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Journal of Combinatorial Theory, Series A � TA2783

A Generalized Mahonian Statistic on
Absorption Ring Mappings

Don Rawlings

Based on a coin-tossing scheme, a generalized Mahonian statistic is defined on
absorption ring mappings and applied in obtaining combinatorial interpretations of
the coefficient of q j in the expansion of >k

i=1 (1+q+q2+ } } } +qmi). In the per-
mutation case, the statistic coincides with one studied by Han that specializes many
known Mahonian statistics.

1. INTRODUCTION

Let Sn be the symmetric group on [1, 2, . . ., n]. The inversion number and
the major index of a permutation _=_(1) _(2) } } } _(n) # Sn are defined as

inv _=*[(i, j): 1�i<j�n, _(i)>_( j)] and maj _=: i,

where *A denotes the cardinality of set A and the sum is over the descent
set [i: 1�i<n, _(i)>_(i+1)] of _. It is well known that

:
_ # Sn

qinv _=[n]!= :
_ # Sn

qmaj _ (1)

where [i]=(1+q+q2+ } } } +qi&1) and [n]!=[1][2] } } } [n] are the
q-analog of i and the q-factorial of n, respectively. The first equality in (1)
is due to Rodriguez [23]. MacMahon [14, 15] obtained a result more
general than (1).

A statistic s : Sn � [1, 2, . . ., n(n&1)�2] is said to be Mahonian if
�_ # Sn qs(_)=[n]!. Besides inv and maj, many new Mahonian statistics
have recently been discovered (see Foata and Zeilberger [6], Galovich and
White [7], Han [8, 9], Kadell [10], Liang and Wachs [12], Rawlings
[17], and Zeilberger and Bressoud [24]).

Using a scheme based on Bernoulli trials, a generalized Mahonian statistic
is herein defined on a set of functions called absorption ring mappings.
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The coin-tossing scheme, dubbed the absorption ring process, is as follows.
A ring of n cells, one distinguished from the rest, is said to be an absorption
ring of length n:

�

cell labels � 7 5 3 1 8 6 4 2

Example 1

For convenience, the ring is layed out as a strip with the distinguished cell
at the extreme left. The leftmost and rightmost cells are to be viewed as
being attached at their outer edges. Also, in a one-to-one manner, each cell
is assigned a label from [1, 2, . . ., n]. Above, the cells are labeled according
to the permutation l=7 5 3 1 8 6 4 2 # S8 . The arrow in cell 1 indicates the
direction in which the ring is to be traversed.

A sequence of j�1 distinct integers is said to be a j-particle. A 0-particle
is an underlined integer. For instance, 4�6�2 is a 3-particle and 3

�
is a 0-par-

ticle. For integers j1 , j2 , . . ., jk�0, let J=(J1 , J2 , . . ., Jk) denote a fixed
k-tuple of particles where J& is a j& -particle and no integer appears in more
than one particle. The integers appearing in such tuples will be restricted
to the set [1, 2, . . ., n]. Thus, we require that j1+j2+. . .+jk�n.

The absorption ring process of type J begins by inserting J1 into j1 cells,
one integer per cell, according to a placement rule Pl. A coin with prob-
ability q<1 of landing tails up is then tossed until heads occurs. For each
tails, J1 moves one cell in the direction in which the ring is traversed. The
particle J1 comes to rest (is absorbed ) when a head occurs. For 2�&�n,
J& is similarly propelled into the ring as if the cells occupied by integers
belonging to J1 , J2 , . . ., J&&1 had been removed. Underlined integers are
viewed as ``not occupying space'' and cells in which only they appear are
not removed from consideration. For instance, suppose n=8, J=(4�6�2,
5, 8

�
, 7�3), and that J& is initially placed in the leftmost j& empty cells for

1�&�4. If the sequences of Bernoulli trials for the four particles are
TTTTTTHTHTHTTTTH (written as a single sequence), then the outcome
is

7� ��� �3
�2 4� �6� .

