A Generalized Mahonian Statistic on Absorption Ring Mappings

Don Rawlings

Based on a coin-tossing scheme, a generalized Mahonian statistic is defined on absorption ring mappings and applied in obtaining combinatorial interpretations of the coefficient of q^j in the expansion of $\prod_{i=1}^k (1+q+q^2+\cdots+q^{m_i})$. In the permutation case, the statistic coincides with one studied by Han that specializes many known Mahonian statistics.

1. INTRODUCTION

Let S_n be the symmetric group on $\{1, 2, ..., n\}$. The *inversion number* and the *major index* of a permutation $\sigma = \sigma(1) \sigma(2) \cdots \sigma(n) \in S_n$ are defined as

inv
$$\sigma = \#\{(i, j): 1 \le i < j \le n, \sigma(i) > \sigma(j)\}$$
 and maj $\sigma = \sum i$,

where #A denotes the cardinality of set A and the sum is over the descent set $\{i: 1 \le i < n, \sigma(i) > \sigma(i+1)\}$ of σ . It is well known that

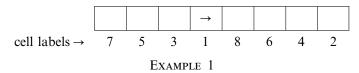
$$\sum_{\sigma \in S_n} q^{\text{inv }\sigma} = [n]! = \sum_{\sigma \in S_n} q^{\text{maj }\sigma}$$
 (1)

where $[i] = (1 + q + q^2 + \cdots + q^{i-1})$ and $[n]! = [1][2] \cdots [n]$ are the *q-analog* of *i* and the *q-factorial* of *n*, respectively. The first equality in (1) is due to Rodriguez [23]. MacMahon [14, 15] obtained a result more general than (1).

A statistic $s: S_n \to \{1, 2, ..., n(n-1)/2\}$ is said to be *Mahonian* if $\sum_{\sigma \in S_n} q^{s(\sigma)} = [n]!$. Besides inv and maj, many new Mahonian statistics have recently been discovered (see Foata and Zeilberger [6], Galovich and White [7], Han [8, 9], Kadell [10], Liang and Wachs [12], Rawlings [17], and Zeilberger and Bressoud [24]).

Using a scheme based on Bernoulli trials, a generalized Mahonian statistic is herein defined on a set of functions called *absorption ring mappings*.

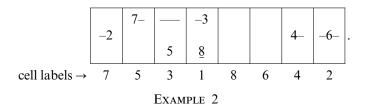
The coin-tossing scheme, dubbed the *absorption ring process*, is as follows. A ring of n cells, one distinguished from the rest, is said to be an *absorption ring* of length n:



For convenience, the ring is layed out as a strip with the distinguished cell at the extreme left. The leftmost and rightmost cells are to be viewed as being attached at their outer edges. Also, in a one-to-one manner, each cell is assigned a label from $\{1, 2, ..., n\}$. Above, the cells are labeled according to the permutation $l = 75318642 \in S_8$. The arrow in cell 1 indicates the direction in which the ring is to be *traversed*.

A sequence of $j \ge 1$ distinct integers is said to be a j-particle. A 0-particle is an underlined integer. For instance, 4–6–2 is a 3-particle and $\underline{3}$ is a 0-particle. For integers $j_1, j_2, ..., j_k \ge 0$, let $\mathbf{J} = (J_1, J_2, ..., J_k)$ denote a fixed k-tuple of particles where J_v is a j_v -particle and no integer appears in more than one particle. The integers appearing in such tuples will be restricted to the set $\{1, 2, ..., n\}$. Thus, we require that $j_1 + j_2 + ... + j_k \le n$.

The absorption ring process of type **J** begins by inserting J_1 into j_1 cells, one integer per cell, according to a *placement rule* Pl. A coin with probability q < 1 of landing tails up is then tossed until heads occurs. For each tails, J_1 moves one cell in the direction in which the ring is traversed. The particle J_1 comes to rest (is *absorbed*) when a head occurs. For $2 \le v \le n$, J_v is similarly propelled into the ring as if the cells occupied by integers belonging to $J_1, J_2, ..., J_{v-1}$ had been removed. Underlined integers are viewed as "not occupying space" and cells in which only they appear are not removed from consideration. For instance, suppose n = 8, J = (4-6-2, 5, 8, 7-3), and that J_v is initially placed in the leftmost j_v empty cells for $1 \le v \le 4$. If the sequences of Bernoulli trials for the four particles are TTTTTTHTHTHTTTTH (written as a single sequence), then the outcome is



Note that 7-3 traces out one *orbit* before coming to rest.

