Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

Intelligent Software Systems in Historical Context

Jens Poh| Ph.D.

Executive Director, Collaborative Agent Design Researc@enter (CADRC)
California Polytechnic State University (Cal Poly)
San Luis Obispo, California, USA

Introduction

The purpose of this chapter is to trace the evolutionntdlligent software from data-centric
applications that essentially encapsulate their dat@ranment to ontology-based applications with
automated reasoning capabilifie$t is argued that a distinction may be drawn betweeman
intelligence and component capabilities within a more gédefaition of intelligence, and that such
component capabilities can be embedded in computer softiageprimary vehicle in the quest for
intelligent software has been the gradual recognitidhetentral role played by data and information,
rather than the logic and functionality of the apgicn. The three milestones in this evolution have
been: the separation of data management from thenatdomain of the application; the development
of standard data exchange protocols such as the ExteMableip Language (XML), which allows
machine interpretable structure and meaning to be added texdatange packages; and, the ability to
build information models that are rich in relationshggsd are thereby capable of supporting the
automated reasoning capabilities of software agents.

To assess the relative capabilities of software systiuming their evolutionary path over the past 50
years the author utilizes an evaluation framework isting of six categories, with appropriate features
or capabilities under each category serving as a seabfaion criteria. Designed to assess the degree
to which a software application or system is capablgeoforming intelligent functions, the particular
features or capabilities in each category are arrangastending order of sophistication.

The chapter concludes with a brief description of tls@owi of a Semantic Web environment in which
ontology-based Web services with intelligent capabilitege able to discover each other, and
individually or in self-configured groups perform useful tasksis vision formed an integral part of
the concept of a collaborative network of readilyessible information nodes proposed by Berners-
Lee in the late 1980s and known today, in its initial incdwnaas the World-Wide Web. Judging by
the periodic pronouncements of the World Wide Web Caiusor(W3C) and the results of research in
progress at the Massachusetts Institute of Technolody)(Md by Berners-Lee, and elsewhere, it
would appear that the original vision is not only feasiblg &lso imminently realizable. The
capabilities of an experimental proof-of-concept systeaturing semantic Web services that was
demonstrated by a group of researchers from the authegarah center during a 2002 United States
Office of Naval Research Workshop is described as amgieaof such an intelligent decision support
environment.

The Concept of Intelligence

Can we speak about intelligence in the context of a ma2hDne would argue that even though an
electronic computer is able to store vast amounts of aadais capable of processing millions of

! The content of this chapter is a revised and extendeidverka keynote paper delivered at InterSymp-2004 in Baden-
Baden, Germany, July 2004. (Pohl 2004)

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

computations per second, it is nevertheless only a mae-mmchine that is entirely restricted to
following predefined instructions. This intuitive perceptionuld certainly appear to make a great deal
of sense. Therefore, it is necessary to brieflgulis the concept afitelligence and the sense in which
this concept is applied to computer software.

There are those that have advanced strong argumestgpport of the view that intelligence is the
province of living creatures and that machines, such asr@ler computers, do not and will never
display any truly intelligent capabilities (Dreyfuss 1979 and 198&yfuss and Dreyfuss 1986, Lucas
1961, Searle 1980 and 1992). In most cases these argumentset@bdhe premise that intelligent
behavior is closely associated with the human body mmd, and that the powerful notions of
common sense and intuition are essential ingredientgedligence. In this chapter it is not intended to
counter these arguments or even take sides in this og-g®bate. Instead, the author wishes to
advance another view of intelligence, namely that hunmielligence and intelligence are not
synonymous. We human beings are a decidedly self-cdrapeeies. We tend to view our capabilities
and our interactions with our surroundings from a verysqaeal point of view. It is therefore not
surprising that we should consider intelligence, whichssestially our most powerful asset, to be
restricted to living creatures among which we believeelwes to reign supreme.

Webster’s Dictionary (Random 1999) defines intelligence as'th capacity for learning, reasoning,
and understanding;”. This definition suggests that thezecomponent capabilities that contribute to
the concept of intelligence. Further, these comporegalalities are not necessarily equally powerful.
In other words, it may be argued that there are leveistelfigence and that at the lowest level such
capabilities must include at least the ability to rememibigher levels of intelligence include
reasoning, learning, discovering, and creating. Certainlyast some of these intelligent capabilities
can be embedded in computer software. For example, commxtest in their ability to store and
recall data in virtually unlimited quantities and over vienyg periods of time. Computers can reason
about data quite effectively, if adequate context is naaddable with the data. Also, computers have
been shown to have learning-like capabilities, and computan discover information through
associations and pattern matching.

There is no intention by the author to suggest that campuitelligence is equal or even similar to
human intelligence, but rather that computer intelligeand human intelligence may be applied in
parallel to complement each other. Furthermore, agtcase can be made in support of the view that
there is an urgent need for intelligent computer capaslidue to the mounting expectations of
accuracy, quality and timeliness in a globally connected@mment of rapidly increasing complexity.

The Notion of an ‘Information-Centric’ Software Environment

The terminformation-centric refers to the representation of information in thengoter, not to the
way it is actually stored in a digital machine. Thistidiction betweemepresentation and storage is
important, and relevant far beyond the realm of comput&/hen we write a note with a pencil on a
sheet of paper, the content (i.e., meaning) of the isat@related to the storage device. A sheet of
paper is designed to be a very efficient storage mediatnctn be easily stacked in sets of hundreds,
filed in folders, bound into volumes, folded, and so blewever, all of this is unrelated to the content
of the written note on the paper. This content reptesd® meaning of the sheet of paper. It
constitutes the purpose of the paper and governs what wetliddherisheet of paper (i.e., its use). In
other words, the nature and efficiency of the storageuned more often than not unrelated to the
content or representation that is stored in the medium

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

In the same sense, the way in which we store bits Qiseand 1s) in a digital computer is unrelated to
the meaning of what we have stored. When computers éicstnie available they were exploited for
their fast, repetitive computational capabilities andirtlemormous storage capacity. Application
software development progressed rapidly idata-centric environment. Content was stored as data
that were fed into algorithms to produce solutions to pieel@fproblems in a static problem solving
context. It is surprising that such a simplistic andieiglly contrived problem solving environment
was found to be acceptable for several decades of intesmmmguter technology development.

When we established the Collaborative Agent Design &elseCenter at Cal Poly in 1986, we had a
vision. We envisioned that users should be able to sit @wrcomputer terminal and solve problems
collaboratively with the computer. The computer shdagddable to continuously assist and advise the
user during the decision-making process. Moreover, weailptetl that one should be able to develop
software modules that could spontaneously react in eahtime to changing events in the problem
situation, analyze the impact of the events, propdigenative courses of action, and evaluate the
merits of such proposals. What we soon discoveredieasaively set out to develop an intelligent
decision-support system, is that we could not make mucHbwagawith data in a dynamically
changing problem environment.

Initially focusing on engineering design, we had no diffiesltat all developing a software module
that could calculate the daylight available inside a raasripng as we specified to the computer the
precise location and dimensions of the window, the gegymet the room, and made some
assumptions about external conditions. However, it mhd seem possible for the computer to
determine on its own that there was a need for a wiradlwwhere that window might be best located.
The ability of the computer to make these determinatiors pe@amount to us. We wanted the
computer to be a useful assistant that we could coladorith as we explored alternative design
solutions. In short, we wanted the computer to functmdligently in a dynamic environment,
continuously looking for opportunities to assist, suggestjuate, and, in particular, alert us whenever
we pursued solution alternatives that were essentiatlpractical or even feasible.

We soon realized that to function in this role outwafe modules had to be ablergason. However,

to be able to reason the computer needs to have somakiimtp understanding of the context within

which it is supposed to reason. The human cognitive systelds lcontext from knowledge and
experience usingnformation (i.e., data with attributes and relationships) as iscbhuilding block.
Interestingly enough the storage medium of the infoonaknowledge and context held by the human
brain is billions of neurons and trillions of connectidne., synapses) among these neurons that are as
unrelated to each other as a penciled note and theddhesgter on which it is stored.

