Dong and 

Kramer 1986; and Kramer 1988). The geometric space occupied by the crown (crown 

volume) is also highly correlated with growth (Biging and Dobbertin 1992, 1995; and 

Mitchell 1975) mainly because correlation between crown volume and crown surface area 

is near unity. 
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Models of tree crowns are used in several fields of resource management. For instance, 

Biging and Dobbertin (1992, 1995) used models of tree crowns in their studies of tree 

competition in mixed conifers. Crown models have been used to predict wildlife habitat 

(Moeur 1981) and as a predictor of bird abundance in the lower canopy (Morrison, Timossi, 

and With 1987). Crown models have also been used in studies of within-tree and between- 

tree shading of solar radiation within a forest canopy (Kuuluvainen and Pukkula 1989). 

Crown models are also useful in forest stand visualization programs that allow for three- 

dimensional display and analysis of spatial forestry data (Burkhart 1992: McGaughey 1998; 

Nagel 2001; and Pretzsch 1993). 

The most commonly employed method for modeling tree crowns involves the esti- 

mation of simple Euclidean geometric shapes using ordinary least squares. For example, 

Biging and Wensel (1990) used a parabolic model for modeling volume and surface area of 

conifer species in California. Mitchell (1975) also used a parabolic model for crowns in his 

simulation of Douglas-fir trees. Conic models have been used to model young Douglas-fir 

trees (Mohren, Gerwen, and Spitters 1984), but in the same study a parabolic model was 

used for mature trees. Baldwin and Paterson (1997) used a flexible polynomial model for 

the exterior of the crown and a conic model for the inner defoliated area of the crown. 

Sometimes, the crown is modeled as a combination of geometric forms, such as a conic 

form for the top portion of the crown and a parabolic form for the lower portion of the 

crown (Pretzsch 1992). Hann (1999) used an adjustable model that could take on many 

polynomial forms to model Douglas-fir trees. Instead of using only a couple of Euclidean 

shapes, Mawson, Thomas, and DeGraff (1976) visually compared individual tree crowns to 

15 different Euclidean geometric shapes. Selecting the most appropriate crown form, field 

measurements of height-to-crown base and the radius at the height-to-crown base (radius 

for a circle, major and minor axis for an ellipse, or base and height of a triangle) were 

taken to compute crown volume. Instead of using ordinary least squares, Nepal, Somers, 

and Caudill (1996) used stochastic frontier models to fit variable crown forms. 

An alternative to modeling the exterior of tree crowns is to model the branching archi- 

tecture (Maguire, Moeur, and Bennett 1994; Colin and Houllier 1992), and branch length 

(Gavrikov and Karlin 1992; Ford, Avery, and Ford 1990; Ford and Ford 1990). In addition 

to models of branch angle and branch length, models of the horizontal distribution of fo- 

liage within branches have been developed (Kershaw and Maguire 1996). Using models of 

branch position and diameter with the models of branch length, it is possible to simulate 

entire tree crowns. Fractal geometry has also been used for describing tree crowns (Corona 

1991; Zeide and Gresham 1991; Zeide and Pfeifer 1991; Zeide 1998). A great deal of 

information is needed to parameterize models using either crown architecture or fractals. 

To capture the inherent variability of tree crown profiles Doruska and Mays (1998) 
used nonparametric regression, but with small datasets. Biging and Gill (1997) and Gill and 

Biging (2002) employed time-series models with four to seven times more data for individ- 
ual trees than was used in Doruska and Mays' study. Time-series models can be used with 

autocorrelated data to estimate equations that explain how the "current" observations are 
related to "past" observations and/or "past" disturbances. Other uses of time-series analy- 
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sis in forestry studies, include tree-ring chronologies (Monserud 1986), crown increment 
(Pretzsch 1992), or relating climate to tree growth (Jordan and Lockaby 1990). 

The models developed by Biging and Gill (1997) were based on a small number of 
individuals (31 trees), while the research reported here uses similar techniques on a signifi- 

cantly larger set of trees. Because of the size of the dataset used by Biging and Gill (1997), 
it was not possible to examine the relationship between ARMA model and tree characteris- 
tics, nor could it be inferred that these results were representative of mixed conifer forests 
in California. 

The primary objective of this research was to investigate if time-series models are an 
improvement over using simple polynomial trend models to characterize the crown profiles 
of the major conifer species throughout northern California's Sierran mixed conifer habitat 
type. Tremendous diversity in species composition and tree sizes as well as differences in 
forest densities characterize these forests. Thus, the secondary objective was to examine the 
data to find if the order of the ARMA model was related to observable tree characteristics 
or forest stand characteristics. After deciding the order of the ARMA model, the trend 
and ARMA coefficients are needed to simulate individual tree crown profiles. This final 
predictive exercise will be presented in another study. 

2. DATA 

The data for this research were collected from the Sierran mixed conifer habitat type. 
The Sierran mixed conifer habitat type consists of white fir (Abies concolor (Gord. & 

Glend.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa pine (Pinus pon- 
derosa (Laws.)), sugar pine (Pinus lambertina Doubl.), incense-cedar (Calocedrus decur- 
rens (Torr.)), and California black oak (Quercus kelloggii (Newb.)) For this research, pon- 
derosa pine, sugar pine, white fir, Douglas-fir, and incense cedar were sampled. 

In order to measure the radii of tree crowns, it was necessary to be able to see the 
entire profile of the crown from at least one perspective. The profile of a tree crown can 
be conceptualized by mentally tracing the outside edge of a tree crown (Figure 1, panel 
I a). It is actually a generalization of a vertical slice through the crown and passing through 
the center of the bole of the tree. If the stand has a closed canopy, it is hard to clearly 
distinguish the profile of individual trees because the branches from adjacent trees overlap 
one another. Because of the difficulties of measuring crown profiles in a closed canopy, it 
was not possible to follow a standard sampling protocol such as simple random sampling or 
systematic sampling. Trees were instead selected from among the target groups (described 
below) using purposive sampling in recently thinned (within three years) stands or in stands 
where clearcuts were done earlier in the same year, but small patches of trees were left. 
Within these harvested stands, trees were purposively sampled over a range of sizes and 
stand densities. These commercial forest stands were managed in a myriad of ways, with 
many of them being managed since stand conception (often planting). These commercial 
forests could be different from natural areas, but because of the difficulties in sampling tree 
crowns, it was not possible to sample in natural areas. 
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Figure 1. Panel la is a scanned photograph of the left half of a ponderosa pine tree crown. The tree is 50.8 cm 

in DBH, 26.8 m tall and has a crown length of 14.6 m. Panels lb and Ic are crown simulations using an MA(J) 

process. Panels Id and le depict crown simulations using an AR(J) process. Allfour simulations also include the 

quadratic trend line. The MA(J) plus trend is: crradt = -0.569 ut-I + Ut + (-3.61 + 0.75t + 0.02t2). The 

AR(J) model plus trend is: crradt = 0.574(residualt- i) + ut + (-3.61 + 0.75t + 0.02t2); where crradt = 

crown radius (m) is evaluated at height above ground (m) = t, u = white noise series with a2 = 0. 139 for the 

MA(J) simulation 0.1412 for the AR(J) model. 