5 8
�

cell labels � 7 5 3 1 8 6 4 2

Example 2

Note that 7�3 traces out one orbit before coming to rest.
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In increasing order, let i1 , i2 , . . ., im be the integers (underlined or not)
in J. The outcome may be encoded as a function f : [i1 , i2 , ..., im] �
[1, 2, ..., n]; if ik is absorbed in cell ck , then define f (ik)=ck . Referred
to as an absorption ring mapping, f will be represented by the list
f (i1) f (i2) } } } f (im) of its range values. The set of such mappings is denoted
by ARn (J). In Example 2, [i1 , i2 , ..., i7]=[2, 3, 4, 5, 6, 7, 8

�
] and f =

7 1 4 3 2 5 1 # AR8(4�6�2, 5, 8
�
, 7�3).

The minimal flipping sequence of f # ARn (J), denoted by mfs f, is defined
to be the shortest sequence of coin tosses that generates f. Further, let
| f | be the number of tails in mfs f. For f=7 1 4 3 2 5 1 in Example 2,
mfs f=TTTTTTHTHTHH and | f |=8. Theorem 1 is proved in Section 2.

Theorem 1. Let l # Sn be an absorption ring labeling, J=(J1 , J2 , ..., Jk)
a k-tuple of particles, and Pl a rule that specifies the initial placement of J&

into the cells left unoccupied by the absorptions of J1 , J2 , ..., J&&1. The prob-
ability of f # ARn (J) being generated by the absorption ring process is

Mn ( f )=
q | f |

[n][n&j1] } } } [n&j1&j2& } } } &jk&1]
.

The main result of this article follows as an immediate corollary: Since
Mn is a measure, �f # ARn(J )Mn( f )=1. Thus, Theorem 1 implies

:
f # ARn(J)

q | f |=[n][n&j1] } } } [n&j1&j2& } } } &jk&1]. (2)

Specializations of (2) are shown in Section 3 to agree with the multinomial
theorem and with the usual expansion of the product [n]!.

When J is an n-tuple of 1-particles, ARn(J)=Sn and (2) reduces to

:
_ # Sn

q |_|=[n]! .

Thus, | | is Mahonian for any l and Pl. In this case, | | is equivalent to
the generalized Mahonian statistic considered by Han [8, p. 41] and
as such extends many known Mahonian statistics. In Section 4, the choices
of l and Pl are given for which | | reduces to the inversion number, major
index, r-major index, and Denert's statistic. Also presented in Section 4
is an illustration of how (2) gives ``Mahonian'' interpretations for ``partial''
q-factorials such as [2][4] } } } [2n].
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In Section 5, a modification of the absorption ring process is used to obtain
MacMahon's aforementioned generalization of (1) on rearrangements. The
modification, previously discussed in less generality in [19, 21], is achieved
by allowing the absorption capacity to vary by cell.

Some remarks are in order. The absorption ring process generalizes a
coin-tossing game considered by Moritz and Williams [16]. The con-
sideration of an abstract placement rule was motivated by Knuth's [11,
solution to exercise 24 of 5.1.1] generalized shooting order for Russian
roulette (which corresponds to Han's [9, p. 41] ``future-suite''). Stripped of
probabilistic considerations, the absorption ring is equivalent to the cyclic
intervals employed by Han [8, 9]. The adjective absorption was coined by
Johnson and Kotz [13] in connection with a related process introduced by
Blomqvist [2]. Similar to the derivation of (2), variations on Blomqvist's
process were exploited in [21, 22] to deduce several classical q-identities in
the theory of partitions.

2. PROOF OF THEOREM 1

For f # ARn(J), let | f | & be equal to the number of tails applied to J& in
mfs f. In other terms, | f | & is the minimum number of tails required in the
generation of f for J& to reach its rest position (determined by f ) from its
initial placement. Clearly, | f |=| f | 1+| f | 2+ } } } +| f |k .

For a given f # ARn(J), suppose that J1 , J2 , ..., J&&1 have been absorbed
in the positions that lead to the generation of f. As the number of unoc-
cupied cells is (n& j1& j2& } } } & j&&1) and as a particle may sweep
through any number of orbits before coming to rest, the probability of J&

being absorbed in the position required for the outcome to be f is

:
+�0

q | f |&++(n&j1&j2& } } } &j&&1)(1&q)

=q | f |&(1&q) :
+�0

q+(n&j1&j2& } } } &j&&1)

=
q | f |&(1&q)

1&qn&j1&j2& } } } &j&&1
=

q | f |&

[n&j1&j2& } } } &j&&1]
.