What gives meaning to the written note isragresentation within the framework of a language (e.g.,
English) that can be understood by the reader. Similarly computer we can establish the notion of
meaning if the stored data are represented in an ontologaaldwork of objects, their characteristics,
and their interrelationships. How these objects, atttaristics and relationships are actually stored at
the lowest level of bits (i.e., Os and 1s) in the compistenmaterial to the ability of the computer to
undertake reasoning tasks. The conversion of these bitdataoand the transformation of data into
information, knowledge and context takes place at hilghvels, and is ultimately made possible by the
skillful construction of a network of richly describebjects and their relationships that represent those
physical and conceptual aspects of the real world thatadmputer is required to reason about.

This is what is meant by an information-centric compbesed decision-support environment. One
can further argue that to refer to the ability of commuteunderstand andreason aboutinformation is
no more or less of a trick of our imagination thametfer to the ability of human beings to understand

3

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

and reason about information. In other words, the camti@nuscule charges that are stored in the
neurons of the human nervous system are no clogbeteepresentation of information than the bits
(i.e., Os and 1s) that are stored in a digital compttewever, whereas the human cognitive system
automatically converts this collection of charges imforimation and knowledge, in the computer we
have to construct the framework and mechanism for thigersion. Such a framework of objects,
attributes and relationships provides a system of integraoftware applications with a common
language that allows software modules (now populargrred to asgents) to reason about events,
monitor changes in the problem situation, and collabosétte each other as they actively assist the
user(s) during the decision-making process. One can aayhikontological framework is a virtual
representation of the real world problem domain, and tti@tagents are dynamic tools capable of
pursuing objectives, extracting and applying knowledge, commting; and collaboratively assisting
the user(s) in the solution of current and future realdyanoblems.

The Need for Software Intelligence

There are essentially two compelling reasons why tisesia increasing need for computer software to
incorporate more and moretelligent capabilities. The first reason relates to the curmaa-
processing bottleneck. Advancements in computer tecnoieer the past several decades have made
it possible to store vast amounts of data in eleatrionm. Based on past manual information handling
practices and implicit acceptance of the principle thatibterpretation of data into information and
knowledge is the responsibility of the human operatdérih@® computer-based data storage devices,
emphasis was placed on storage efficiency rathergr@ressing effectiveness. Typically, data file and
database management methodologies focused on the stoetigeyal and manipulation of data
transactions, rather than tleentext within which the collected data would later become useful
planning, monitoring, assessment, and decision-making tasks.

The second reason is somewhat different in naturelaltes to the complexity of networked computer
and communication systems, and the increased relianocegahizations on the reliability of such
information technology environments as the key enabletheir effectiveness, profitability and
continued existence.

The Data-Processing Bottleneck:The existence of a data-processing bottleneck requimgsef
explanation, as a fundamental issue and one of the pyrifmeces driving the evolution of software
intelligence. The design of any information systech#&ecture must be based on the obvious truth that
the only meaningful reason for capturing and storing dateo iutilize them in some planning or
decision-making process. However for data to be usefydlanners and decision makers they have to
be understood in context. In other words, data are jusibars and words that become meaningful
only when they are viewed within a situational framewoflkis framework is typically defined by
associations that relate data items to each other aimthg@el factors, which influence the meaning of
the data in a particular situation. Succinctly stateenbers and words (i.e., data) found within a rich
set of relationships become information, which provithes necessary context for interpreting the
meaning of the data, the recognition of patterns, anébthaulation of rules, commonly referred to as
knowledge.

The larger an organization the more data it generatdfsatsk captures from external sources. With
the availability of powerful computer hardware and dasabmanagement systems the ability of
organizations to store and order these data in some purposafuler has dramatically increased.
However, at the same time, the expectations and nagdize the stored data in monitoring, planning

4

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

and time-critical decision-making tasks has become@mmhuman resource intensive preoccupation.
In many respects this data-centric focus has becomettiengek that inhibits the ability of the
organization to efficiently and effectively accomplishmission.

Automatic sbsarption of Data as Informaticn

Through Human Held Contoxt

Oreranized
areed
Usrorganized Diata

LOW LEVEL DATA
(UNORGANIZED)
HIGH VOLUME LOW VALUE

Figure 1: Transition from data to knowledge Figure 2: Human interpretation of data

The reasons for this bottleneck are twofold. Firatgeé organizations are forced to focus their
attention and efforts on the almost overwhelming taskslved in converting unordered data into
purposefully ordered data (Figure 1). This involves, in padic the establishment of gateways to a
large number of heterogeneous data sources, the validatnntegration of these sources, the
standardization of nomenclatures, and the collectibrdata elements into logical data models.
Second, with the almost exclusive emphasis on the slamagdicing of data, rather than the capture
and preservation of relationships, the interpretatiaim®imassive and continuously increasing volume
of data is left to the users of the data (Figure 2). &tperience and knowledge stored in the human
cognitive system serves as the necessary contexhdointerpretation and utilization of the ordered
data in monitoring, planning and decision-making processeset, the burden imposed on the
human user of having to interpret large amounts of ddate dbwest levels of context has resulted in a
wasteful and often ineffective application of valuaated scarce human resources. In particular, it
often leads to late or non-recognition of patterngriooked consequences, missed opportunities,
incomplete and inaccurate assessments, inability fmnesin a timely manner, marginal decisions,
and unnecessary human burn-out. These are symptoms in€@nplete information management
environment. An environment that relies entirely on thptare of data and the ability of its human
users to add the relationships to convert the data intomiatton and thereby provide the context that
is required for all effective planning and decision-makindeawors.

A more complete information management environment corssii#a to be the bottom layer of a
three-layer architecture, namely:

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

A Data Layer that integrates heterogeneous data sources into deeasd purposefully
ordered data. It typically includes a wide variety epositories ranging from simple textual
files to databases, Data Portals, Data Warehousgf)ata Marts.

A Mediation Layerthat defines the structure of the data sources (igegcabdata models), data
transfer formats, and data transformation rules. tWeeprincipal purposes of the Mediation
Layer are to facilitate the automated discovery o datd to support the mapping of data to
information. In other words, the Mediation Layerv&s as a registry for all definitions,
schemas, protocols, conventions, and rules that araredgto recognize data within the
appropriate context. The Mediation Layer also sea®sa translation facility for bridging
between data with structural relationships (e.g., basedlegical data model) and information
that is rich in contextual relationships.

An Information Layer that consists of many functionally oriented planningl aecision-
assistance software applications. Typically, thegppli@ations are based on internal
information models (i.e., object models or ontologi#isat are virtual representations of
particular portions of the real world context. By pwg context, the internal information
model of each application is able to support the automatebning capabilities of rule-based
software agents.

In such a three-layered information management envirohren Mediation Layer continuously
populates the information models of the applicationdénlbformation Layer with the data changes
that are fed to it by the Data Layer. This in turn aweally triggers the reasoning capabilities of the
software agents. The collaboration of these agemlseach other and the human users contributes a
powerful, near real-time, adaptive decision-support envieatim The agents can be looked upon as
intelligent, dynamic tools that continuously monitor dapes in the real world. They utilize their
reasoning and computational capabilities to generate ahthevaourses of action in response to both
real world events and user interactions. As a rebalthuman user is relieved of many of the lower
level filtering, analysis, and reasoning tasks that areaessary part of any useful planning and
problem solving process. However, just as importantlg, sbftware agents continuously and
tirelessly monitor the real world execution environmest ¢hanges and events that may impact
current or projected plans.

Increasing Complexity of Information SystemsThe economic impact on an organization that is
required to manually coordinate and maintain hundreds effaaes between data-processing systems
and applications that have nmderstanding of the data that they are required to exchange, is
enormous. Ensuing costs are not only related to thereagent for human resources and technical
maintenance (normally contracted services), but asihe indirect consequences of an information
systems environment that has hundreds of potential faotirgs.

Recent studies conducted by IBM Corporation and others hahlighted the need for autonomic
computing as the organizational expectations and dependanoéoomation services leads to more
and more complex networked computer solutions (Ganek anoi 2003). Patterson et al. (2002)
estimate that at least one-third of an organizationfermmation technology budget is spent on
preventing or recovering from computer system failurdmply stated, as shown in Figure 3,
autonomic computing utilizes thenderstanding that can be represented within an information-centric
software environment to allow systems to automaticaigonfigure themselves under dynamically
changing conditions; discover, diagnose, and reactdmtions; maximize resource utilization to

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

meet end-user needs and system loads; and, anticipatet, dgentify, and protect themselves from
external and internal attacks.