A sampling design was established to ensure that a wide range of tree sizes was sampled 
from a range of stand densities. For collecting data of the Sierran mixed conifer habitat 
type two species groups, five before harvest density levels, and four height classes were 
considered. The two species groups were pines (sugar or Ponderosa) and firs (Douglas or 
white). The density levels consisted of the following basal area (ba) levels: 

1. ba < 29.8 m2/ha (130 ft2/ac); 
2. 29.8 m2/ha (130 ft2/ac) < ba < 36.7 m2/ha (160 ft2/ac); 
3. 36.7 m2/ha (160 ft2/ac) < ba < 45.9 m2/ha (200 ft2/ac); 
4. 45.9 m2/ha (200 ft2/ac) < ba < 57.4 m2/ha (250 ft2/ac); and 
5. ba > 57.4 m2/ha (250 ft2/ac). 

The height classes (htc) used were: 
1. htc< 18.3m(60ft); 
2. 18.3 m (60 ft) < htc < 27.4 m (90 ft); 
3. 27.4 m (90 ft) < htc < 36.6 (120 ft); and 
4. htc > 36.6 m(120ft). 

From each of the 40 species group-density-height combination levels, an attempt was made 
to collect information on four to six trees. Roughly equal numbers of each species within a 
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MA(1) simulation 0.1412 for the AR(1) model.
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crown radius (m) is evaluated at height above ground (m) = t. u = white noise series with (72 = 0.139 for the

MA(1) simulation 0.1412 for the AR(1) model.

A sampling design was established to ensure that a wide range of tree sizes was sampled

from a range of stand densities. For collecting data of the Sierran mixed conifer habitat
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considered. The two species groups were pines (sugar or Ponderosa) and firs (Douglas or

white). The density levels consisted of the following basal area (ba) levels:
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3. 36.7 m2/ha (160 ft2/ac) ~ ba ~ 45.9 m2/ha (200 ft2/ac);
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3. 27.4 m (90 ft) ~ htc ~ 36.6 (120 ft); and

4. htc ~ 36.6 m (120 ft).

From each of the 40 species group-density-height combination levels, an attempt was made

to collect information on four to six trees. Roughly equal numbers of each species within a



Table 1. Summary Statistics of Trees Used in This Study 

Height-to-crown stand basal area crown radius at 

DBH (cm) total height (m) base (hcb) (m) (m2/ha) hcb (m) 

no. of no. of crown 

species mean st. dev mean st. dev mean st. dev mean st. dev mean st. dev trees profile series 

Table la. Mean and standard deviations 

Douglas-fir 44.5 18.0 23.2 8.6 7.6 5.4 49.71 14.18 3.3 1.2 24 29 

incense cedar 44.4 18.5 19.1 6.3 5.7 3.4 51.05 16.11 2.9 0.9 30 35 

ponderosa pine 45.7 17.0 26.6 9.5 10.4 5.3 46.64 14.12 2.6 0.9 47 63 

sugar pine 47.7 22.4 26.3 10.0 11.9 6.1 65.37 13.77 3.0 1.2 35 43 

white fir 39.9 20.1 23.7 9.9 8.7 6.0 47.14 12.03 2.7 1.1 43 49 

all conifers 44.2 19.3 24.1 9.4 9.1 5.7 50.94 13.91 2.8 1.0 179 219 

Table lb. Minimums and maximums 

Height-to-crown stand basal area crown radius at 

DBH (cm) total height (m) base (hcb) (m) (m2/ha) hcb (m) 

species min max min max min max min max min max 

Douglas-fir 14.0 87.9 8.2 40.2 0 17.1 19.38 71.22 1.5 6.4 

incense cedar 16.5 92.5 6.4 33.8 0 12.8 25.79 74.89 1.5 6.4 

ponderosa pine 17.5 85.3 10.1 40.8 1.2 20.7 25.79 74.89 1.2 4.9 

sugar pine 14.0 90.7 8.8 48.5 0 24.7 33.66 71.22 1.2 5.2 

white fir 12.7 93.0 7.3 45.7 0 20.7 25.79 74.89 1.5 5.8 

all conifers 12.7 93.0 6.4 48.5 0 24.7 19.38 74.89 1.2 6.4 

species group were sampled. Incense-cedar was not part of the sampling design, but it was 

opportunistically sampled from each of the stands. Deviations from this design occurred at 

the lowest density level because stands were not often thinned at this density, and natural 

stands of this density were not open enough to adequately distinguish different tree crowns. 

Also, there were problems with photographing the taller trees. Since the camera must remain 

level, to photograph a tall tree, one must be rather far (up to 70-80 m) from the tree even 

using a 35-210 mm lens, and this often resulted in obstructions (usually other trees) between 

the observer and the tree of interest. A wide range of tree sizes and stand densities along 

with a somewhat even distribution of species was achieved (refer to Table 1). 

Every tree in the study was measured for diameter, height, average height-to-crown 

base, lowest live branch, and radius of the crown at the height-to-crown base in the direction 

for which the crown profile was measured and photographed. In addition, a density measure, 

forest stand basal area (cross sectional area (m2/ha) of tree diameters measured at 1.3 

m above ground) before harvest was measured (Gill 1997). Each sampled tree was also 

photographed using a 35 mm Nikon( FM camera with a 35-210 mm lens. To minimize 

systematic errors, the lens of the camera was kept within one to two degrees of perpendicular 

to the bole of the tree at DBH by placing a carpenter's level on the camera lens. 

Because these photographs were such an integral part of the data collection, the dis- 

tortion of the camera and lens were investigated. Following the same techniques used in 

collection of tree crown data photographs, objects of known size (a building) were pho- 

tographed and relative distortion was calculated. 
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opportunistically sampled from each of the stands. Deviations from this design occurred at

the lowest density level because stands were not often thinned at this density, and natural

stands of this density were not open enough to adequately distinguish different tree crowns.

Also, there were problems with photographing the taller trees. Since the camera must remain

level, to photograph a tall tree, one must be rather far (up to 70-80 m) from the tree even

using a 35-210 mm lens, and this often resulted in obstructions (usually other trees) between

the observer and the tree of interest. A wide range of tree sizes and stand densities along

with a somewhat even distribution of species was achieved (refer to Table 1).

Every tree in the study was measured for diameter, height, average height-to-crown

base, lowest live branch, and radius of the crown at the height-to-crown base in the direction

for which the crown profile was measured and photographed. In addition, a density measure,

forest stand basal area (cross sectional area (m2/ha) of tree diameters measured at 1.3

m above ground) before harvest was measured (Gill 1997). Each sampled tree was also

photographed using a 35 mm Nikon® FM camera with a 35-210 mm lens. To minimize

systematic errors, the lens of the camera was kept within one to two degrees of perpendicular

to the bole of the tree at DBH by placing a carpenter's level on the camera lens.