The desired result follows from the independence of Bernoulli trials:

Mn ( f )=
q | f |1

[n]
q | f |2

[n& j1]
} } }

q | f |k

[n& j1& j2& } } } & jk&1]
.
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3. SOME PRODUCT EXPANSIONS

Let ( n
i ) J denote the number of mappings f # ARn (J) with | f |=i.

Formula (2) may then be rewritten as

[n][n& j1] } } } [n& j1& j2& } } } & jk&1]= :
i�0

�n
i� J

qi . (3)

Note that ( n
i ) J = 0 for i > (n & 1) + (n & j1 & 1) + } } } + (n & j1 & } } }

& jk&1&1).
Three cases of (3) are considered below. The first two show that (3)

agrees with the usual combinatorial expansions of [n]k and of [n]!. For
each, Pl is taken as the rule that calls for J& to be initially inserted in the
leftmost available j& cells.

The Multinomial Expansion of [n]k. For l=1 2 ... n # Sn and the k-tuple
J=(1

�
, 2

�
, ..., k

�
) of 0-particles, (3) reduces to

[n]k= :
k(n&1)

i=0
�n

i�J

qi. (4)

The sum in (4) may be regrouped in more familar terms. As 0-particles
occupy no space, placement in the leftmost available cell means that each
0-particle is initially put in cell 1. Note that the minimum number of tails
required in generating a function that takes on the value +, 1�+�n,
exactly m+ times is m2+2m3+ } } } +(n&1) mn . Thus,

�n
i�J

= :
m1+m2+ } } } +mn=k

m2+2m3+ } } } +(n&1)mn=i

\ k
m1 m2 } } } mn+ .

Formula (4) may then be rewritten so as to reveal the multinomial expan-
sion of [n]k, namely

(1+q+ } } } +qn&1)k

= :
m1+m2+ } } } +mn=k \

k
m1 m2 } } } mn+ qm2+2m3+ } } } +(n&1)mn.

A Combinatorial Expansion of [n]!. For l=n } } } 2 1 # Sn and the
k-tuple J=(k, ..., 2, 1) of 1-particles, (3) becomes

[n][n&1] } } } [n&k+1]= :
m

i=0
�n

i� J

qi (5)



File: 582A 278306 . By:CV . Date:17:07:01 . Time:08:01 LOP8M. V8.0. Page 01:01
Codes: 2586 Signs: 1320 . Length: 45 pic 0 pts, 190 mm

where m=(n&1)+(n&2)+ } } } +(n&k). Let In, i=*[_ # Sn : inv _=i].
From Table I in Section 4, it follows that In, i=( n

i ) J for k=n. Thus, (5)
implies

[n]!= :
n(n&1)�2

i=0

In, i qi.

The above expansion for [n]! and the coefficients In, i have been considered
in some detail (see Comtet [3, p. 236�240] and Moritz and Williams
[16]).

An Expansion of a Rogers�Ramanujan-Type Product. For an absorption
ring with (5n&1) cells, let l=1 2 } } } (5n&1) # S5n&1 and take J=(1�2�3,
4�5, 6�7�8, 9�10, ..., (5n&4)�(5n&3)�(5n&2)) to be an alternating
(2n&1)-tuple of particles of sizes 3 and 2. Then (3) implies that

[5n&1][5n&4][5n&6][5n&9] } } } [4][1]= :
i�0

�5n&1
i �J

qi.

As [m]=(1&qm)�(1&q), the preceding equality may be rewritten as

`
n

i=1

(1&q5i&1)(1&q5i&4)=(1&q)2n :
i�0

�5n&1
i �J

qi

= :
i�0

:
i

m=0

(&1)m \2n
m+�5n&1

i&m �J

qi.

4. SOME SPECIALIZATIONS OF | | ON PERMUTATIONS

In the permutation case, many known Mahonian statistics coincide with
specializations of | |. Several examples are summarized in Table I. Unless
otherwise stated, the ring in this section has n cells, c& is the label of the

TABLE I

Pl : J& Is Inserted in the First Available Cell
| | l # Sn J Encountered as the Ring Is Traversed Starting with

inv n } } } 2 1 (n, ..., 2, 1) cell n
maj n } } } 2 1 (n, ..., 2, 1) cell c&&1

indr n } } } 2 1 (n, ..., 2, 1)
cell n if c&&1+r&1�n and
cell c&&1+r&1 otherwise

comaj 1 2 } } } n (1, 2, ..., n) cell c&&1

den n } } } 2 1 (n, ..., 2, 1) cell n+1&&
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cell in which J& is absorbed, and each placement rule calls for J1 to be
inserted in the leftmost available cell. Also, the passage of the process from
the rightmost to the leftmost empty cell is referred to as an orbit.