These same studies have found that more than 40%ngduter system disruptions and failures are
due to human error. However, the root cause of these hemars was not found to be lack of

training, but system complexity. When we consider thatpzder downtime due to security breaches
and recovery actions can cost as much as (US)$2 miéomour for banks and brokerage firms, the
need for computer-based systems that are capable obliingtithemselves (i.e., have autonomic

capabilities) assumes critical importance.

I Ability to adapt to dynamically
L. changing environments (e.g., plug . o] .
Self-Configuring | and play devices, addition of new Apﬂ':i:iz:'g ?::ﬁ:;:nw %ﬁg.‘éﬂe?al mf"m":}"’“‘
features and software) without problematic behavior el to identify the problem
disruption.

Ability to anticipate, discover,
diagnose, and react to disruptions.

I Learning

Capabilities
I Ability to monitor and tune
Self-Optimizing resources automatically, across
I multiple heterogeneous systems.

Self-Healing

URNR A

I Ability to anticipate, detect,

Self-Protecting identify, and protect itself from Implements necessary Applies case-based reasoning
I attacks originating anywhere. changes and archives and decision-support

I I d capabilities to correct or
e compensate for the problem

Figure 3: Desirable autonomic capabilities Figure 4: Autonomic self-healing requirements

A core requirement of autonomic computing is the ability @omputer-based information system to
recover from conditions that already have caused otikaly cause some part(s) of the system to fail.
As shown in Figure 4, this kind of self-healing capability neggia system to continuously monitor

itself so that it can identify, analyze and take mtiigaactions, preferably before the disruption takes
place. In addition, the system should be able to lemym fits own experience by maintaining a

knowledge base of past conditions that have caused madiam@nd the corrective measures that
were taken.

In summary, it is clear that the continued expansiometivorks such as the Internet and its successors,
will provide seamless connectivity among countless nodes global scale. While the collection of
data has already increased enormously over the past déwad@ailability of such a global network
will increase the volume of data by several ordersagmiude. Such a volume of raw data is likely to
choke the global network regardless of any advances in ooroation and computer hardware
technology. To overcome this very real problem themr® meed to collect data in context so that only
the data that are relevant and useful are collectddransmitted within the networked environment.
Most (if not all) of the necessary filtering must be aghd automatically for at least three reasons.
First, organizations cannot afford to utilize human weses for repetitive tasks that are tedious and

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

require few human intellectual skills. Second, eveaniforganization could afford to waste its human
resources in this manner it would soon exhaust its resspunader an ever-increasing data load. Third,
it does not make sense for an organizatiobum-out its skilled human resources on low-level tasks
and then not have them available for the higher-lexplogation of the information and knowledge
generated by the lower level tasks.

Finally, the increased reliance on computer-based inftsmaystems mandates a level of reliability
and security that cannot be achieved through manual meams. alhe alternative, an autonomic

computing capability, requires the software that conttioés operation of the system to have some
understanding of system components and their interachiomther words, autonomic computing

software demands a similar internal information-dentepresentation of context that is required in
support of the knowledge management activities in an orgamzadh both cases the availability of

data in context is a prerequisite for the reasoning chgeiof software agents (i.e., the automatic
interpretation of information by the computer).

A Framework for Assessing Software Capabilities

Just like the initial conception and implementationcomputing devices was driven by the human
desire to overcome the limitations of manual calcofatnethods, the advancements in computing
technology during the past 50 years have been driven by 8iee de extend the usefulness of

computer-based systems into virtually every human agtiltitis not surprising that after several

orders of magnitude increases in hardware performanced@mputational speed and data storage
capacity (Pohl 1998)) had been achieved, attention would gradhétlyrom hardware to software.

Increasingly software is being recognized as the vetocledmputers to take over tasks that cannot be
completely predefined at the time the software is devdlople impetus for this desire to elevate
computers beyond data-processing, visualization and predefinbteiprsolving capabilities, is the
need for organizations and individuals to be able to respomet muickly to changes in their
environment. Computer software that hasunderstanding of the data that it is processing must be
designed to execute predefined actions in a predetermined m&nichrsoftware performs very well
in all cases where it is applied under its specified desagulitions and performs increasingly poorly,
if at all, depending on how much the real world condgimary from those design specifications.
Instead, what is needed is software that incorporatds, twhich can autonomously adapt to changes
in the application environment.

Adaptable software presupposes the ability to perform sogreelef automated reasoning. However,
the critical prerequisite for reasoning is the situati@meatext within which the reasoning activity is
framed. It is therefore not surprising that the evolutbromputer software in recent years has been
largely preoccupied with the relationship between thepeaational capabilities and the representation
of the data that feed these capabilities. One could arguethé historical path from unconnected
atomic data elements, to data structures, relationabdsags, data objects, object-oriented databases,
object models, and ontologies, has been driven by the degwevide information context in support

of automated reasoning capabilities.

However, to be able to present a true historical perspeat the evolution of software it is necessary
to take into account a more comprehensive set of iexitier fact, there are several factors that have in
the past and are continuing to contribute to the evalubibintelligent software. This section will

attempt to establish a set of categorization criterisetrve as a framework for tracing the capabilities
of software. Since these capabilities are closelytaeldo the design and implementation of the
computer-based environment within which the software is reduo operate, the proposed framework

8

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent

Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

will utilize system architecture as a yardstick and milestone component. The followightesystem
architectures have been selected to serve as miledturhe assessment of software capabilities:

Single data-centric applicationshat operate in a stand-alone mode and receive data fro
user interaction and other closely coupled sources (&t files and dedicated databases).

Confederation of linked data-centric applicationwith application-to-application data
bridges. Also described agtove-pipe systems because the system components are
essentially hardwired to only work together within th@nfederation.

Shared database systensensisting of multiple data-centric applications theg¢ able to
share data between themselves and a common repoditicrygih application-to-database
bridges. The repository may be either a single datalmaaealistributed database facility.

Distributed expert systemsith dedicated knowledge bases (i.e., rules) and a sigieed
fact list (i.e., data).

Distributed static information-based applicationwith collaborative agents, capable of
exchanging data with external data-centric applications.

Distributed static information-sharing applicationsvith collaborative agents, capable of
interoperating at thenformation level with other ontology-based applications (i.e.,
information-centric applications) and capable of exgireag data with external data-centric
applications.

Distributed extensible information-sharing applicationsith collaborative agents, capable
of interoperating at thenformation level with other ontology-based applications and
capable of extending their internal information repregation (i.e., ontology) during
execution.

Semantic Web servicesapable of discovering other Web services and dynamicall
configuring themselves into distributed systems on an as-théxaces.

- - stand- [linked [shared de- extensible competitjve]
0|Sy5tem Configuration | 4ione |{systems ||database ;g;‘vpilcids services || services

o - R _s%arse] 1Eich e_xtecnsible dyPamic
: objectifi inform-[] inform-[] inform-| | inform-
el Internal Representation | 4.+, || gata ation ation | ation L} ation]
model model model model
- static static [feooperativd] pattern [Jeollabor; generated]
el Solution Methodology |- cr 7 iles agents Hmatchingl] .2tve |1"agents
b agents
| Assist C biliti predefined| Jpredefined extensiblel‘ generated[] mobile
SStance ey solutions|]| tools tools tools tools
| il rememb- reasoning| |discover- | i creatin
Intellectual Capabilities ering 9 ing earning 9
- domain [system H inform- self-
el Internal Understanding none | ke - ctions awareness.la\,f;'é’,?essrawareness]

Figure 5: Software characterization categories anddapability criteria

9

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

The software capabilities that have been in the paste still today prevalently applied in each of
these system architectures are characterized withirapixbdity groups as shown in Figure 5. While
the first of these groups (i.e., Group @ystem Configuration) is intended to describe principal
architectural features, the other five groups are focusebeotiegree to which the software is capable
of representing and processing data with or without contextartnership with the human user.
Fundamental in this respect is Group (RBjernal Representation. The manner in which an application
represents the data that it is intended to manipulatengally determines the level of software
intelligence that the application is capable of suppgrtdroup (2) differentiates among applications
that represent data without context (i.eaw data and objectified data), applications that provide
context in the form of a static, eithgparse or rich information model, and applications with
information models that are extensible during executime distinction betweemxtensible and
dynamic information models relates to the ability of an amdlen to extend its own information
model through interaction with other known applicationsti@ough thediscovery of unknown
applications. The remaining four groups address the genetdiosomethodology available to the
application, its decision-support capabilities, and tkellef internalunderstanding of its capabilities,
activities and intrinsic nature. The divisions within lead the groups will be defined in more detalil
during the discussion of each of the eight systemtaatares.