Because these photographs were such an integral part of the data collection, the dis­

tortion of the camera and lens were investigated. Following the same techniques used in
collection of tree crown data photographs, objects of known size (a building) were pho­

tographed and relative distortion was calculated.
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species group were sampled. Incense-cedar was not part of the sampling design, but it was

opportunistically sampled from each of the stands. Deviations from this design occurred at

the lowest density level because stands were not often thinned at this density, and natural

stands of this density were not open enough to adequately distinguish different tree crowns.

Also, there were problems with photographing the taller trees. Since the camera must remain

level, to photograph a tall tree, one must be rather far (up to 70-80 m) from the tree even

using a 35-210 mm lens, and this often resulted in obstructions (usually other trees) between

the observer and the tree of interest. A wide range of tree sizes and stand densities along

with a somewhat even distribution of species was achieved (refer to Table 1).

Every tree in the study was measured for diameter, height, average height-to-crown

base, lowest live branch, and radius of the crown at the height-to-crown base in the direction

for which the crown profile was measured and photographed. In addition, a density measure,

forest stand basal area (cross sectional area (m2/ha) of tree diameters measured at 1.3

m above ground) before harvest was measured (Gill 1997). Each sampled tree was also

photographed using a 35 mm Nikon® FM camera with a 35-210 mm lens. To minimize

systematic errors, the lens of the camera was kept within one to two degrees of perpendicular

to the bole of the tree at DBH by placing a carpenter's level on the camera lens.

Because these photographs were such an integral part of the data collection, the dis­

tortion of the camera and lens were investigated. Following the same techniques used in
collection of tree crown data photographs, objects of known size (a building) were pho­

tographed and relative distortion was calculated.



This method for testing the distortion of the camera actually tested the distortion as- 
sociated with the entire processing stage. The distortion reported here could be attributed 
to the lens or the camera, but also to the film processing to acquire the negatives and the 
scanning of the negatives. It was found that the overall average relative distortion of camera 
and lens was just over 3%, with a high of 14%. Distortion occurred in all regions of the 
photograph, but was slightly higher toward the edges. These errors are within acceptable 
limits and are probably smaller than would be found using other nondestructive methods. 
With the Criterion Laser? used by Biging and Gill (1997) there is a problem with wind 
induced movement of trees during the data collection process, which introduces error. Also, 
there is no way with their method to verify the measurements recorded in the field, whereas 
the photographs used in this project can be checked at a later time. For a more complete 
description of the camera distortion refer to Gill (1997). 

3. METHODS 

3.1 PROCESSING OF DATA 

The negatives of the photographs were scanned using a Nikon Coolscan? scanner. 
The scale of each photograph was determined from field measurements of tree height using 
the ratio of tree height measured on the image to actual tree height. The average scale of 
these scanned images was 0.025 m (0.082 feet) per picture element (pixel) with a standard 
deviation of 0.0125 m (0.041 feet) and a range from 0.0046 m (0.015 feet) per pixel to 
0.062 m (0.204 feet) per pixel. At least one profile of each of these scanned images was 
then screen digitized using ERDAS? (ERDAS 1991) to acquire x-y coordinates of locations 
along the crown profile that could then be converted to height-radius pairs. When taking 
these measurements, the exterior of the crown profile was measured. The crown profile had 
to satisfy a functional relationship such that crown radius was a function of height. This 
meant that a given height value could have no more than one crown radius measurement. At 
a particular height, if it was possible to measure the crown radius at more than one location 
because of the branching patterns, only the point furthest from the tree bole was measured 
(refer to points A and B in Figure 1, panel la). Any profiles that were digitized had to 
be clearly visible on the photograph. In most instances only one profile (either the left or 
right profile) was measured from photographs. However, in a small number of cases it was 
possible to clearly see both the left and right profiles of the crown, in which case both sides 
were measured and used in the analysis. When making these measurements the crown was 
measured from the center of and perpendicular to the bole of the tree to the exterior of the 
crown. 

When digitizing these tree crown profiles, it was sometimes difficult to clearly dis- 
tinguish the edge of the tree crown from shadows of other branches or other trees or to 
distinguish the tree crown being digitized from a crown behind the subject tree. We used 
digitial image contrast enhancement to maximize the contrast of trees on the scanned im- 
ages and we simultaneously viewed color photographs under magnification to assist us in 
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sociated with the entire processing stage. The distortion reported here could be attributed
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digitizing the selected tree profiles. In the photographing stage of data collection every effort 
was made to obtain photos in which a good contrast between a crown profile and the open 
sky could be obtained. 

Instead of having a function that changes over time, as in most time-series analysis, 
the radii of tree crowns were considered as functions of the height increment. Thus, height 
increment was analogous to the time variable in standard time-series analysis. 

The analysis of time-series data is facilitated by equidistant measurements. Following 
the techniques of Biging and Gill (1997) to achieve equidistant measurements, a natural 
cubic spline (Cheney and Kincaid 1985) was fit to the data and crown radii measurements 
were interpolated to exact 0.15 or 0.3 meters (one-half foot or one foot) intervals dependent 
on the length of the tree crown. In their study, Biging and Gill (1997) used 0.3 or 0.6 m (one 
or two foot) intervals. In this study we were able to interpolate to smaller increments than 
Biging and Gill (1997) because we could make finer measurements from the photographs 
than was possible using the Criterion laser. For trees with crown lengths less than 12.2 
m (40 feet), 0.15 m (one-half foot) intervals were used and for trees with crown lengths 
greater than 12.2 m (40 feet) 0.3 m (one-foot) intervals were used. For these series, the 
average number of digitized points and interpolated points were 121.2 (a = 31.2) and 
58.0 (a = 14.3), respectively. The average ratio (R) of digitized to interpolated points was 
2.13 (UR = 0.63) with a minimum of 0.88. If the data changed erratically, the cubic spline 
would sometimes not adjust quickly enough and would swing away from the data. When 
this situation was encountered, an adjustment was made to the spline function using linear 
interpolation. 

3.2 ARMA MODELS 

When analyzing time-series data, it is desirable to have a stationary series because 
much of the inference involved in the analysis requires stationarity. A covariance stationary 
series is one with a constant mean (no trend) and homogeneous variance. Plots of the data 
revealed that all series contained a trend, which would have to be modeled. When analyzing 
series that are not stationary, there are different approaches that may be applied. Two such 
approaches, discussed below, are Method 1: to first remove the trend and then fit ARMA 
models to the residuals, or Method 2: to simultaneously fit a regression model with ARMA 
errors. 

With the first approach one can use any suitable trend line, but typically the trend is a 
low order polynomial or trigonometric polynomial estimated with OLS (this is referred to 
as global least squares in time series literature). Other selections for trend models include a 
grafted polynomial model where each polynomial fits a subsection of the series or a moving 
average model (Fuller 1996). The estimates of the standard errors for the trend coefficients 
may be biased if the trend removal was done using OLS (Fuller 1996) and that is a drawback 
of this approach. However, with large sample sizes, the bias approaches zero. 