The r-Major Index. For r�1, the r-major index of _ # Sn is defined in
[17] to be

ind r _=*[(i, j): 1�i< j�n, _(i)>_( j)>_(i)&r]+: i,

where the sum is over the set [i : 1�i<n, _(i)�_(i+1)+r] of r-descents
of _. For instance, ind3 1 7 2 6 3 5 4=5+(2+4)=11. On Sn , note that
ind1=maj and indn=inv .

Pick l=n } } } 2 1 # Sn , let J=(n, } } } , 2, 1), and suppose that Pl calls for
J&=n+1&& to be placed in the first empty cell encountered as the ring
is traversed from cell n if c&&1+r&1�n and from cell c&&1+r&1
otherwise. Roughly speaking, the process may fall to the left up to r&1
cells each time a head occurs. The outcome for n=7, r=3, and the
sequence TTTHTHTTHTTTHTHTHH is

2 4 6 7 5 3 1 .

cell labels � 7 6 5 4 3 2 1

Example 3

The mapping generated is a permutation _ # Sn=ARn(J): _(i)=c where c
is the cell in which i comes to rest. In Example 3, _=1 7 2 6 3 5 4 # S7 .
Note that |_|=11=ind3 _.

For _ # Sn , let rmfs _ denote the minimal flipping sequence of _ written
in reverse. The reason that | |=ind r may be seen by comparing _ with
rmfs _. Relative to Example 3, consider

rmfs _=H H | T HT HT4 | TT HTT HT6 HT7T7T6
(6)

_=1 7 3> 2 6 3> 3 5 4

where 3>'s highlight 3-descents in _ and each bar indicates the completion
of an orbit. In general, there is a one-to-one correspondence between
r-descents in _ and orbits generated by mfs _. For 1�j�n, let

Ir( j)=*[i : i<j�n, _(i)>_( j)>_(i)&r] .

Note that Ir( j) is equal to the number of empty cells that the process falls
left when the head that generates _( j) is tossed. In (6), I3(7)=2 and the
process falls left from cell 4 to cell 6. Also, the contribution of the two
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tails subscripted by 7 in (6) made towards generating the first orbit are
``negated''. For 1�j�n, subscript any tail by j that is negated by a fall
associated with the head that generates _( j). The number of subscripted
T's in rmfs _ is equal to the first term in the definition of indr _. Further-
more, note that the contribution to indr _ made by the i th r-descent
counted from right to left in _ is equal to the number of nonsubscripted
tails between the (i&1)st and i th bars counted from right to left in rmfs _.
It follows that |_|=indr _.

In the case r=1, an equivalent process was considered by Moritz and
Williams [16]. The connection of their process with the Mahonian statistic
known as the comajor index was made by Rawlings and Treadway [20].

Denert's Statistic. For _ # Sn , Denert's statistic [4], denoted by den _
and as defined by Foata and Zeilberger [6], is the number of ordered pairs
(i, j ), 1�i< j�n, satisfying

(a) _(i)� j or _(i )>_( j ) if _( j )> j or

(b) _( j )<_(i)� j if _( j )� j.

An index j such that _( j )> j is known as an exceedance. The permutation
_=7 3 2 6 1 5 4 # S7 has three exceedances ( j=1, 2, 4) and den _=11.

The statistic | | is equal to den when l=n } } } 2 1 # Sn , J=(n, ..., 2, 1),
and Pl calls for J&=n+1&& to be placed in the first empty cell encoun-
tered in traversing the ring from cell n+1&& (i.e., the &th cell from the
left). For n=7, the sequence TTTHTHTTHTTTHTHTHH generates

1 4 6 7 2 3 5 .

cell labels � 7 6 5 4 3 2 1

Example 4

The associated permutation _=7 3 2 6 1 5 4 # S7 satisfies |_|=11=den _.
Towards proving that | |=den, compare _ of Example 4 with rmfs _:

rmfs _=H | HT2 | HT HT4 | T4T4 HTT HT HTTT
(7)