In increasing order, let $i_1, i_2, ..., i_m$ be the integers (underlined or not) in **J**. The outcome may be encoded as a function $f: \{i_1, i_2, ..., i_m\} \rightarrow \{1, 2, ..., n\}$; if i_k is absorbed in cell c_k , then define $f(i_k) = c_k$. Referred to as an absorption ring mapping, f will be represented by the list $f(i_1) f(i_2) \cdots f(i_m)$ of its range values. The set of such mappings is denoted by $AR_n(\mathbf{J})$. In Example 2, $\{i_1, i_2, ..., i_7\} = \{2, 3, 4, 5, 6, 7, 8\}$ and $f = 7 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 5 \cdot 1 \in AR_8(4-6-2, 5, 8, 7-3)$.

The minimal flipping sequence of $f \in AR_n(\mathbf{J})$, denoted by mfs f, is defined to be the shortest sequence of coin tosses that generates f. Further, let |f| be the number of tails in mfs f. For $f = 7 \ 1 \ 4 \ 3 \ 2 \ 5 \ 1$ in Example 2, mfs f = TTTTTTTTTTTTHTHTHH and |f| = 8. Theorem 1 is proved in Section 2.

THEOREM 1. Let $l \in S_n$ be an absorption ring labeling, $\mathbf{J} = (J_1, J_2, ..., J_k)$ a k-tuple of particles, and Pl a rule that specifies the initial placement of J_v into the cells left unoccupied by the absorptions of $J_1, J_2, ..., J_{v-1}$. The probability of $f \in AR_n(\mathbf{J})$ being generated by the absorption ring process is

$$M_n(f) = \frac{q^{|f|}}{[n][n-j_1]\cdots[n-j_1-j_2-\cdots-j_{k-1}]}.$$

The main result of this article follows as an immediate corollary: Since M_n is a measure, $\sum_{f \in AR_n(\mathbf{J})} M_n(f) = 1$. Thus, Theorem 1 implies

$$\sum_{f \in AR_n(\mathbf{J})} q^{|f|} = [n][n - j_1] \cdots [n - j_1 - j_2 - \cdots - j_{k-1}].$$
 (2)

Specializations of (2) are shown in Section 3 to agree with the multinomial theorem and with the usual expansion of the product [n]!.

When **J** is an *n*-tuple of 1-particles, $AR_n(\mathbf{J}) = S_n$ and (2) reduces to

$$\sum_{\sigma \in S_n} q^{|\sigma|} = [n]!.$$

Thus, $| \ |$ is Mahonian for any l and Pl. In this case, $| \ |$ is equivalent to the generalized Mahonian statistic considered by Han [8, p. 41] and as such extends many known Mahonian statistics. In Section 4, the choices of l and Pl are given for which $| \ |$ reduces to the inversion number, major index, r-major index, and Denert's statistic. Also presented in Section 4 is an illustration of how (2) gives "Mahonian" interpretations for "partial" q-factorials such as $[2][4]\cdots[2n]$.

In Section 5, a modification of the absorption ring process is used to obtain MacMahon's aforementioned generalization of (1) on *rearrangements*. The modification, previously discussed in less generality in [19, 21], is achieved by allowing the absorption capacity to vary by cell.

Some remarks are in order. The absorption ring process generalizes a coin-tossing game considered by Moritz and Williams [16]. The consideration of an abstract placement rule was motivated by Knuth's [11, solution to exercise 24 of 5.1.1] generalized shooting order for Russian roulette (which corresponds to Han's [9, p. 41] "future-suite"). Stripped of probabilistic considerations, the absorption ring is equivalent to the cyclic intervals employed by Han [8, 9]. The adjective absorption was coined by Johnson and Kotz [13] in connection with a related process introduced by Blomqvist [2]. Similar to the derivation of (2), variations on Blomqvist's process were exploited in [21, 22] to deduce several classical *q*-identities in the theory of partitions.

2. PROOF OF THEOREM 1

For $f \in AR_n(\mathbf{J})$, let $|f|_{\nu}$ be equal to the number of tails applied to J_{ν} in mfs f. In other terms, $|f|_{\nu}$ is the minimum number of tails required in the generation of f for J_{ν} to reach its rest position (determined by f) from its initial placement. Clearly, $|f| = |f|_1 + |f|_2 + \cdots + |f|_k$.