3 - UL linked [shared [de- M censible[fompetitve - - stand- shared [1 de- M oersible[feompetitve
System Configuration L <ystems | Jdatabase | ::'I';'vpiltg services || services System Configuration | 5jgne database |f €OUPIed |} coryices || services

services

raw bjectified ,spfarse ;i(h .LMLflllmL dypami(raw objectified Vspfarse L} ;i(h _u.LFun_uL dypami(
: ol inform-[1 inform-[7 inform-[] inform- _ inform-I inform-[1 inform-[inform-
Internal Representation data l data atl%ﬂ ation | 'ation atl%n Internal Representation data I data l a‘u%rl 1| “ation | ation a“%n
model maodel [] model model model || model [] model || model
a static i1 pattern [collaborMgenerated a static i pattern [|collaborfigenerated
Solution Methodology [rules H agents Hmatchingld 3tve L agents 20 ton Methodorogy WSTR[rules | agents Hmatcingld Ve LFagents
USER Data
€ . Bridges
| e External
Data
Sources Single
Pro
“Application
[Assistance capatiltes Pioon || "toots || oo | eols [I [Assistance capabilies "roon 1| "tools || teos || ool [l
b C Ha H . H rememb- . M - P
I\ntcllcctua\Capabilitics reﬁng reasoning| d'ﬁ;‘?’ learning] | creating I\ntel\cctua\Capabilitics g [resoning d”‘fn";” learning] | creating
- domain M syst inform- | : - domain H syst inform- |4 .
I\nternal Understanding m:gﬂrl syswerm ation “:‘tl I\ntemal Understanding fu‘rj\g::::‘u SysLam ation “:'h‘“

data-centric applications

The first system architecture for discussion (Figures@epresentative of the typical early computer
applications, namely a stand-alone application thatives all of its data from the user and/or data
sources that are considered to be part of the apphcatibiether or not the data are treated as discrete
elements or objects, tHaternal Representation includes only a very limited set of relationships and
therefore lacks context. Under these circumstantesAssistance Capabilities are limited to
predefined solutions utilizing static algorithms. No internatlerstanding can be provided by the
representation of data without relationships, and Ititelectual Capabilities of the software are

10

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

restricted toremembering since the data are stored in the computer. The sexysbtelm architecture
(Figure 7) adds data bridges between several data-capjpiications. Each bridge is simply an
application-to-application mapping of the data format of application to the other. Therefore, the
only capability that this architecture adds to the previousgudsed architecture is that tBgstem
Configuration supports a confederation of tightly linked applications.

: - stand- [1 linked ared de- extensible| fompetitve | - : stand- [1 linked ared de- extensible| Jompetity
|5ystem Configuration alone |Jsystems | JRaees coupled services || services System Configuration alone |{systems | e M | coupled services || services

services services

sparse rich blelddynamic] parse rich extensible|] dynamic]

extensibl P -
ICL BB inform-[1 inform- [inform-[inform- g raw [Tobjectifiec 0 inform-[inform-[| inform-
Internal Representation [Ees l Nata ati%n o || ‘ifan ati%n |\mernaIRepresen:at|an data data nior oo || " ati%n
model model [] model [model ode model [| model model
solution Methodolo, 3 static pattern [collaborlgenerated I—Emutinn Methodolo static static [Teeret T a Ul fcollaborMaenerated
L QWA rules || agents matching| a’;gﬁs LI agents ay ithmsl rules LEDRE a g :gtéﬁs W agents

¢ Base
(Rules)
if Ba:
Gt Rules

8 T extensiblefgenerated bill I i p s[M|extensible[Mgeneral ted bill
IAsslstancE Capabilities b'tm:vls tools | tools | nfl.goll:] lAsslstan.:E Capabllities ;olutinns oo tools _5 tools | m‘l;ul‘:]
Ilntcllcv:tual Capabilities) eringl} ww”mg:d\s‘(nu;er—: learning : creating I\ntcllcctual Capabilities re::;n;b— easoning d\;‘(no;l!r-: Iearning:crealmg

in H inform- | d inform- 1
[t Under g ﬂf‘ﬂi?i’o’& || ation [1, s [internl Understanding none [Fpsoal 0T N aton 1 0
Figure 8. Shared database systems Figure 9: Distributed expert systems

The shared database architecture (Figure 8) constitutagpaimprovement over the first two system
architectures by separating the data from the applicatimh placing the former into a common
repository that is external to all of the applicatiohbe recognition that data and not the application
should be the dominant component of a data-processing envirbsatemnhe stage for interoperability
and intelligent software. However, it does not dineabntribute any additional capabilities to the
software criteria. The reason is the absence of dataxio and this applies equally to the three system
architectures discussed so far.

The distributed expert system architecture shown in Figune the other hand, by virtue of its internal
knowledge base of rules driven by a shared repositorgat$,fadds several new capabilities to the
software. Each knowledge base provides relationships anefdies represents a local component of
what might be characterized as a sparse informatmiemThis model provides adequate support for
some form of automated reasoning within the typicallyrovar domain of each expert system.
Although the expert systems (or agents) now operatoésrather than predetermined solutions, their
rules are nevertheless predefined and typically not aekierduring execution.

For at least two reasons the concept of expert systepnesents a milestone in the transition from
data-processing to information-centric software. Firshiowed that automated rule-based reasoning is
in fact feasible and thereby allowed the field of anaficntelligence to regain some confidence after
its earlier failures. Second, the largely opportunistittggn-matching nature of an expert system laid
the foundations for the notion of demon-like moduleshwatrticular data interests that could be
triggered into action by data changes. Over the next datede modules developed inlexible

11

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

software agents that asguated in some environment and capableaatfonomous actions (Wooldridge
and Jennings 1995, Pohl et al. 2001 (32-33)). It was highly desirakilecf® agents to be capable of
acting without the direct intervention of human udersother agents), thereby providing the system
with some degree of control over its own actions aternal state. The ability to achieve this level of
autonomous behavior was greatly facilitated by situatiegatipent in a sufficiently well represented
environment, which it can monitor and act upon. Triggered nts&ronment the agent is then able to
respond to changes in the environment, exercise intitieeigh goal-directed reasoning capabilities,
and utilize the services of other agents (includinghtiman user) to supplement its own problem-
solving capabilities through collaboration.

The desire for software agents to perform increasinglyemaluable and human-like reasoning tasks
focused a great deal of attention on the virtual reptasen of the real world environment in which
the agent is situated. It became clear that the reagaapabilities of a rule-based software agent
depend largely on the richness of the virtual representadib this physical and conceptual
environment. Taking advantage of the capabilities of olgjgetited languages, which allow objects to
be represented as classes with attributes and relaipsns new generation of application software
with internal object-based information models wasnb(ffigures 10, 11 and 12). These are often
referred to as ontology-based applications and are tipdiatributed in nature.