_=7� 3� 2 6� 1 5 4

where exceedances are marked by hats and bars indicate orbits. There is a
one-to-one correspondence between exceedances and orbits generated by
mfs _. For an exceedance j, subscript by j each T occuring in the string of
consecutive tails in rmfs _ to the right of the head that generates _( j). The
number of subscripted T's in rmfs _ is equal to the number of i 's satisfying
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(a) in the definition of den. In (7), the three T4 's coincide to the contribu-
tion made by the exceedance j=4 to den via part (a): _(1)=7>6=_(4),
_(2)=3�4, and _(3)=2�4. Similarly, the number of consecutive plain
T's in rmfs _ on the right of the head that generates a nonexceedance j is
equal to the number of i 's satisfying (b). Thus, |_|=den _. This argument
is equivalent to one used by Foata and Zeilberger [6].

Remark 1. For a ring of n cells and a fixed sequence J=(J1 , J2 , ..., Jn)
of 1-particles, there are n distinct placement rules: For 1�&�n, J& may be
inserted into any of the n+1&& cells that remain empty. For a fixed J and
a fixed labeling l # Sn , the n! placement rules induce n! distinct Mahonian
statistics on Sn .

Remark 2. The placement rules for the inversion number, major index,
and Denert's statistic possess a certain natural geometry: From Table I, the
Pl 's of these three statistics respectively call for J& to be placed in the
leftmost empty cell, continue from where J&&1 stopped, and to be inserted
in the first empty cell on or above the ``diagonal'' (& th cell from the left).
Another example of a geometrically motivated Pl is the ``reflection'' place-
ment rule that calls for

(a) J1 to be inserted in the leftmost cell and,

(b) if J&&1 stops in the + th leftmost cell, then J& is to be placed in
the first empty cell encountered starting from the +th rightmost cell.

For Pl as above, l=n } } } 2 1 # Sn , and J=(n, ..., 2, 1), let refl _=|_|. To
illustrate, note that mfs 5 2 1 3 4=THTTTHTHTHH. Thus, refl 5 2 1 3 4=6.

Remark 3. The absorption ring process also provides interpretations (in
terms of permutations) for ``partial'' q-factorials such as [2][4] } } } [2n].
For instance, for a ring with 2n cells, one possibility is to take J to be
the sequence (2n-(2n&1), ..., 4�3, 2�1) of n 2-particles, the cell labeling as
l=2n } } } 2 1 # S2n , and Pl as the rule that calls for J1 to be placed in the
leftmost two cells and J& to be placed in the first two empty cells encoun-
tered in traversing the ring from where J&&1 was absorbed. Then AR2n(J)
is a subset of S2n , |_|=maj _ for all _ # AR2n(J), and we have

:
_ # AR2n(J)

qmaj _=[2][4] } } } [2n] .

By taking J to be an alternating sequence of 2-particles and 3-particles
(n of each), ``Mahonian'' interpretations for [3][5][8][10] } } } [5n&2][5n]
may similarly be obtained on subsets of S5n .
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5. THE STATISTIC | | ON REARRANGEMENTS

Let n=(n1 , n2 , ..., nk) be a sequence of non-negative integers and put
n=n1+n2+ } } } +nk . The set of mappings from [1, 2, ..., n] to [1, 2, ..., k]
that take on the value i exactly ni times will be denoted by Rn . Often, R n

is characterized as the set of rearrangements of the nondecreasing sequence
containing ni i 's for 1�i�k. Note that Rn=Sn when ni=1 for 1�i�k.

The statistics maj and inv are defined on f # Rn by

inv f=*[(i, j): 1�i<j�n, f (i)>f ( j)] and maj f =: i

where the sum is over the descent set [i : 1�i<n, f (i)> f (i+1)] of f. The
more general version of (1) obtained by MacMahon [14, 15] is

:
f # Rn

qinv f =_ n
n1n2 } } } nk&= :

f # Rn

qmaj f

where the middle expression denotes the q-multinomial coefficient defined
by

_ n1

n1n2 } } } nk&=
[n]!

[n1]! [n2]! } } } [nk]!
.

A statistic s on Rn with distribution given by the q-multinomial coefficient
is said to be Mahonian.