For a given $f \in AR_n(\mathbf{J})$, suppose that $J_1, J_2, ..., J_{\nu-1}$ have been absorbed in the positions that lead to the generation of f. As the number of unoccupied cells is $(n-j_1-j_2-\cdots-j_{\nu-1})$ and as a particle may sweep through any number of orbits before coming to rest, the probability of J_{ν} being absorbed in the position required for the outcome to be f is

$$\begin{split} &\sum_{\mu \geqslant 0} q^{|f|_{\nu} + \mu(n - j_1 - j_2 - \dots - j_{\nu-1})} (1 - q) \\ &= q^{|f|_{\nu}} (1 - q) \sum_{\mu \geqslant 0} q^{\mu(n - j_1 - j_2 - \dots - j_{\nu-1})} \\ &= \frac{q^{|f|_{\nu}} (1 - q)}{1 - q^{n - j_1 - j_2 - \dots - j_{\nu-1}}} = \frac{q^{|f|_{\nu}}}{\lceil n - j_1 - j_2 - \dots - j_{\nu-1} \rceil}. \end{split}$$

The desired result follows from the independence of Bernoulli trials:

$$M_n(f) = \frac{q^{|f|_1}}{[n]} \frac{q^{|f|_2}}{[n-j_1]} \cdots \frac{q^{|f|_k}}{[n-j_1-j_2-\cdots-j_{k-1}]}.$$

3. SOME PRODUCT EXPANSIONS

Let $\langle {}^n_i \rangle_{\mathbf{J}}$ denote the number of mappings $f \in AR_n(\mathbf{J})$ with |f| = i. Formula (2) may then be rewritten as

$$[n][n-j_1]\cdots[n-j_1-j_2-\cdots-j_{k-1}] = \sum_{i\geq 0} \binom{n}{i}_{\mathbf{J}} q^i.$$
 (3)

Note that $\langle {n \atop i} \rangle_{\mathbf{J}} = 0$ for $i > (n-1) + (n-j_1-1) + \cdots + (n-j_1-\cdots - j_{k-1}-1)$.

Three cases of (3) are considered below. The first two show that (3) agrees with the usual combinatorial expansions of $[n]^k$ and of [n]!. For each, Pl is taken as the rule that calls for J_{ν} to be initially inserted in the leftmost available j_{ν} cells.

The Multinomial Expansion of $[n]^k$. For $l = 1 \ 2 \dots n \in S_n$ and the k-tuple $\mathbf{J} = (\underline{1}, \underline{2}, \dots, \underline{k})$ of 0-particles, (3) reduces to

$$[n]^k = \sum_{i=0}^{k(n-1)} \left\langle {n \atop i} \right\rangle_{\mathbf{J}} q^i. \tag{4}$$

The sum in (4) may be regrouped in more familiar terms. As 0-particles occupy no space, placement in the leftmost available cell means that each 0-particle is initially put in cell 1. Note that the minimum number of tails required in generating a function that takes on the value μ , $1 \le \mu \le n$, exactly m_{μ} times is $m_2 + 2m_3 + \cdots + (n-1)m_n$. Thus,

Formula (4) may then be rewritten so as to reveal the multinomial expansion of $[n]^k$, namely

$$(1+q+\cdots+q^{n-1})^k = \sum_{m_1+m_2+\cdots+m_n=k} {k \choose m_1 m_2 \cdots m_n} q^{m_2+2m_3+\cdots+(n-1)m_n}.$$

A Combinatorial Expansion of [n]!. For $l = n \cdots 2 \ 1 \in S_n$ and the k-tuple $\mathbf{J} = (k, ..., 2, 1)$ of 1-particles, (3) becomes

$$[n][n-1]\cdots[n-k+1] = \sum_{i=0}^{m} \left\langle {n \atop i} \right\rangle_{\mathbf{J}} q^{i}$$
 (5)

where $m = (n-1) + (n-2) + \cdots + (n-k)$. Let $I_{n,i} = \# \{ \sigma \in S_n : \text{inv } \sigma = i \}$. From Table I in Section 4, it follows that $I_{n,i} = \langle {n \atop i} \rangle_{\mathbf{J}}$ for k = n. Thus, (5) implies

$$[n]! = \sum_{i=0}^{n(n-1)/2} I_{n,i} q^{i}.$$

The above expansion for [n]! and the coefficients $I_{n,i}$ have been considered in some detail (see Comtet [3, p. 236-240] and Moritz and Williams [16]).