After the trend is removed, ARMA models can be fit to the model using the techniques 
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errors.

With the first approach one can use any suitable trend line, but typically the trend is a
low order polynomial or trigonometric polynomial estimated with OLS (this is referred to

as global least squares in time series literature). Other selections for trend models include a

grafted polynomial model where each polynomial fits a subsection of the series or a moving

average model (Fuller 1996). The estimates of the standard errors for the trend coefficients

may be biased if the trend removal was done using OLS (Fuller 1996) and that is a drawback

of this approach. However, with large sample sizes, the bias approaches zero.

After the trend is removed, ARMA models can be fit to the model using the techniques



of Box and Jenkins (1970). The form of an ARMA(p, q) is: 

Zt = OlZt-l + 02Zt-2 + ***+ OpZt-p + 6 + Ut - lUt-I- * -qUt-q, (3.1) 

where 

Zt = residuals from trend removal (t = 1, . . ., T); 

oi = parameters of the autoregressive factors (i = 1, . . ., p); 
Ok = parameters of the moving average factors (k = 1, . . ., q); 

a = constant; and 
ut = white noise (a sequence of identically and independently distributed random distur- 

bances with mean zero and variance a 2) (Nelson 1973). 

All the identification techniques, such as the autocorrelation function (ACF) and the 

partial autocorrelation function (PACF) can be applied to the residuals after removal of the 

trend. ARMA diagnostic techniques may also be applied to these models. The approach of 

first removing the trend is appropriate when one is primarily interested in identifying and 

estimating the appropriate ARMA model for the residuals around a trend (Fuller 1996) 

The second approach simultaneously fits a regression (trend line) with ARMA errors. 

Many statistical packages will fit a regression model with autoregressive errors (SAS, SPSS, 

S-Plus, and STATA). A subset of these statistical packages (SPSS, S-Plus, and STATA) will 

fit a regression model with ARMA errors by simply specifying the dependent variable, 

independent variables, and the order of the ARMA parameters. It is possible to determine 
the most appropriate ARMA model for either approach by using likelihood ratio tests or 

the Bayesian information criterion. 

We performed a test comparing Method 1 and 2 on a 10% subset of our data. Although 
there are theoretical benefits for simultaneously fitting the model, we found no practical 
differences in terms of the trend coefficients, the ARMA model coefficients and the standard 
errors of the ARMA coefficients. Thus, for this project we selected Method 1: fitting a simple 

polynomial trend with OLS and then modeling the resultant residuals using ARMA. We 

did this for the following reasons: (1) both methods produced similar results, (2) most 

researchers have only fit a trend model to tree crown profiles, so our interest was primarily 
in estimating the signal in the residuals around this line, and (3) we did not need to conduct 

hypothesis tests of the trend coefficients, so improved estimation of their variances was not 

a focus of this article. 

Simple polynomial trends which produced familiar crown profiles (conic, parabolic) 
were selected for detrending the series because most researchers stop their modeling efforts 
after fitting one of these models via OLS. Our modeling effort essentially started where 
most prior tree crown modeling efforts have stopped. Biging and Gill (1997) pointed out 

that, when using this approach, these models can be viewed as having three components: 
(1) a trend line; (2) an ARMA component; and (3) random error. By fitting the models 

following a two-step approach it was possible to examine each of these three components 

separately. 

Two standard tools, which aid in the identification of the appropriate ARMA model, the 

of Box and Jenkins (1970). The form of an ARMA(p, q) is:

where

Zt == residuals from trend removal (t == 1, ... ,T);

¢i == parameters of the autoregressive factors (i == 1, ,p);

ek == parameters of the moving average factors (k == 1, , q);

J == constant; and

Ut == white noise (a sequence of identically and independently distributed random distur­

bances with mean zero and variance (]"2) (Nelson 1973).

All the identification techniques, such as the autocorrelation function (ACF) and the

partial autocorrelation function (PACF) can be applied to the residuals after removal of the

trend. ARMA diagnostic techniques may also be applied to these models. The approach of

first removing the trend is appropriate when one is primarily interested in identifying and

estimating the appropriate ARMA model for the residuals around a trend (Fuller 1996)

The second approach simultaneously fits a regression (trend line) with ARMA errors.

Many statistical packages will fit a regression model with autoregressive errors (SAS, SPSS,

S-Plus, and STATA). A subset of these statistical packages (SPSS, S-Plus, and STATA) will

fit a regression model with ARMA errors by simply specifying the dependent variable,

independent variables, and the order of the ARMA parameters. It is possible to determine

the most appropriate ARMA model for either approach by using likelihood ratio tests or

the Bayesian information criterion.

We performed a test comparing Method 1 and 2 on a 10% subset of our data. Although

there are theoretical benefits for simultaneously fitting the model, we found no practical

differences in terms of the trend coefficients, the ARMA model coefficients and the standard

errors ofthe ARMA coefficients. Thus, for this project we selected Method 1: fitting a simple

polynomial trend with OLS and then modeling the resultant residuals using ARMA. We

did this for the following reasons: (1) both methods produced similar results, (2) most

researchers have only fit a trend model to tree crown profiles, so our interest was primarily

in estimating the signal in the residuals around this line, and (3) we did not need to conduct

hypothesis tests of the trend coefficients, so improved estimation of their variances was not

a focus of this article.

Simple polynomial trends which produced familiar crown profiles (conic, parabolic)

were selected for detrending the series because most researchers stop their modeling efforts

after fitting one of these models via OLS. Our modeling effort essentially started where

most prior tree crown modeling efforts have stopped. Biging and Gill (1997) pointed out

that, when using this approach, these models can be viewed as having three components:

(1) a trend line; (2) an ARMA component; and (3) random error. By fitting the models

following a two-step approach it was possible to examine each of these three components

separately.

Two standard tools, which aid in the identification of the appropriate ARMA model, the

of Box and Jenkins (1970). The form of an ARMA(p, q) is:

where

Zt == residuals from trend removal (t == 1, ... ,T);

¢i == parameters of the autoregressive factors (i == 1, ,p);

ek == parameters of the moving average factors (k == 1, , q);

J == constant; and

Ut == white noise (a sequence of identically and independently distributed random distur­

bances with mean zero and variance (]"2) (Nelson 1973).

All the identification techniques, such as the autocorrelation function (ACF) and the

partial autocorrelation function (PACF) can be applied to the residuals after removal of the

trend. ARMA diagnostic techniques may also be applied to these models. The approach of

first removing the trend is appropriate when one is primarily interested in identifying and

estimating the appropriate ARMA model for the residuals around a trend (Fuller 1996)

The second approach simultaneously fits a regression (trend line) with ARMA errors.

Many statistical packages will fit a regression model with autoregressive errors (SAS, SPSS,

S-Plus, and STATA). A subset of these statistical packages (SPSS, S-Plus, and STATA) will

fit a regression model with ARMA errors by simply specifying the dependent variable,

independent variables, and the order of the ARMA parameters. It is possible to determine

the most appropriate ARMA model for either approach by using likelihood ratio tests or

the Bayesian information criterion.