The absorption ring process may be slightly modified so that | | coin-
cides with Han's [9, p. 42] generalized Mahonian statistic on Rn . The
modification consists essentially of varying the absorption capacity by cell:
In an absorption ring with k cells labeled by l # Sk , cell i will be allowed
to absorb ni 1-particles. To obtain a tractable result, the particles in J will
be limited to size 1. Furthermore, for the process to traverse cell i, a con-
secutive run of tails must occur equal in length to ni minus the number of
1-particles previously absorbed in cell i. For example, suppose there are
n=3 cells labeled by l=1 2 3 # S3 with respective capacities n1=2=n2 and
n3=1. If J=(1, 2, 3, 4, 5) and Pl specifies the initial placement J& to be in
the leftmost available (not filled to capacity) cell, then the sequence
THTTTHTHTTHH generates the outcome

cell capacities � 2 2 1

1, 4 3, 5 2 .

cell labels � 1 2 3

Example 5
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The generated function is f=1 3 2 1 2 # R(2, 2, 1) . As mfs f=HTTTHTHHH,
| f |=4. The following result holds.

Theorem 2. Let l # Sk be a labeling of an absorption ring with k cells
and suppose that cell i has absorption capacity ni�0 for 1�i�k. Further,
let n=(n1+n2+ } } } +nk), J=(J1 , J2 , ..., Jn) be an n-tuple of 1-particles,
and Pl be a rule that specifies the initial placement of J& into a cell not com-
pletely occupied by the absorptions of J1 , J2 , ..., J&&1. The probability of
f # Rn being generated by the absorption ring process is

Mn ( f )=q | f | _ n
n1 n2 } } } nk&

&1

.

Proof. Suppose the generation of f requires that J& come to rest in c& .
As in the proof of Theorem 1, let | f | & denote the minimum number of tails
needed in generating f for J& to reach c& . As it takes n1 tails to traverse c1 ,
the probability of J1 being absorbed in cell c1 is

:
+�0

q | f |1++n(1+q+ } } } +qn1&1)(1&q)=
q | f |1[n1]

(1&qn)�(1&q)
=

q | f |1[n1]
[n]

.

The result follows from the independence of Bernoulli trials and induction.
As a corollary, we have that | | is Mahonian for any l, Pl, and J an

n-tuple of 1-particles: Since � f # Rn
Mn( f )=1, Theorem 2 implies that

:
f # Rn

q | f | =_ n
n1 n2 } } } nk& .

The choices of l, J, and Pl for which | | reduces to inv, maj, indr , and
den on Rn (see [18, 9] for definitions of indr and den on Rn) are displayed
in Table II. As before, c& is the label of the cell in which J& comes to rest
and each Pl calls for the placement of J1 in the leftmost cell.

TABLE II

Pl : J& Is Inserted in the First Available Cell
| | l # Sn J Encountered as the Ring Is Traversed Starting with

inv k } } } 2 1 (n, ..., 2, 1) cell k
maj k } } } 2 1 (n, ..., 2, 1) cell c&&1

indr k } } } 2 1 (n, ..., 2, 1)
cell k if c&&1+r&1�k and
cell c&&1+r&1 otherwise

den k } } } 2 1 (n, ..., 2, 1)
cell k+1&+ where + satisfies

�+&2
i=0 nk&i<&��+&1

i=0 nk&i
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As a final example, the absorption ring process with the appro-
priate triple (l, J, Pl ) from Table II is used to compute den f for
f =2 1 3 2 3 1 4 3 1 # R(3, 2, 3, 1) . The associated ring is

cell capacities � 1 3 2 3

.

cell labels � 4 3 2 1

As J=(9, ..., 2, 1) and 0<1�n4=1, J1=9 is inserted in cell 4. As J1 is
absorbed in cell 1 and as 1=n4<2, 3, 4�n4+n3=4, it follows that J2=8,
J3=7, and J4=6 are initially placed in cell 3. The outcome corresponding
to f =2 1 3 2 3 1 4 3 1 is

cell capacities � 1 3 2 3

7 3, 5, 8 1, 4 2, 6, 9 .

cell labels � 4 3 2 1

Example 6

Since mfs f =TTTTTTHHTTTTTTHTTTTHTTTHHTHHH, we have
that den f =| f |=20.

6. CONCLUDING REMARK

For f # ARn(J), let orb f be the minimum number of orbits needed to
generate f. In the permutation case, orb is comparable to Han's [9, p. 41]
generalized exceedance number and to Knuth's [11, exercise 24 of 5.1.1]
generalized descent number. The joint distribution of (orb, | | ) on ARn(J)
is considered in [1].
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