An Expansion of a Rogers–Ramanujan-Type Product. For an absorption ring with (5n-1) cells, let l=1 $2\cdots(5n-1)\in S_{5n-1}$ and take $\mathbf{J}=(1-2-3, 4-5, 6-7-8, 9-10, ..., (5n-4)-(5n-3)-(5n-2))$ to be an alternating (2n-1)-tuple of particles of sizes 3 and 2. Then (3) implies that

$$[5n-1][5n-4][5n-6][5n-9]\cdots [4][1] = \sum_{i\geq 0} {\binom{5n-1}{i}}_{\mathbf{J}} q^{i}.$$

As $[m] = (1 - q^m)/(1 - q)$, the preceding equality may be rewritten as

$$\begin{split} \prod_{i=1}^{n} \ (1-q^{5i-1})(1-q^{5i-4}) &= (1-q)^{2n} \sum_{i \geqslant 0} \left\langle {5n-1 \atop i} \right\rangle_{\mathbf{J}} q^{i} \\ &= \sum_{i \geqslant 0} \sum_{m=0}^{i} \ (-1)^{m} \binom{2n}{m} \left\langle {5n-1 \atop i-m} \right\rangle_{\mathbf{J}} q^{i}. \end{split}$$

4. SOME SPECIALIZATIONS OF | | ON PERMUTATIONS

In the permutation case, many known Mahonian statistics coincide with specializations of $| \cdot |$. Several examples are summarized in Table I. Unless otherwise stated, the ring in this section has n cells, c_v is the label of the

TABLE I

П	$l \in S_n$	J	$Pl: J_v$ Is Inserted in the First Available Cell Encountered as the Ring Is Traversed Starting with
inv	<i>n</i> ⋅ ⋅ ⋅ 2 1	(<i>n</i> ,, 2, 1)	cell n
maj	$n \cdots 21$	(n,, 2, 1)	$\operatorname{cell} c_{v-1}$
ind_r	$n \cdots 2 1$	(<i>n</i> ,, 2, 1)	cell n if $c_{\nu-1}+r-1 \ge n$ and cell $c_{\nu-1}+r-1$ otherwise
		(1, 2,, n) (n,, 2, 1)	$\operatorname{cell} c_{\nu-1}$ $\operatorname{cell} n+1-\nu$

cell in which J_{ν} is absorbed, and each placement rule calls for J_{1} to be inserted in the leftmost available cell. Also, the passage of the process from the rightmost to the leftmost empty cell is referred to as an *orbit*.

The r-Major Index. For $r \ge 1$, the r-major index of $\sigma \in S_n$ is defined in [17] to be

ind
$$\sigma = \#\{(i, j): 1 \le i < j \le n, \sigma(i) > \sigma(j) > \sigma(i) - r\} + \sum_{i=1}^{n} i$$

where the sum is over the set $\{i: 1 \le i < n, \sigma(i) \ge \sigma(i+1) + r\}$ of *r*-descents of σ . For instance, ind₃ 1 7 2 6 3 5 4 = 5 + (2+4) = 11. On S_n , note that ind₁ = maj and ind_n = inv.

Pick $l=n\cdots 2$ $1\in S_n$, let $\mathbf{J}=(n,\cdots,2,1)$, and suppose that Pl calls for $J_v=n+1-v$ to be placed in the first empty cell encountered as the ring is traversed from cell n if $c_{v-1}+r-1\geqslant n$ and from cell $c_{v-1}+r-1$ otherwise. Roughly speaking, the process may fall to the left up to r-1 cells each time a head occurs. The outcome for n=7, r=3, and the sequence TTTHTHTTHTHTHTHHH is

The mapping generated is a permutation $\sigma \in S_n = AR_n(\mathbf{J})$: $\sigma(i) = c$ where c is the cell in which i comes to rest. In Example 3, $\sigma = 1726354 \in S_7$. Note that $|\sigma| = 11 = \operatorname{ind}_3 \sigma$.