We performed a test comparing Method 1 and 2 on a 10% subset of our data. Although

there are theoretical benefits for simultaneously fitting the model, we found no practical

differences in terms of the trend coefficients, the ARMA model coefficients and the standard

errors ofthe ARMA coefficients. Thus, for this project we selected Method 1: fitting a simple

polynomial trend with OLS and then modeling the resultant residuals using ARMA. We

did this for the following reasons: (1) both methods produced similar results, (2) most

researchers have only fit a trend model to tree crown profiles, so our interest was primarily

in estimating the signal in the residuals around this line, and (3) we did not need to conduct

hypothesis tests of the trend coefficients, so improved estimation of their variances was not

a focus of this article.

Simple polynomial trends which produced familiar crown profiles (conic, parabolic)

were selected for detrending the series because most researchers stop their modeling efforts

after fitting one of these models via OLS. Our modeling effort essentially started where

most prior tree crown modeling efforts have stopped. Biging and Gill (1997) pointed out

that, when using this approach, these models can be viewed as having three components:

(1) a trend line; (2) an ARMA component; and (3) random error. By fitting the models

following a two-step approach it was possible to examine each of these three components

separately.

Two standard tools, which aid in the identification of the appropriate ARMA model, the



autocorrelation function (ACF) and the partial autocorrelation function (PACF) were plotted. 

After tentative models were selected by examining the ACF and the PACF, the model param- 

eters were estimated using conditional least squares estimation. In addition, since the ACF 

and the PACF do not often give a clear indication as to the appropriate model for the crown 

profiles series investigated, 15 models were estimated for each series (ARMA(p, q), with 

(p, q) C {(1,0), (2,0), (3,0 ), (0,1), (0,2), (0,3), (1, 1), (2,1), (1,2), (2,2), (3, 1), (1,3), 
(3,2), (2,3), (3,3)}). Note that an ARMA(p, O) is equivalent to an AR(p) and an 

ARMA(O, q) is equivalent to an MA(q). A more general criterion for model selection (not 

limited to the time series context) is found by minimizing Akaike's information criterion 

(AIC) (Akaike 1971, 1974), modified to penalize models with many parameters. This later 

adaptation is called the Bayesian modification of AIC, or BIC (Akaike 1978, 1979). The 

BIC, like other alternative selection criterion, assumes data normality and can lead to more 

than one minimum. As such, these criteria should be used as guides to model selection. The 

form of the BIC used in this study was (Chatfield 1989): 

BIC T*ln( (RS ?+(p+q+m+1)+(p+q+m)*ln(T), (3.2) 

where 

RSS = residual sum of squares for the model; 

T = number of data points (length of series); 

p = number of AR parameters in the model; 

q = number of MA parameters in the model; 

m = number of parameters in the trend model (quadratic); and 

ln = log base e. 

When using this criterion, the model with the smallest BIC is presumed to be the best model. 

But since the BIC is only a guide to model selection we specified that any model that was 

within 5% (value arbitrarily selected) of the smallest BIC was equally as viable a model as 

the one with the minimum BIC. 

3.3 CLASSIFICATION OF MODELS 

After trends were removed and ARMA models fit to each series, a classification scheme 

was used to determine if the type of ARMA model appropriate for a given tree was related 

to species, size of tree, or stand density. Before this could be done, we needed to identify 

one appropriate model for each tree based on the rankings of the BIC in conjunction with 

the ACF and PACF functions. The classes used in the classification and regression trees 

(CART) analysis included: AR(1), MA(1), AR(O), and "nonstationary." We did not include 

higher order models in this analysis because a large majority of the trees could be modeled 

using these low-order models, and because ultimately we desire to predict the trend and 

ARMA coefficients from tree and stand parameters. Clearly, it is desirable to minimize the 

total number of parameters for this venture. Series were identified as these models only if the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) were plotted.

After tentative models were selected by examining the ACF and the PACF, the model param­

eters were estimated using conditional least squares estimation. In addition, since the ACF

and the PACF do not often give a clear indication as to the appropriate model for the crown

profiles series investigated, 15 models were estimated for each series (ARMA(p, q), with

(p, q) E {( 1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1), (2, 1), (1, 2), (2, 2), (3, 1), (1, 3) ,
(3,2), (2,3), (3,3)}). Note that an ARMA(p,O) is equivalent to an AR(p) and an

ARMA(O, q) is equivalent to an MA(q). A more general criterion for model selection (not

limited to the time series context) is found by minimizing Akaike's information criterion

(AIC) (Akaike 1971, 1974), modified to penalize models with many parameters. This later

adaptation is called the Bayesian modification of AIC, or BIC (Akaike 1978, 1979). The

BIC, like other alternative selection criterion, assumes data normality and can lead to more

than one minimum. As such, these criteria should be used as guides to model selection. The

form of the BIC used in this study was (Chatfield 1989):

(
RSS)BIC==T*ln T +(p+q+m+l)+(p+q+m)*ln(T),

where

RSS == residual sum of squares for the model;

T == number of data points (length of series);

p == number of AR parameters in the model;

q == number of MA parameters in the model;

m == number of parameters in the trend model (quadratic); and

In == log base e.

(3.2)

When using this criterion, the model with the smallest BIC is presumed to be the best model.

But since the BIC is only a guide to model selection we specified that any model that was

within 5% (value arbitrarily selected) of the smallest BIC was equally as viable a model as

the one with the minimum BIC.

3.3 CLASSIFICATION OF MODELS

After trends were removed and ARMA models fit to each series, a classification scheme

was used to determine if the type of ARMA model appropriate for a given tree was related

to species, size of tree, or stand density. Before this could be done, we needed to identify

one appropriate model for each tree based on the rankings of the BIC in conjunction with

the ACF and PACF functions. The classes used in the classification and regression trees

(CART) analysis included: AR(I), MA(I), AR(O), and "nonstationary." We did not include

higher order models in this analysis because a large majority of the trees could be modeled

using these low-order models, and because ultimately we desire to predict the trend and

ARMA coefficients from tree and stand parameters. Clearly, it is desirable to minimize the

total number of parameters for this venture. Series were identified as these models only if the

autocorrelation function (ACF) and the partial autocorrelation function (PACF) were plotted.

After tentative models were selected by examining the ACF and the PACF, the model param­

eters were estimated using conditional least squares estimation. In addition, since the ACF

and the PACF do not often give a clear indication as to the appropriate model for the crown

profiles series investigated, 15 models were estimated for each series (ARMA(p, q), with

(p, q) E {( 1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1), (2, 1), (1, 2), (2, 2), (3, 1), (1, 3) ,
(3,2), (2,3), (3,3)}). Note that an ARMA(p,O) is equivalent to an AR(p) and an

ARMA(O, q) is equivalent to an MA(q). A more general criterion for model selection (not

limited to the time series context) is found by minimizing Akaike's information criterion

(AIC) (Akaike 1971, 1974), modified to penalize models with many parameters. This later

adaptation is called the Bayesian modification of AIC, or BIC (Akaike 1978, 1979). The

BIC, like other alternative selection criterion, assumes data normality and can lead to more

than one minimum. As such, these criteria should be used as guides to model selection. The

form of the BIC used in this study was (Chatfield 1989):

(
RSS)BIC==T*ln T +(p+q+m+l)+(p+q+m)*ln(T),

where

RSS == residual sum of squares for the model;

T == number of data points (length of series);

p == number of AR parameters in the model;

q == number of MA parameters in the model;

m == number of parameters in the trend model (quadratic); and

In == log base e.