It should be noted that the term ontology is commonbBdusther loosely as a synonym for object
model. Strictly speaking, however, the term ontologydasuch broader definition. It actually refers
to the entire knowledge in a particular field. In th&se, an ontology includes both an object model
and the software agents that are capable of reasorng ialbormation within the context provided by
the object model (i.e., since the agents utilize busingles, which constitute some of the knowledge
within a particular domain). However, in this chapterrtie@e common use of the term ontology as an
object model that provides context in support of rule-bageohta that are external to the ontology
(i.e., object model) is implied.

o = stand- linked shared ae extensible[] - - = stand- linked shared de extensible| feompstitve
System Configuration alone |Jsystems [Jdatabase | Ml | services | services System Configuration alone |lsystems [ldatabase | Mmool | services L services

rich extensiblel | dynamic] sparse rich extensible| dynamic]

fre sparse | B . Spi . e
. raw [Tobjectified inform-[Ttru. 8| inform-|] inform- faw [objectified™ inform-[WLLIR inform-[]inform-
|\merna| Representation data data alilg{] ation ation %n Internal Representation data data atio ation ation %n
model [REEE m el el

ati ati
mo: mode| [LGENT| model mo

static static poperativeg patte icollaborgenerat ed| I— static static poperative patte collabor{generated
|So|u|\on Methodology ithmskd rules age " A | ative | 1000t Solution Methodology ithmsld rules oe . M| ative | Fogents

agents agents

&
{=]
[sK
EE

|A55istance Capabilities eneratedl mobile]

P L P i exter
solutions tools 00 tools || tools

|Assistance Capabilities

2 i p i extes el mobile
solutions|d tools 00 00 tools

rermemb- SRR discover-|]

. 1 rememb- An
ering g teaning | creating [intellectual capabilities L] | discover

> ing[| creatin
ering ing W learning | ing

I Intellectual Capabilities

e o
I\memal Understanding none ° ons D awareness 1. & on elf I\ntemalUnderstanding none

Waren

self-
lawaren:

Figure 10: Information-based applications Figure 11: Information-sharing applications

12

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

The information-based architecture shown in Figure 1@&fyi consists of components (e.g., agents
and user-interfaces) that communicate with each otlteugh an information-serving collaboration
facility. Each component includes a relevant portiothef ontology and a subscription profile of the
kind of information that it is interested in receivingr this facility. Since the components have at
least a limited understanding of the real world situatiaty the changes in the situation need to be
communicated to them. While the existence of a subgmmipservice obviates the need for
computationally expensive queries in most cases, the afailitgstrict the communication to changes
in information also greatly reduces the amount of datahidsto be exchanged. This applies equally to
the information-sharing architecture and the extensiiftermation architecture shown in Figures 11
and 12, respectively. Also, in all three of these safeénarchitectures, system capabilities support (and
promote) decoupled applications that interact via thesgcesr which are accessed internally through
clearly defined interfaces. Apart from simplifying tdesign and development of such applications,
this allows services to be seamlessly replaced asdsrfe replacement service adheres to the same
interface definition.

- - stand- [linked [shared [de- [jeeemeeme= ... : stand- [linked [shared [] de- M ayensivie[Topr iy
System Configuration | jone systems ﬁarzmw_:gw’ii‘g services NS System Configuration | sjone systems |{database || €0UPled ['services servicesl

M services

— _ _5|:|far5e . ;\ch extensible :_!yPam\C — _ _5r_;ar5e in Pch e uf\ sible) ;lypamic
i jobjectified™ {nfarm-[1 inform- o inform- objectified™ infarm-[1 inform- [inform-| il

Internal Representation data data | atio ation atio atio! Internal Representation data data ation |} ation || ation ation |
mode model| ode mode| mode| [] model [] model [GEEE]

I— static static pattern gcollabor-g M| I— static static 1EEEE LYy <ollabor-g generated
Solution Methocology ithmsfd rules | agents matchingl L [“agents Solution Methodology ithim rules M agents Umatching| JICHGIEL RETERTS |

a
agents agents

&

lAsswstance Capabilities ;oluli.uns " tools ® 00 i ko .‘.’ - rqgglile] lAss\stancE Capabilities ;quli.uns " tools
Ilnmllectua\ Capabilities re;n:nn;b easoning | “SEOVEr | leaming || B Ilmcllcctua\ Capabilities re::;‘n;b easoning | discove B reating
IImernaIUnderstanding none ‘_' " "f""u Ilnternalunderstanding none ‘_' s
Figure 12: Extensible information-sharing Figure 13: Semantic Web services
applications

The principal differences among these three archites{uee, Figures 10, 11 and 12) are related to the
adaptability and accessibility of the ontology within lea¢ the information-centric systems. First, in
both the information-based (Figure 10) and the informadlmaring (Figure 11) architectures the
ontologies are predefined at the time the applicatamescompiled and cannot be changed during
execution. While it is certainly possible to build into@tology some degree of flexibility that allows
for the definition of variations of existing object typksing execution, the context-based definition of
new objects requires the application to be recompitedther words, the ontology is essentially static
after the application has been compiled. In the eitilengformation-sharing architecture shown in
Figure 12, an application is able to gain and share knowldtgeigh its interactions with other
applications that have similar capabilities, or witlmiaun users. The ability of an application to extend

13

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

its understanding (i.e., to increase the context withiclvits agents are able to reason about changes
in the real world situation) is still largely a subje¢tresearch. It involves the construction of context
from data with sparse relationships, which intuitivelyuld appear to be a poor approach. However,
utilizing lexical (Fellbaum 1998) and algorithmic approaches odgeel in the natural language
research domain (Pedersen and Bruce 1998), some surprisinglisipgp progress has been made
recently in this area in the commercial arena (Qa¢<l).

Second, in terms of accessibility, the subscriptiopabdities embedded in the components of an
information-based system can be equally applied acro#fpla systems by having the information-
serving collaboration facility of one system subsettib the information-serving collaboration facility
of another system. This is potentially a very poweasfyproach that allows information-centric systems
to scale as clusters of networks within a networked envirahme

The software architectures described so far (i.e., Fighites12) progressively evolved from: stand-
alone systems that encapsulate their own data; temsgsthat are able to share data based on
predefined formats for data representation; to systentsiribarporate rich but static information
models and are able to support automated reasoning capabilii systems that are able to extend
their internal information models in collaboration hvisimilar ontology-based external systems.
Within this evolutionary path the transition from datadshsto information-based internal
representation schemas is the enabling step that has/@hdmftware with increasingly intelligent
capabilities. However, the fundamental mechanism &diexing these capabilities is the ability to
automatically reason about changes in the current statee situation described by the information
model. Once expert systems (Figure 9) had demonstrateckfsaining capabilities could be provided
by conditional rules (i.e., a knowledge base of productiand)triggered by changes in a simple fact-
list, it became clear that much could be gained by expgritie representational capabilities of the
fact-list and incorporating in it many of the relationshipat were formerly encoded in the rules of the
knowledge base. This contributed to the formal separatihnn an application of the representation
(i.e., object model or ontology) and the logic thaggplied to this representation by agents. While
initially most of the complexity of these ontologgd®ed applications continued to reside in the agents,
the availability of more powerful modeling concepts andstagradually allowing more and more of
the complexity to be moved from the agents into th®logy. This suggests a trend that appears to
mirror the earlier separation of an application frdra tata it is designed to manipulate (Figure 8),
namely the separation of the information represemtatrom the applications that incorporate
reasoning capabilities. The combination of this trend wvath information-centric Internet-like
environment will cast applications into the role of daiy-based services.

This is the emerging concept portrayed by the semantic 3&efices architecture shown in Figure 13.
However, before describing this software architecture teccessary to briefly discuss the architecture
and capabilities of the existing data-centric Web sesvié@ey typically comprise a Web-Server that
utilizes the Hyper-Text Transfer Protocol (HTTP) foommunication, the Universal Description
Discovery and Integration (UDDI) protocol as part of tstandard definition of Web services
registries, and a Registry that already containsrary ¢or the accessing application as well as any
number of other Web services. UDDI is an internaliat@andard that defines a set of methods for
accessing a Registry that provides certain informatiorartoaccessing application. For perhaps
historical reasons UDDI is structured to provide informa@dout organizations, such as: who (about
the particular organization); what (what services arélaa); and, where (where are these services
available).

14

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

The Simple Object Access Protocol (SOAP) defines a pobfor the direct exchange of data objects
between software systems in a networked environment. lide®a means of representing objects at
execution time, regardless of the underlying computer langu8@AP defines methods for
representing the attributes and associations of antdbjéte Extensible Markup Language (XML). It
is actually a meta-protocol based on XML that can be tsatkfine new protocols within a clearly
defined, but flexible framework.

Web-Services are designed to be accessed by softwdhe ¢arrently prevalent data-centric software
environment they are generally clients to the middlewéidata sources. The middleware collects the
required data and sends them back to the Web serviceh wdfcrmats the data using the SOAP
protocol and passes them onto the requester. Depending anmgitsal specifications, the requesting
application will have the data downloaded on disk or redéiem directly on-line. If the Web service

is a data-centric application then a data-to-datestasion must be performed in much the same way as
is necessary when passing data between two data-cgpplications.