For $\sigma \in S_n$, let rmfs σ denote the minimal flipping sequence of σ written in reverse. The reason that $| \cdot | = \text{ind}_r$ may be seen by comparing σ with rmfs σ . Relative to Example 3, consider

rmfs
$$\sigma = H H | T HT HT_4 | TT HTT HT_6 HT_7 T_7 T_6$$

 $\sigma = 1 7_3 > 2 6_3 > 3 5 4$
(6)

where $_3>$'s highlight 3-descents in σ and each bar indicates the completion of an orbit. In general, there is a one-to-one correspondence between r-descents in σ and orbits generated by mfs σ . For $1 \le j \le n$, let

$$I_r(j) = \# \left\{ i : i < j \leq n, \, \sigma(i) > \sigma(j) > \sigma(i) - r \right\} \ .$$

Note that $I_r(j)$ is equal to the number of empty cells that the process falls left when the head that generates $\sigma(j)$ is tossed. In (6), $I_3(7) = 2$ and the process falls left from cell 4 to cell 6. Also, the contribution of the two

tails subscripted by 7 in (6) made towards generating the first orbit are "negated". For $1 \le j \le n$, subscript any tail by j that is negated by a fall associated with the head that generates $\sigma(j)$. The number of subscripted T's in rmfs σ is equal to the first term in the definition of ind, σ . Furthermore, note that the contribution to ind, σ made by the ith r-descent counted from right to left in σ is equal to the number of nonsubscripted tails between the (i-1)st and ith bars counted from right to left in rmfs σ . It follows that $|\sigma| = \operatorname{ind}_r \sigma$.

In the case r = 1, an equivalent process was considered by Moritz and Williams [16]. The connection of their process with the Mahonian statistic known as the comajor index was made by Rawlings and Treadway [20].

Denert's Statistic. For $\sigma \in S_n$, Denert's statistic [4], denoted by den σ and as defined by Foata and Zeilberger [6], is the number of ordered pairs (i, j), $1 \le i < j \le n$, satisfying

(a)
$$\sigma(i) \le j \text{ or } \sigma(i) > \sigma(j)$$
 if $\sigma(j) > j$ or

(b)
$$\sigma(j) < \sigma(i) \le j$$
 if $\sigma(j) \le j$.

An index j such that $\sigma(j) > j$ is known as an exceedance. The permutation $\sigma = 7 \ 3 \ 2 \ 6 \ 1 \ 5 \ 4 \in S_7$ has three exceedances (j = 1, 2, 4) and den $\sigma = 11$.

The statistic $| \ |$ is equal to den when $l = n \cdots 2 \ 1 \in S_n$, $\mathbf{J} = (n, ..., 2, 1)$, and Pl calls for $J_v = n + 1 - v$ to be placed in the first empty cell encountered in traversing the ring from cell n + 1 - v (i.e., the vth cell from the left). For n = 7, the sequence TTTHTHTTHTTHTHTHHH generates

The associated permutation $\sigma = 7 \ 3 \ 2 \ 6 \ 1 \ 5 \ 4 \in S_7$ satisfies $|\sigma| = 11 = \text{den } \sigma$. Towards proving that $|\cdot| = \text{den}$, compare σ of Example 4 with rmfs σ :

rmfs
$$\sigma = H \mid HT_2 \mid HT \mid HT_4 \mid T_4T_4 \mid HTT \mid HT \mid HTTT$$

$$\sigma = \hat{7} \quad \hat{3} \quad 2 \quad \hat{6} \quad 1 \quad 5 \quad 4$$
(7)

where exceedances are marked by hats and bars indicate orbits. There is a one-to-one correspondence between exceedances and orbits generated by mfs σ . For an exceedance j, subscript by j each T occurring in the string of consecutive tails in rmfs σ to the right of the head that generates $\sigma(j)$. The number of subscripted T's in rmfs σ is equal to the number of i's satisfying

- (a) in the definition of den. In (7), the three T_4 's coincide to the contribution made by the exceedance j=4 to den via part (a): $\sigma(1)=7>6=\sigma(4)$, $\sigma(2)=3\leqslant 4$, and $\sigma(3)=2\leqslant 4$. Similarly, the number of consecutive plain T's in rmfs σ on the right of the head that generates a nonexceedance j is equal to the number of i's satisfying (b). Thus, $|\sigma|=\det\sigma$. This argument is equivalent to one used by Foata and Zeilberger [6].
- Remark 1. For a ring of n cells and a fixed sequence $\mathbf{J}=(J_1,J_2,...,J_n)$ of 1-particles, there are n distinct placement rules: For $1 \le v \le n$, J_v may be inserted into any of the n+1-v cells that remain empty. For a fixed \mathbf{J} and a fixed labeling $l \in S_n$, the n! placement rules induce n! distinct Mahonian statistics on S_n .
- Remark 2. The placement rules for the inversion number, major index, and Denert's statistic possess a certain natural geometry: From Table I, the Pl's of these three statistics respectively call for \mathbf{J}_{ν} to be placed in the leftmost empty cell, continue from where $\mathbf{J}_{\nu-1}$ stopped, and to be inserted in the first empty cell on or above the "diagonal" (ν th cell from the left). Another example of a geometrically motivated Pl is the "reflection" placement rule that calls for
 - (a) J_1 to be inserted in the leftmost cell and,
- (b) if $J_{\nu-1}$ stops in the μ th leftmost cell, then J_{ν} is to be placed in the first empty cell encountered starting from the μ^{th} rightmost cell.