(3.2)

When using this criterion, the model with the smallest BIC is presumed to be the best model.

But since the BIC is only a guide to model selection we specified that any model that was

within 5% (value arbitrarily selected) of the smallest BIC was equally as viable a model as

the one with the minimum BIC.

3.3 CLASSIFICATION OF MODELS

After trends were removed and ARMA models fit to each series, a classification scheme

was used to determine if the type of ARMA model appropriate for a given tree was related

to species, size of tree, or stand density. Before this could be done, we needed to identify

one appropriate model for each tree based on the rankings of the BIC in conjunction with

the ACF and PACF functions. The classes used in the classification and regression trees

(CART) analysis included: AR(I), MA(I), AR(O), and "nonstationary." We did not include

higher order models in this analysis because a large majority of the trees could be modeled

using these low-order models, and because ultimately we desire to predict the trend and

ARMA coefficients from tree and stand parameters. Clearly, it is desirable to minimize the

total number of parameters for this venture. Series were identified as these models only if the



BIC was within 5% of the smallest and the coefficients were significant. This categorizing 

was for trees in which the removal of the trend produced a stationary series. Stationarity was 

determined from visual examination of the residual series (after removal of the trend) and 

by testing the significance of the AR( 1) terms using the t statistic (note that an AR( 1) series 

is stationary if Io, 1 < 1). Series in which the removal of a trend did not produce a stationary 

series were identified as a "nonstationary" class. Models were ranked with MA(1) as the 

best followed by an AR(1) and then a AR(0) model. This ranking was selected because the 

MA(1) model essentially requires one less parameter than does the AR(1) model (i.e., the 

AR(1) model required the crown radius at the height-to-crown base, whereas the MA(1) 

model did not). The identification of time-series models for individual crown series was 

done using the following rules: 

1. a tree for which the BIC of the MA(1) model was within 5% of best was identified 

as an MA(1) model; 

2. a tree for which the BIC of both the AR(l) model and the MA(l) was within 5% of 

the best was also identified as an MA(1); 

3. a tree for which the BIC of the AR(l) model was within 5% but the BIC of the 

MA(l) model was not within 5% was identified as an AR(1); and 

4. all other trees were identified as an AR(0) model. 

After each series had been identified as an MA(1), AR(1), AR(O) model, or "nonsta- 

tionary," a classification scheme was developed based on tree and stand characteristics using 

classification and regression trees (CART). CART is a binary tree classification in which 

a classification is constructed by repeated splits of subsets of the data in two new subsets, 

beginning with the entire dataset (Breiman, Friedman, Olshen, and Stone 1984). CART 

was used instead of discriminant analysis because the assumptions of multivariate normal 

distributions and equal covariance matrices required for discriminant analysis could not be 

met with this dataset. CART was also selected because of the ease of including categorical 

variables such as species and because of the simplicity of interpretation. Since each split in 

CART is based on specific values of variables (e.g., diameter less than 40 cm), the results are 

easy to interpret. Large classification trees were grown with CART and were then pruned 

to achieve a more efficient classification tree. 

Because of the large expense and difficulty of collecting the base data, it was not possible 

in this project to collect an independent validation dataset. Instead, cross-validation was used 

to determine the level to which the classification trees should be pruned. Competing CART 

trees may be compared by examining the rate of misclassification and the reduction in 

misclassification with the inclusion of an additional split. 

4. RESULTS AND DISCUSSION 

4.1 ARMA MODELS 

The first step in the analysis was to detrend the series. For 95% of the trees in this 

study, removal of a quadratic trend was sufficient to produce a stationary series. Neither the 

removal of a quadratic or a cubic trend were sufficient for producing stationary series for 

BIC was within 5% of the smallest and the coefficients were significant. This categorizing

was for trees in which the removal of the trend produced a stationary series. Stationarity was

determined from visual examination of the residual series (after removal of the trend) and

by testing the significance of the AR( 1) terms using the t statistic (note that an AR( 1) series

is stationary if 11;11 < I). Series in which the removal of a trend did not produce a stationary

series were identified as a "nonstationary" class. Models were ranked with MA( I) as the

best followed by an AR(I) and then a AR(O) model. This ranking was selected because the

MA( I) model essentially requires one less parameter than does the AR( I) model (i.e., the

AR(I) model required the crown radius at the height-to-crown base, whereas the MA(I)

model did not). The identification of time-series models for individual crown series was

done using the following rules:

I. a tree for which the BIC of the MA( I) model was within 50/0 of best was identified

as an MA(I) model;

2. a tree for which the BIC of both the AR(I) model and the MA(I) was within 5% of

the best was also identified as an MA( I);

3. a tree for which the BIC of the AR(I) model was within 5% but the BIC of the

MA(I) model was not within 5% was identified as an AR(I); and

4. all other trees were identified as an AR(O) model.

After each series had been identified as an MA( I), AR( I), AR(O) model, or "nonsta­

tionary," a classification scheme was developed based on tree and stand characteristics using

classification and regression trees (CART). CART is a binary tree classification in which

a classification is constructed by repeated splits of subsets of the data in two new subsets,

beginning with the entire dataset (Breiman, Friedman, Olshen, and Stone 1984). CART

was used instead of discriminant analysis because the assumptions of multivariate normal

distributions and equal covariance matrices required for discriminant analysis could not be

met with this dataset. CART was also selected because of the ease of including categorical

variables such as species and because of the simplicity of interpretation. Since each split in

CART is based on specific values of variables (e.g., diameter less than 40 cm), the results are

easy to interpret. Large classification trees were grown with CART and were then pruned

to achieve a more efficient classification tree.

Because ofthe large expense and difficulty ofcollecting the base data, it was not possible

in this project to collect an independent validation dataset. Instead, cross-validation was used

to determine the level to which the classification trees should be pruned. Competing CART

trees may be compared by examining the rate of misclassification and the reduction in

misclassification with the inclusion of an additional split.