Returning to the software architecture shown in Figure Eethphasis is on the wosdmantic. In

this architecture the semantics are embedded in an ontelbgh) provides the necessary context for
automated reasoning. A semantic Web service, therem@) ontology-based application (may be
mobile) with certain capabilities. Given a particulatent it seeks the services that it determines to be
necessary for satisfying this intent. Having found onenore such Web services it self-configures
itself with these discovered services into a temposgsyem. Depending on needs and circumstances
this transitory system may reconfigure itself by discaydexisting members when their capabilities
are no longer needed, by adding new members when other meguisarise, or by dissolving itself
altogether once it determines that its intent has bdeqguately executed.

To meet these capability objectives a semantic Webcgergaches the highest-level criteria in all but
one of the six software characterization categofesva in Figures 5 and 13. First, it operates in a
competitive environment where it can select a servioanfrseveral offering candidates, and
presumably negotiate the terms of acceptance. Seconuhcatporates a rich and extensible
information model that will change dynamically as #smantic Web service discovers, collaborates
with, and shares ontology fragments with its tramgipartners. This provides the ability to create and
maintain a desirable degree of common understanding whkirself-configured system. Third, by
virtue of this common understanding the agents of each meshibee system are able to collaborate
beyond the boundaries of the particular semantic Véelace that they are housed in. Furthermore,
any new agents that may be generated in responsestertly emerged need will likewise be able to
collaborate globally within the system.

Forth, the agents, which constitute the primary assist@apabilities of the system, become highly
adaptable tools. They are extensible, they may be genahatadnically during execution to satisfy
emerging new needs, and they can be implemented tategara mobile mode. Fifth, the collective
intellectual capabilities of the system include the abildydiscover capabilities that may be made
available by external services and the ability to in&e@sunderstanding of context by extending the
ontologies of one or more of its members through thesraction and the addition of new members to
the system. It can be argued that this dynamic acquisitionew knowledge is a form of learning,
however, it does not necessarily imply an abilitycreate new knowledge. Whether or not the
semantic Web architecture will be able to create new ladye is very much a matter of conjecture at
this time.

Finally, in thelnternal Understanding category the semantic Web architecture is rated to tieve
potential for reaching the highest criteriedf-awareness. Subject to the current body of knowledge in

15

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

the field of representation and near term expectafimnadvances in research, this characterization
category has been based entirely on the ability to modeimation in software. Ontologies are
capable of not only representing physical objects such iédings, conveyances (e.g., cars, boats,
aircraft), supplies, weapons, and organizations, but alsceptual objects such as the notions of
mobility, threat, privacy, security, consumability, amman. This has been the predominant focus of
ontologies to date. However, in addition, ontologies able to represent the behavioral characteristics
and relationships of the components of the softwareesy#self. This is the domain of autonomic
computing discussed previously, whereby a system is chargbccentinuously monitoring its own
performance, exposure to intrusion, vulnerability toufal or degradation, and the spontaneous
implementation of remedies as needs arise.

A third and much higher level of representation is thétalaif a system to express to another system
its nature, interests and capabilities. What is imphece is not simply an indication that this is a
software system written in the Java computer language, gugpthe following interface protocols,
and listing explicitly defined capabilities. This kind ofpéigit introduction is similar to the directed
search capabilities that are offered by the query feslaf any database management system available
today. To fully support the requirementsds$covery the system should be able to communicate its
nature, interests and capabilities in a conceptual maiiher.analogy in the database domain is a
conceptual search capability, where the target of threlsé&aonly vaguely defined as being something
like something else and is expected to extend beyond theldmaesm of any particular database or
database management system (Pohl et al. 1999, 69-74). Thg tbilitpresent this kind ogelf-
awareness in an ontology appears to be well beyond current knowledgkeling capabilities.

The Semantic Web Initiative

It is unlikely that anyone predicted in the early 1970s wHen Internet first appeared on the
foundations of the ARPANET project funded by the U.Sp&tment of Defense Advanced Research
Projects Agency (DARPA) that some 30 years later in 2883nternet would be used on a regular
basis by more than 600 million people and serve as tlferpe medium for close to (US)$4 trillion in
business transactions. However, although the Interoeidas almost instant global connectivity and
potential access to an enormous volume of informaathrf that information is stored in a low-level
form as data. As a result, even the most powerfuickeengines can do little more than pattern-match
on keywords as they attempt to retrieve user requestaanation. The product of such data searches
is typically hundreds of information source referendes thay or may not be useful to the human
user. The latter may then have to spend hours reviewriy ®urce to determine whether it is relevant
to the purpose of the search. This was not the interdfotihe creators of the World Wide Web
(Berners-Lee and Fischetti 1999).

There is a valid concern that the more successfuhtieenet becomes in providing global connectivity
to millions of users, with a corresponding exponentialvginoin the availability of information, the
less useful it will become as a source of informati®uccinctly stated the evolution of the Internet,
like software systems in general, has been driven baliitiey of computers to rapidly manipulate vast
amounts of data without any understanding of the meanitigeadata being processed. The vision of
the Semantic Web is intended to overcome this sedefisiency by making the information on the
World Wide Web understandable by computer software. Sifythgsovision have become evident with
the increasing interest in adding semantics to data.

The historical development of data manipulation and stor@gdniques initially showed a
preoccupation with efficiency, leading to the deletiorcomtext in favor of the arrangement of data

16

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

into neatly packaged records. This appeared to be a pgifegidal approach in line with the notion
that the application, and not the data, is the enalbldre desired functionality. Accordingly, the data
requirements were encapsulated in the applicationeaad when programming languages began to
acquire object-oriented facilities the more prominefe essigned to data was largely hidden from the
users deep inside the application.

All of this seemed to work quite well until the need fateroperability and the attendant requirement
for the exchange of data among applications surfaced.pfallems were quickly recognized. First,
since each application controlled its own data schemdinking of multiple applications required
application-to-application data mappings that led to haetivsystems. It soon became apparent that
while it was possible to maintain the vertical flowdzfta within each of these stovepipe systems, it
was inordinately difficult to exchange data horizdgtdletween stovepipes. The second problem
centered on this need for horizontal interoperabilitywHo exchange data between two stovepipe
systems so that the receiving application will be ableré@ess the imported data in a useful manner?
There appeared to be two possible approaches for addressngrofilem, to either explicitly
predefine the data exchange format and content or to raddning-identifiers to the data. The first
approach, while providing a modest level of interoperabftitthe short term, exacerbated the problem
in the long term. The hardwired data bridges were diffiantl costly to maintain, provided little (if
any) flexibility, and constituted multiple system failup®ints. The second approach led to the
definition of standard data exchange protocols that conveytde receiving application at least some
indication of the meaning of an imported data package. €detlprotocols the Extensible Markup
Language (XML) is rapidly gaining widespread acceptance. Xihvides a degree of syntactic
interoperability through nested data record delimiters, (Lnicode characters), data meaning-
identifiers (i.e., tags), and links to other resources, Wniform Resource ldentifiers).

Does a protocol like XML convey sufficient meaning to supgastizontal interoperability? The
answer is, no. The XML elements that are added to aetateange package to convey meaning are of
value only if the receiving application understands the nafreach element. For example, the tag
nameaddress is only useful to the receiving application if it inpeets that name to have the same
meaning as the meaning assumed by the sending applicatipaddress could mearstreet address,
e-mail address, object reference ID, etc.). However, XML does provide a syntactic foundatayer on
which other layers such as the Resource Description Mrark€RDF) can be built. The combination
of these layers will serve as the enabling structurehat vg referred to as the Semantic Web.

The vision of the Semantic Web is an information-cem@neironment in which autonomous software
services with the ability to interpret data imported frother services are able to combine their
abilities to accomplish some useful intent. This ibt@ay range from simply finding a particular item

of information to the more sophisticated tasks of dieciog patterns of data changes, identifying and
utilizing previously unknown resources, and providing ingeltit decision-assistance in complex and
time-critical problem situations. An example of suchearironment is the TEGRID proof-of-concept

system that was first demonstrated by the Collabaratigent Design Research Center (CADRC)
during an Office of Naval Research Workshop in Washingto®eijptember 2002 (Gollery and Pohl

2002, Gollery 2002). A summary of this demonstration is proviidéde following sectioh

2 This section is a revised version of a paper presexgepart of a demonstration of the TEGRID system dutie
Office of Naval Research Workshop and Conference tidsyethe Collaborative Agent Design Research Center
(CADRC) of the California Polytechnic State Universfyal Poly, San Luis Obispo) in Quantico, Virginia, USA
September 18-19 2002. (Gollery and Pohl 2002)

17

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

TEGRID: An Experimental Web Services System

The principal components of the TEGRID demonstratien antology-based Web services that are
capable of seeking and discovering existing Web servicespditetheir own information models
through the information model of any discovered Web serand automatically reasoning about the
state of their internal information models. As showrFigure 14, these components (referred to as
Cyber-Spiders in TEGRID) consist of three principal congris: a Web server; a semantic Web
service; and, an information-centric application.