For Pl as above, $l = n \cdots 2$ $1 \in S_n$, and $\mathbf{J} = (n, ..., 2, 1)$, let refl $\sigma = |\sigma|$. To illustrate, note that mfs 5 2 1 3 4 = THTTTHTHTHH. Thus, refl 5 2 1 3 4 = 6.

Remark 3. The absorption ring process also provides interpretations (in terms of permutations) for "partial" q-factorials such as $[2][4]\cdots[2n]$. For instance, for a ring with 2n cells, one possibility is to take \mathbf{J} to be the sequence (2n-(2n-1),...,4-3,2-1) of n 2-particles, the cell labeling as $l=2n\cdots2$ $1\in S_{2n}$, and Pl as the rule that calls for J_1 to be placed in the leftmost two cells and J_{ν} to be placed in the first two empty cells encountered in traversing the ring from where $J_{\nu-1}$ was absorbed. Then $AR_{2n}(\mathbf{J})$ is a subset of S_{2n} , $|\sigma|=\mathrm{maj}\ \sigma$ for all $\sigma\in AR_{2n}(\mathbf{J})$, and we have

$$\sum_{\sigma \in AR_{2n}(\mathbf{J})} q^{\text{maj }\sigma} = [2][4] \cdots [2n].$$

By taking **J** to be an alternating sequence of 2-particles and 3-particles (n of each), "Mahonian" interpretations for $[3][5][8][10] \cdots [5n-2][5n]$ may similarly be obtained on subsets of S_{5n} .

5. THE STATISTIC | ON REARRANGEMENTS

Let $\mathbf{n} = (n_1, n_2, ..., n_k)$ be a sequence of non-negative integers and put $n = n_1 + n_2 + \cdots + n_k$. The set of mappings from $\{1, 2, ..., n\}$ to $\{1, 2, ..., k\}$ that take on the value i exactly n_i times will be denoted by $R_{\mathbf{n}}$. Often, $R_{\mathbf{n}}$ is characterized as the set of *rearrangements* of the nondecreasing sequence containing n_i i's for $1 \le i \le k$. Note that $R_{\mathbf{n}} = S_n$ when $n_i = 1$ for $1 \le i \le k$.

The statistics maj and inv are defined on $f \in R_n$ by

$$\operatorname{inv} f = \# \left\{ (i,j) \colon 1 \leqslant i < j \leqslant n, f(i) > f(j) \right\} \qquad \text{and} \quad \operatorname{maj} f = \sum i$$

where the sum is over the descent set $\{i: 1 \le i < n, f(i) > f(i+1)\}$ of f. The more general version of (1) obtained by MacMahon [14, 15] is

$$\sum_{f \in R_{\mathbf{n}}} q^{\text{inv } f} = \begin{bmatrix} n \\ n_1 n_2 \cdots n_k \end{bmatrix} = \sum_{f \in R_{\mathbf{n}}} q^{\text{maj } f}$$

where the middle expression denotes the *q-multinomial coefficient* defined by

$$\begin{bmatrix} n_1 \\ n_1 n_2 \cdots n_k \end{bmatrix} = \frac{[n]!}{[n_1]! [n_2]! \cdots [n_k]!}.$$

A statistic s on R_n with distribution given by the q-multinomial coefficient is said to be *Mahonian*.