4. RESULTS AND DISCUSSION

4.1 ARMA MODELS

The first step in the analysis was to detrend the series. For 95% of the trees in this

study, removal of a quadratic trend was sufficient to produce a stationary series. Neither the

removal of a quadratic or a cubic trend were sufficient for producing stationary series for

BIC was within 5% of the smallest and the coefficients were significant. This categorizing

was for trees in which the removal of the trend produced a stationary series. Stationarity was

determined from visual examination of the residual series (after removal of the trend) and

by testing the significance of the AR( 1) terms using the t statistic (note that an AR( 1) series

is stationary if 11;11 < I). Series in which the removal of a trend did not produce a stationary

series were identified as a "nonstationary" class. Models were ranked with MA( I) as the

best followed by an AR(I) and then a AR(O) model. This ranking was selected because the

MA( I) model essentially requires one less parameter than does the AR( I) model (i.e., the

AR(I) model required the crown radius at the height-to-crown base, whereas the MA(I)

model did not). The identification of time-series models for individual crown series was

done using the following rules:

I. a tree for which the BIC of the MA( I) model was within 50/0 of best was identified

as an MA(I) model;

2. a tree for which the BIC of both the AR(I) model and the MA(I) was within 5% of

the best was also identified as an MA( I);

3. a tree for which the BIC of the AR(I) model was within 5% but the BIC of the

MA(I) model was not within 5% was identified as an AR(I); and

4. all other trees were identified as an AR(O) model.

After each series had been identified as an MA( I), AR( I), AR(O) model, or "nonsta­

tionary," a classification scheme was developed based on tree and stand characteristics using

classification and regression trees (CART). CART is a binary tree classification in which

a classification is constructed by repeated splits of subsets of the data in two new subsets,

beginning with the entire dataset (Breiman, Friedman, Olshen, and Stone 1984). CART

was used instead of discriminant analysis because the assumptions of multivariate normal

distributions and equal covariance matrices required for discriminant analysis could not be

met with this dataset. CART was also selected because of the ease of including categorical

variables such as species and because of the simplicity of interpretation. Since each split in

CART is based on specific values of variables (e.g., diameter less than 40 cm), the results are

easy to interpret. Large classification trees were grown with CART and were then pruned

to achieve a more efficient classification tree.

Because ofthe large expense and difficulty ofcollecting the base data, it was not possible

in this project to collect an independent validation dataset. Instead, cross-validation was used

to determine the level to which the classification trees should be pruned. Competing CART

trees may be compared by examining the rate of misclassification and the reduction in

misclassification with the inclusion of an additional split.

4. RESULTS AND DISCUSSION

4.1 ARMA MODELS

The first step in the analysis was to detrend the series. For 95% of the trees in this

study, removal of a quadratic trend was sufficient to produce a stationary series. Neither the

removal of a quadratic or a cubic trend were sufficient for producing stationary series for



Table 2. Model Types With the Smallest BIC 

No. of series where this model No. of series where this model 
Model type type has the smallest BIC has smallest BIC or is within 5% of smallest BIC 

AR(O) 54 54 
AR(1) 94 122a 
AR(2) 0 11 
AR(3) 0 6 
MA(1) 63 93b 
MA(2) 5 23 
MA(3) 2 7 
ARMA(1,1) 1 18 
ARMA(1,2) 0 6 
ARMA(1,3) 0 1 
ARMA(3,2) 0 1 
ARMA(3,3) 0 3 

total 219 
a An MA(1) is also appropriate for 54 of these series. 
b An AR(1) is also appropriate for 54 of these series. 

the other 5% of the trees and so they were not modeled as ARMA processes. For stationary 

series, the ARMA models were then fit to the residuals around the trend. Because the time- 

series models were fit to the residuals of the trend removal, statistically significant ARMA 

models were a de facto improvement over using simple geometric forms. 

Models for which the coefficients were significant and the BIC was within 5% of the 

smallest BIC were judged to be nearly optimal and thus acceptable. It was found that 122 

of 219 conifer series could be modeled as an AR(1) (see Table 2). Of these 122 series, 

there are 54 for which the MA(1) was also within 5% of the best. There were an additional 

39 (for a total of 93) series that could be modeled as an MA(1). Qualitatively an AR(1) 

and an MA(1) result in similar crown profiles simulations (Biging and Gill 1997). This is 

not surprising considering an AR(1) can be written as an infinite MA process and can be 

approximated by a relatively small order MA process (if the coefficients are small) and vice 

versa (Box and Jenkins 1970). 

When these ARMA models were used to simulate tree crown profiles, realistic profiles 

were created. As examples of the simulation, Figure 1 (p. 561) shows the actual crown 

profile and two simulations using an MA(1) process and two simulations using an AR(1). 

These simulations are realistic and visually they provide an improvement over a simple 

Euclidean model. As with Biging and Gill (1997) we found that the AR(1) and the MA(1) 

simulations were qualitatively similar. 

4.2 CLASSIFICATION OF MODELS 

To develop a classification and regression tree (CART), it was necessary to associate 

each tree with one and only one model form. This association was done by using only 

first order models [AR(1) and MA(1)] along with the AR(O), with preference given to an 

MA(1) if both first order models were appropriate. Using this association, it was found 

Model type

AR(O)
AR(1)
AR(2)
AR(3)
MA(1)
MA(2)
MA(3)
ARMA(1,1)
ARMA(1,2)
ARMA(1,3)
ARMA(3,2)
ARMA(3,3)

Table 2. Model Types With the Smallest BIC

No. of series where this model No. of series where this model
type has the smallest BIG has smallest BIG or is within 5% of smallest BIG

54 54
94 122a

o 11
o 6

63 93b

5 23
2 7
1 18
o 6
o 1
o 1
o 3

total 219
a An MA(1) is also appropriate for 54 of these series.

b An AR(1) is also appropriate for 54 of these series.

the other 5% of the trees and so they were not modeled as ARMA processes. For stationary

series, the ARMA models were then fit to the residuals around the trend. Because the time­

series models were fit to the residuals of the trend removal, statistically significant ARMA

models were a de facto improvement over using simple geometric forms.

Models for which the coefficients were significant and the BIC was within 5% of the

smallest BIC were judged to be nearly optimal and thus acceptable. It was found that 122

of 219 conifer series could be modeled as an AR(l) (see Table 2). Of these 122 series,

there are 54 for which the MA(l) was also within 5% of the best. There were an additional

39 (for a total of 93) series that could be modeled as an MA(l). Qualitatively an AR(l)

and an MA(l) result in similar crown profiles simulations (Biging and Gill 1997). This is

not surprising considering an AR(1) can be written as an infinite MA process and can be

approximated by a relatively small order MA process (if the coefficients are small) and vice

versa (Box and Jenkins 1970).

When these ARMA models were used to simulate tree crown profiles, realistic profiles

were created. As examples of the simulation, Figure 1 (p. 561) shows the actual crown

profile and two simulations using an MA(l) process and two simulations using an AR(l).

These simulations are realistic and visually they provide an improvement over a simple

Euclidean model. As with Biging and Gill (1997) we found that the AR(I) and the MA(l)
simulations were qualitatively similar.