The Web server, utilizing the standard Hypertext TranBfetocol (HTTP), serves as the gateway
through which the Cyber-Spider gains access to other exig¥ieb services. Existing Web servers
primarily provide access to Hypertext Markup Language (HTM&a)a sources and perform only
simple operations that enable access to externally gmoged functionality. However, these simple
operations currently form the building blocks of the WMWide Web.

| Scena rio'I
Since Fall 2001 California has been threatened by
intermittent electric power shortages. TEGRID is
— designed to assist the Los Angles County Sheriff's
Department to respond to rotating power blackouts.

Extensible
Infermation-Centric

Application I Pl ayers |

£07

EOB: Emergency Operations Bureau
O 7
',,E ‘) Lss: Local Sheriff Station

P
B

Web Server PSO: Power Supply Organization

@ TCO: Traffic Control Organization

T

Semantic
Web Service

B @ WSK: Web Services Kiosk (LA County)

@ RRT: Rapid Response Team

Figurel4: Anatomy of a Cyber-Spider Figure 15: Cast of TEGRID players

The second component of a Cyber-Spider is a semantir 3&krice (i.e., a Web service with an
internal information model). A Web service is aceesshrough a Web server utilizing standard
protocols (e.g., UDDI, SOAP, WSDL, SML) and is capabiemviding programmed functionality.
However, clients to a standard Web service are usuadiiricted to those services that implement
specific predefined interfaces. The implementation of B&ices in the Internet environment allows
organizations to provide access to applications that aeceptreturn complex objects. Web service
standards also include a limited form of registration drstovery, which provide the ability to
advertise a set of services in such a way that prospectivetgtilmgrams can find services that meet
their needs. The addition of an internal informationdetoin a semantic Web service allows the
storage of semantic level descriptions (i.e., inforomtand the performance of limited operations on
these semantic descriptions. In other words, the séamaetb server component of a Cyber-Spider is
capable ofeasoning.

18

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

The third component of a Cyber-Spider is one or morernmtion-centric applications. These
applications are designed to take advantage of the resqummaded by a number of semantic Web
services, enabling them to reason about the usefulnesacbfservice as a core capability within a
more sophisticated set of discovery strategies. Moreave application component is able to
construct relationships among the information modelsftdrént services, with the ability to integrate
services without requiring agreement on a common infaomamodel.

With these three components Cyber-Spiders are atr@asnally equipped to operate in an Internet
environment as autonomous software entities, capableisdfoveéring needed services; accepting
services from external entities offering such servipesyiding services to external requesters; gaining
context through an internal information model; autonadijicreasoning about available information;
extending their information model during execution; extegdtheir service capabilities during
execution; and, learning from their collaborations.

Demonstration Context: In mid-2001, as California’s demand for electric power egmarilously
close to exceeding availability, the Emergency OperatiBaoreau of the Los Angeles Sheriff's
Department was assigned the additional task of coordgq#ltie response to expected rolling electric
power blackouts. While both the power outage areas anddodl blackout periods were predefined
in terms of a large number of power grid units that arteiloliged throughout the Los Angeles County,
the emergency events that were likely to be triggeredlagkout conditions (e.g., multi-vehicle
accidents, carbon monoxide poisoning in enclosed parkiragegsy fires, criminal activities, and other
disturbances) were less determinate.

The TEGRID proof-of-concept system was designed to abksidtos Angeles Sheriff's Department by
addressing this potentially chaotic situation in an autanmly evolving, just-in-time manner.
TEGRID does not exist as a pre-configured system oflyiditund components that know about the
existence of each other, have predefined connectionspradetermined capabilities. In fact at the
beginning of the demonstration TEGRID, as a system, doeeeally exist at all. What does exist is a
set of cooperating Semantic Web Services, based otestiiWeb Service specifications (e.g., SOAP,
UDDI, WSDL, and XML) enhanced by the ability to share aatit-level descriptions of their own
internal information models.

In essence TEGRID involves sharing information amongnabeu of separate organizations, including
local police stations, the Emergency Operations Bureaawarpsupply management and monitoring
organization, and a traffic control system. The proe¢aricept system relies on a set of assumptions
about the existing resources available from each adr@nizations involved, namely:

1. That each local sheriff station has a database tlwdudies (at least): current officer
assignments; equipment manifests and status; and, datéidgspriority infrastructure
elements and intersections.

2. That the Emergency Operations Bureau has a list of Rapgponse Teams and their
primary and alternative assignments.

3. That there exists some kind of Power Supply Organizatiah tas a database of recent
history of power consumption, plus the ability to provedesal-time feed of current power
levels.

4. That there exists some kind of Traffic Control Orgamizatthat has some method of
determining acceptable alternative routes for reachingteyar destination from a given
starting location.

19

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

Another underlying assumption is that all of these organizaithave Internet connections and either
have an existing Web site or are willing to establisé. GEEGRID builds on these existing information
and data sources to construct a Web service infrastrutitatesupports information-sharing and
automated decision-support.

Since the proof-of-concept system does not have atoelsge databases, it simulates them, using
sample data to implement the demonstration scenahereTare also some potential applications that
must exist in order to support the scenario, but are nobpdiEGRID itself. For example, there is a
requirement that new incidents (e.g., traffic accidewsuld be reported to the local sheriff stations
before they are able to propagate through the system.eSwagorting application is assumed to exist,
and has been simulated in order to produce the dynara&vioe called for in the demonstration
scenario.

TEGRID features several kinds of Web service providershiBathese implements a set of operations
that allows exchange of the information that makesftimetioning of the system possible. These
operations such as subscription, information transfernmg and alert generation, discovery, and
assignment, are the minimum necessary to provide tiatidumality described in the demonstration.
More operations can be easily added as TEGRID’s capadilitcrease in the future.

In addition, TEGRID includes software agents with autiicna@asoning capabilities. Some of these
agents could conceptually be seen as services. Foraastdre Station Monitor Agent is able to
publish alerts that the local stations can subscabartd at the same time the Station Monitor Agent is
able to subscribe to notifications of planned power outages.

Cast of Players: Based on the scenario described above and at the Foguoé 15, the TEGRID cast
of players includes six semantic Web services, namelyEthergency Operations Bureau (EOB) of
the Los Angeles Sheriffs Department; several Localrifh&tations (LSS); a Power Supply
Organization (PSO); a Traffic Control Organization (T)C8everal Rapid Response Teams (RRT);
and, a Los Angeles County Web Services Kiosk (WSK).

Fundamental to each player are three notions. Faesth player operates as antonomous entity
within an environment of other players. Most, but notoélthe other players are also autonomous.
This requires the autonomous players to be abtkstover the capabilities of other players. Second,
each autonomous player has a sensatefit to accomplish one or more objectives. Such objectives
may range from the desire to achieve a goal (e.g.,tamirsituation awareness, coordinate the
response to a time-critical situation, or undertakpredetermined course of action following the
occurrence of a particular event) to the willingnesgrmvide one or more services to other players.
Third, each player (whether autonomous or not) is willlmgt leastooperate with the other players.

In some cases the level of cooperation will extendatoollaborative partnership in which the
partnering players contribute to the accomplishmdéna awommon objective. In other cases the
cooperation may be limited to one player providing a sert@eanother player, without any
understanding or interest in the reasons for the seregeest.

To operate successfully in such an autonomous Internetib@svironment a Cyber-Spider player
should be endowed with the following capabilities:

1. Subscribe to information from external sources (elgrtsaontology extensions).
2. Accept subscriptions from external clients.
3. Dynamically change its subscription profile.

20

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

Extend its internal information representation.
Extend its own service capabilities.
Generate new agents for its own use.
Describe its own service capabilities to external ciient
Seek, evaluate and utilize services offered by extelieals.