The absorption ring process may be slightly modified so that | | coincides with Han's [9, p. 42] generalized Mahonian statistic on R_n . The modification consists essentially of varying the absorption capacity by cell: In an absorption ring with k cells labeled by $l \in S_k$, cell i will be allowed to absorb n_i 1-particles. To obtain a tractable result, the particles in \mathbf{J} will be limited to size 1. Furthermore, for the process to traverse cell i, a consecutive run of tails must occur equal in length to n_i minus the number of 1-particles previously absorbed in cell i. For example, suppose there are n=3 cells labeled by l=1 2 $3 \in S_3$ with respective capacities $n_1=2=n_2$ and $n_3=1$. If $\mathbf{J}=(1,2,3,4,5)$ and Pl specifies the initial placement \mathbf{J}_v to be in the leftmost available (not filled to capacity) cell, then the sequence THTTTHTTHH generates the outcome

cell capacities
$$\rightarrow \begin{array}{c|cccc} 2 & 2 & 1 \\ \hline & 1,4 & 3,5 & 2 \\ \hline & cell labels \rightarrow \begin{array}{c|cccc} 1 & 2 & 3 \\ \hline & EXAMPLE & 5 \\ \end{array}$$

The generated function is $f = 1 \ 3 \ 2 \ 1 \ 2 \in R_{(2, 2, 1)}$. As mfs f = HTTTHTHHH, |f| = 4. The following result holds.

THEOREM 2. Let $l \in S_k$ be a labeling of an absorption ring with k cells and suppose that cell i has absorption capacity $n_i \ge 0$ for $1 \le i \le k$. Further, let $n = (n_1 + n_2 + \cdots + n_k)$, $\mathbf{J} = (J_1, J_2, ..., J_n)$ be an n-tuple of 1-particles, and Pl be a rule that specifies the initial placement of J_v into a cell not completely occupied by the absorptions of $J_1, J_2, ..., J_{v-1}$. The probability of $f \in R_n$ being generated by the absorption ring process is

$$M_n(f) = q^{|f|} \begin{bmatrix} n \\ n_1 n_2 \cdots n_k \end{bmatrix}^{-1}.$$

Proof. Suppose the generation of f requires that J_{ν} come to rest in c_{ν} . As in the proof of Theorem 1, let $|f|_{\nu}$ denote the minimum number of tails needed in generating f for J_{ν} to reach c_{ν} . As it takes n_1 tails to traverse c_1 , the probability of J_1 being absorbed in cell c_1 is

$$\sum_{\mu \geq 0} q^{|f|_1 + \mu n} (1 + q + \dots + q^{n_1 - 1}) (1 - q) = \frac{q^{|f|_1} [n_1]}{(1 - q^n)/(1 - q)} = \frac{q^{|f|_1} [n_1]}{[n]}.$$

The result follows from the independence of Bernoulli trials and induction. As a corollary, we have that $|\cdot|$ is Mahonian for any l, Pl, and J an n-tuple of 1-particles: Since $\sum_{f \in R_n} M_n(f) = 1$, Theorem 2 implies that

$$\sum_{f \in R_{\mathbf{n}}} q^{|f|} = \begin{bmatrix} n \\ n_1 n_2 \cdots n_k \end{bmatrix}.$$

The choices of l, J, and Pl for which | | reduces to inv, maj, ind_r, and den on R_n (see [18, 9] for definitions of ind_r and den on R_n) are displayed in Table II. As before, c_v is the label of the cell in which J_v comes to rest and each Pl calls for the placement of J_1 in the leftmost cell.

TABLE II

11	$l \in S_n$	J	$Pl: J_v$ Is Inserted in the First Available Cell Encountered as the Ring Is Traversed Starting with
		(<i>n</i> ,, 2, 1) (<i>n</i> ,, 2, 1)	$\operatorname{cell} k$ $\operatorname{cell} c_{n-1}$
,		(n,, 2, 1) (n,, 2, 1)	cell k if $c_{v-1} + r - 1 \ge k$ and cell $c_{v-1} + r - 1$ otherwise
den	<i>k</i> ⋯ 2 1	(<i>n</i> ,, 2, 1)	cell $k+1-\mu$ where μ satisfies $\sum_{i=0}^{\mu-2} n_{k-i} < \nu \leqslant \sum_{i=0}^{\mu-1} n_{k-i}$