4.2 CLASSIFICATION OF MODELS

To develop a classification and regression tree (CART), it was necessary to associate
each tree with one and only one model form. This association was done by using only

first order models [AR(l) and MA(l)] along with the AR(O), with preference given to an

MA( 1) if both first order models were appropriate. Using this association, it was found
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Figure 2. CART classification scheme for determining which ARMA model to use on a specific conifer tree. 

that 93 (42%) of the series could be modeled as an MA(1), 59 (27%) as an AR(1), 57 

(26%) as an AR(0) and the remaining 10 (5%) were not stationary after the removal of the 

quadratic trend. Thus, roughly 70% of the conifer series (152/219) could be modeled using 

first-order ARMA models. This was similar to the 80% that Biging and Gill (1997) found 

in a pilot study. However, the dataset used in this project is significantly larger than that 

used by Biging and Gill (1997) and samples are taken over a broader geographical region 

and include a larger range of tree sizes and forest stand densities. 

The classification tree (from CART) for determining which type of ARMA model 

should be used is shown in Figure 2. When interpreting this figure, if the statement is true 

follow the branch to the left and if it is false follow the branch to the right. This classification 

tree had 16 terminal nodes and uses species, diameter, height, height-to-crown base, and 

stand basal area in the classification. The first split of the classification tree was based on 

species and is approximately a split along shade tolerance of these species. This classification 

never modeled Douglas-fir or white fir using an AR(1) model. Ponderosa pines, sugar pines, 

and incense cedar trees less than 24.8 m (81.5 feet) in height were never modeled as an 

MA(1) process. The only stand variable used in this classification tree was a density measure, 

basal area (m2/ha), and it was only used for one split. It is interesting to note that diameter 

and height were used frequently for splitting, whereas only one of the crown parameters 

(height-to-crown base) was used in the classification. Surprisingly, crown radius was not 

useful in predicting the type of ARMA model that should be used for modeling an individual 

tree crown profile. 

The nonstationary category was never selected in this classification, but it accounted 

for only 5% of the profiles. The overall misclassification rate from cross-validation for this 

classification tree was 36.5% (see Table 3). The forces influencing tree crowns include tree 
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first-order ARMA models. This was similar to the 80% that Biging and Gill (1997) found

in a pilot study. However, the dataset used in this project is significantly larger than that

used by Biging and Gill (1997) and samples are taken over a broader geographical region

and include a larger range of tree sizes and forest stand densities.

The classification tree (from CART) for determining which type of ARMA model

should be used is shown in Figure 2. When interpreting this figure, if the statement is true

follow the branch to the left and if it is false follow the branch to the right. This classification

tree had 16 terminal nodes and uses species, diameter, height, height-to-crown base, and

stand basal area in the classification. The first split of the classification tree was based on

species and is approximately a split along shade tolerance ofthese species. This classification

never modeled Douglas-fir or white fir using an AR( 1) model. Ponderosa pines, sugar pines,

and incense cedar trees less than 24.8 m (81.5 feet) in height were never modeled as an

MA( 1) process. The only stand variable used in this classification tree was a density measure,

basal area (m2/ha), and it was only used for one split. It is interesting to note that diameter

and height were used frequently for splitting, whereas only one of the crown parameters

(height-to-crown base) was used in the classification. Surprisingly, crown radius was not

useful in predicting the type ofARMA model that should be used for modeling an individual

tree crown profile.

The nonstationary category was never selected in this classification, but it accounted

for only 5% of the profiles. The overall misclassification rate from cross-validation for this

classification tree was 36.5% (see Table 3). The forces influencing tree crowns include tree



Table 3. Confusion matrix for the CART analysis of the ARMA models 

Predicted model 

Actual Non- Row User's 
Model AR(O) AR(1) MA(1) stationary totals acc. % 

AR(O) 42 3 12 0 57 73.7 
AR(1) 6 38 15 0 59 64.4 
MA(1) 19 15 59 0 93 63.4 
Nonstationary 3 4 3 0 10 00.0 

Total 70 60 89 0 219 
Producer's acc. % 60.0 65.0 67.4 0.0 

Overall acc.% 
63.5 

and stand effects as well as microenvironment effects. These later effects cannot be readily 

quantified, but will add to misclassification error. There is no comparative work to suggest 

whether the approximate 1/3 misclassification rate is high or low. The user's accuracy for 

the AR(O) classification is nearly 75%, thus yielding fairly reliable results for this class. 

The AR(1) and MA(1) user's accuracies were approximately 10 percentage points lower 

than for the AR(O) model. The misclassification from the AR( 1) model was primarily with 

the MA(1) model and vice versa, although there was also confusion between MA(1) and 

AR(O). If one combines the AR(1) and MA(1) class, the user's accuracy is approximately 

84%. From a simulation perspective the AR(1) and MA(1) model are functionally and 

qualitatively similar. The only penalty for misclassifying an MA(1) model as an AR(1) 

model comes from the need to estimate one additional parameter. We view the overall 

classification results as achieving acceptable accuracy. 

5. CONCLUSIONS 

This project analyzed conifer crown profiles sampled from a wide range of tree sizes and 

stand densities. For the profiles studied, 70% could be modeled as trend lines plus statistically 

significant first order ARMA models and another 25% as trend lines plus white noise models 

(AR(O)). The results confirm that the methods developed by Biging and Gill (1997) are 

more broadly applicable for conifer forests sampled throughout northern California. These 

time-series models were found to be visually an improvement over simple geometric forms. 

Because the coefficients were significant, they were statistically an improvement over using 

simple Euclidean geometric forms. 

Even though a trend line and ARMA model provided improvements in describing 

conifer tree crown profiles, it would be impracticable to collect the very detailed crown data 

used in this study to parameterize these models for every individual tree. Thus, a second 

goal of this research was to examine if the order of the ARMA model can be predicted 
from readily observable forest and tree characteristics gathered in a forest survey data (e.g., 

diameter, height, species, basal area). Hence, we used a binary classification technique, to 

develop classification rules for specifying the type of model [MA( 1), AR( 1), or AR(O)] that 
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more broadly applicable for conifer forests sampled throughout northern California. These

time-series models were found to be visually an improvement over simple geometric forms.
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Even though a trend line and ARMA model provided improvements in describing

conifer tree crown profiles, it would be impracticable to collect the very detailed crown data

used in this study to parameterize these models for every individual tree. Thus, a second

goal of this research was to examine if the order of the ARMA model can be predicted

from readily observable forest and tree characteristics gathered in a forest survey data (e.g.,
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develop classification rules for specifying the type of model [MA(I), AR(l), or AR(O)] that



can be appropriately used for simulating the profile of a specific individual tree. The overall 

classification accuracy of this classification was approximately 65%. 

Using the CART classification to specify the type of ARMA model needed for an 

individual tree is the first step needed for crown profile prediction. The second step is to 

predict the trend line and ARMA model parameters, once the type of ARMA model has 

been specified. This second step will be reported in a future study. Using this two-step 

prediction approach we will then be able to generate crown profiles for all measured trees 

surveyed in this forest type, not solely those chosen in this research initiative. Then it will 

become feasible for forest managers and scientists to routinely use these methods to generate 

realistic crown profiles. Crown information is particularly useful in managing the aesthetics 

of forest views, in characterizing wildlife habitat, in projecting individual tree growth, and 

characterizing competition between neighboring trees. 
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