As a final example, the absorption ring process with the appropriate triple (l, \mathbf{J}, Pl) from Table II is used to compute den f for $f = 2 \ 1 \ 3 \ 2 \ 3 \ 1 \ 4 \ 3 \ 1 \in R_{(3, \ 2, \ 3, \ 1)}$. The associated ring is

cell capacities
$$\rightarrow$$
 1 3 2 3 cell labels \rightarrow 4 3 2 1

As J = (9, ..., 2, 1) and $0 < 1 \le n_4 = 1$, $J_1 = 9$ is inserted in cell 4. As J_1 is absorbed in cell 1 and as $1 = n_4 < 2$, 3, $4 \le n_4 + n_3 = 4$, it follows that $J_2 = 8$, $J_3 = 7$, and $J_4 = 6$ are initially placed in cell 3. The outcome corresponding to $f = 2 \ 1 \ 3 \ 2 \ 3 \ 1 \ 4 \ 3 \ 1$ is

6. CONCLUDING REMARK

For $f \in AR_n(\mathbf{J})$, let orb f be the minimum number of orbits needed to generate f. In the permutation case, orb is comparable to Han's [9, p. 41] generalized exceedance number and to Knuth's [11, exercise 24 of 5.1.1] generalized descent number. The joint distribution of (orb, $| \cdot |$) on $AR_n(\mathbf{J})$ is considered in [1].

ACKNOWLEDGMENT

In closing, I thank Professor Donald Knuth for some enlightening and entertaining correspondence.

REFERENCES

- C. Agh and D. P. Rawlings, Euler-Mahonian statistics on absorption ring mappings, in preparation.
- 2. N. Blomqvist, On an exhaustion process, Skand. Actuar. J. 35 (1952), 201–210.
- 3. L. Comtet, "Advanced Combinatorics," Riedel, Dordrecht, 1974.
- 4. M. Denert, The genus zeta function of hereditary orders in central simple algebras over global fields, *Math. Comp.* **54** (1990), 449–465.
- 5. D. Foata, Distributions Euleriennes et Mahoniennes sur le groupe des permutations, *in* "Higher Combinatorics," Reidel, New York, 1977.
- D. Foata and D. Zeilberger, Denert's permutation statistic is indeed Euler-Mahonian, Stud. Appl. Math. 83 (1990), 31-59.
- J. Galovich and D. White, "Recursive Statistics on Words, preprint, University of Minnesota.
- 8. G.-H. Han, "Calcul Denertien," doctoral thesis, IRMA, Univ. de Strasbourg, 1991.
- 9. G.-H. Han, Une transformation fondamental sur les réarrangements des mots, *Adv. Math.* **105** (1994), 26–41.
- K. W. J. Kadell, Weighted inversion numbers, restricted growth functions, and standard Young tableaux, J. Combin. Theory Ser. A 40 (1985), 22–44.
- D. E. Knuth, "The Art of Computer Programming," Vol. 3, 2nd ed., Addison-Wesley, Reading, MA, 1997.
- K. Liang and M. L. Wachs, Mahonian statistics on labeled forests, *Discrete Math.* 99 (1992), 181–197.
- N. Johnson and S. Kotz, "Distributions in Statistics-Discrete Distributions," Houghton Mifflin, Boston, 1969.
- 14. P. A. MacMahon, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, *Amer. J. Math.* 35 (1913), 281–322.
- P. A. MacMahon, "Combinatory Analysis," Cambridge Univ. Press, London/New York, 1915. [Reprinted by Chelsea, New York, 1960]
- R. H. Moritz and R. C. Williams, A coin-tossing game and some related combinatorics, Math. Mag. (1) 61 (1988), 24–29.
- 17. D. P. Rawlings, The r-major index, J. Combin. Theory Ser. A 31 (1981), 175–183.
- 18. D. P. Rawlings, The (q, r)-Simon Newcomb problem, *Linear and Multilinear Algebra* **10** (1981), 253–260.
- 19. D. P. Rawlings, Bernoulli trials and permutation statistics, *Int. J. Math. Math. Sci.* (2) **15** (1992), 291–312.
- 20. D. P. Rawlings and J. A. Treadway, Bernoulli trials and Mahonian statistics: A tale of two q's, Math. Mag. 67, No. 5 (1994), 345–354.
- 21. D. P. Rawlings, Absorption processes: Models for *q*-identities, *Adv. Appl. Math.* **18** (1997), 133–148.
- 22. D. P. Rawlings, A probabilistic approach to some of Euler's number theoretic identities, *Trans. Amer. Math. Soc.*, to appear.
- 23. O. Rodriguez, Note sur les inversions ou dérangements produits dans les permutations, J. Math. 4 (1839), 236-240.
- D. Zeilberger and D. Bressoud, A proof of Andrews' q-Dyson conjecture, Discrete Math. 54 (1985), 201–224.