9. Provide services to external clients.

10. Describe its own (intent) nature to external clients
The Cyber-Spiders in TEGRID are capable of demonstraigig ef these ten desirable capabilities.
The ability of a Cyber-Spider to dynamically changesitbscription profile (i.e., capability (3) above),
while technically a fairly simple matter, was not impknted because it is not used in the
demonstration scenario. The ability of a Cyber-Spideddscribe its own nature to external clients
(i.e., capability (10) above), on the other hand, itieally a much more difficult proposition. It
would require a Cyber-Spider to have an understanding peitsonality as a collective product of its
internal information model and the relationship of thatdel with the external world. As discussed

previously in this chapter, at best this must be consideddthllenging research area that is beyond the
current capabilities of information-centric softwarstsyns.

© N o o bk

Capabilities and Agents: Stated succinctly, the objective of the TEGRID scenarito demonstrate
the discovery, extensibility, collaboration, automateasoning, and tool creation capabilities of a
distributed, just-in-time, self-configuring, collaborativeulti-agent system in which a number of
loosely coupled semantic Web services associate oppaitalysand cooperatively to collectively
provide decision assistance in a crisis management siu&pecifically, these capabilities may be
defined as follows:

Discovery: Ability of an executing software entity to orient ifsen a virtual cyberspace
environment and discover other software services.

Extensibility: Ability of an executing software entity to extend m$ormation model by gaining
access to portions of the information model of anogixexcuting software entity.

Collaboration: Ability of several semantic Web services to collabeedy assist each other and
human users during time critical decision-making processes

Reasoning: Ability of a software agent to automatically reasdioat events in near real-time
under time critical conditions.

Tool Creation: Ability of a semantic Web service to create an agemerform specific situation
monitoring and reporting functions.

The reasoning capabilities available in TEGRID are perforoyesbftware agents that are components
of the players. In other words, agents are predefinedtgheithin player systems and perform internal
functions that are necessary for the particular glayp deliver its services. The following agents,
functioning as collaborative tools, are availableha turrent TEGRID implementation:

Risk Agent: Assists the Emergency Operations Bureau to identify hgkhentities in the
jurisdictional region of an activated Local Sheriff tita.

Deployment Agent: Assists the Emergency Operations Bureau to determiretheth Rapid
Response Team support is required for a particular astivaical Sheriff Station.

21

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

Power Level Agent: Assists the Power Supply Organization to determine ifefbetric power
demand has exceeded supply.

Situation Agent: Assists the Emergency Operations Bureau to prepare andeupsicdtatus
Report.

Station Monitor Agent: Assists the Emergency Operations Bureau to identiff@hl Sheriff
Stations that will experience power blackouts during theeatiand next blackout cycles.

Status Agent: Assists a Local Sheriff Station to prepare and updst8ittiation Status Report.

Local Station Agent: Assists a Local Sheriff Station to determine whethefigent local
resources are available to deal with current conditions.

Scheduling Agent: Assists the Emergency Operations Bureau to assign RaspoRse Teams
and equipment to situations requiring their involvement.

Incident Agent: Assists the Emergency Operations Bureau to monitor §mnse to a particular
situation supported by one or more of its Rapid Respoeams.

Routing Agent: Assists the Traffic Control Center to determine al¢ive routes to a particular
situation location.

Players’ Intent: The TEGRID players or Cyber-Spiders are initiadizeith intent or willingness to
cooperate based on their role and operational respatiss)ibs follows:

EOB (Emergency Operations Bureau)To be immediately informed of imminent power blackout
conditions, to coordinate all assistance to Local &h8tations (LSS), to maintain situation

awareness, and to take over local command responsgbiithen conditions require actions
that cross the jurisdictional boundaries of two or Md8&s.

LSS (Local Sheriff Station): To activate a predefined response plan as soon as itvaecei
notification from the Emergency Operations Bureau (E@RB} a power blackout condition is
imminent within its jurisdiction, to respond to new emeigemissions in its region, to provide
Rapid Response Teams (RRT) to the EOB, and to requettass from the EOB.

PSO (Power Supply Organization): To share information with subscribers relating to theentrr
status of power demand and availability, to provide subssrilvéh information relating to a
predefined rolling power blackout schedule on request, and rtosalescribers whenever the
schedule is intended to be implemented.

TCO (Traffic Control Organization): To share with subscribers information relating to dnisal
traffic flows under typical conditions, to provide suligers with information relating to traffic
control capabilities (e.g., types and location of tcaffignals, sensors, and web-cameras), and
to provide subscribers with alternate traffic routeseaquest.

RRT (Rapid Response Team)f 0 share with subscribers information relatingt$ocurrent mission
and location, to execute missions requested by the Emgrgyrerations Bureau (EOB), to
provide assistance to any assigned Local Sheriff StétiS68), and to request assistance from
the EOB.

Demonstration Scenario: Armed with their individual intent and intrinsic Cyberi@gr capabilities
(i.e., ability to: discover useful Web services; sulimecito information and accept subscriptions from

22

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

external clients; extend their internal informatiolwdals; describe and provide services to external
clients; seek, evaluate and utilize services offered bgreal clients; and, extend their own service
capabilities by generating new agents) the players comantrer partly intentional and mostly
opportunistic interactions.

QOrientation

The players orient themselves in the virtual cyberspaggament by accessing one or more
directories of available services and registering an nmdion subscription profile with those
services that they believe to be related to theintngigigure 16).

EOB (Emergency Operations Bureau)Accesses the WSK (Los Angeles County Web Services
Kiosk) based on its predefined authorization level, and:

Subscribes to any service changes in the WSK.
Finds the PSO address which it was seeking.
Discovers the TCO.
Discovers all of the LSSs.

2

5 EOB registers subscriptions
ith all L5Ss and PRTs.

Finds address of Power
Supply Organization that
it was seeking.

Accesses the LA County
Web Services Kiosk.

Each LSS

registers a

subscription
% with its RRT.

Discovers the Traffic
Control Organization.

Each LSS registers a
subscription with EOB.

Discovers all of the Local
Sheriff Stations.

Each RTT registers a
subscription with its LSS.

Figure 16: Orientation and discovery Figure 17: Information subscription

Subscription

The players access the services that they requiech®@ve their intent, register appropriate
subscription profiles, and query for information that theljgve to have a need for (Figure 17).

EOB (Emergency Operations Bureau)Registers a subscription profile with each LSS (Local
Sheriff Station) that includes all current police undcdtions, mission
completion events, new mission events, and any infaomahanges relating to
the availability of its RRTs (Rapid Response Teams).

23

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent

Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

Queries each LSS (Local Sheriff Station) for dibrmation relating to its RRTs
(Rapid Response Teams) and extends its information model.

Registers a subscription profile with each RRT (Rdp@&tponse Team) that
includes its current location and mission.

Registers a subscription profile with the PSO (Power Bupmanization) that
includes the current status of electric power demand anthlailiy, and any
change in its intention to implement the predefinedinglpower blackout
schedule.

Registers a subscription profile with the TCO (TicatControl Organization)
that includes any change in the status of traffic signsgmsors, and web-
cameras.

2 2

Agent Agent Agent

Station
Level i Monitor Level T

eployment]
Agent 1C0

Ll

Situatiol
Agent

Status

ent
Status Ag

Agent

Figure 18: Power supyarning

Figure 19: Power outAtgst

LSS (Local Sheriff Station): Each LSS responds to the EOB (Emergency OperationaBure

registration by registering a corresponding subsorpprofile with the EOB

that includes the current mission and location of IBTR (Rapid Response
Teams), any EOB requests and orders to this LSS, andeham the current
Situation Status Report maintained by the EOB.

Each LSS (Local Sheriff Station) registers a stipgon profile with its RRTs
(Rapid Response Teams) that includes the current miasidriocation of the
RRT, mission completion events, and new mission euvghis duplication of its
EOB (Emergency Operations Bureau) subscription profilewslithe LSS to
verify the accuracy of this portion of the Situatiomt8s Report maintained by
the EOB).

TCO (Traffic Control Organization): Registers a subscription profile with the PSO (Power

Supply Organization) to include the location of all curqgower blackout areas.
24

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

RRT (Rapid Response TeanfRegisters a subscription profiles with the EOB (Emecge
Operations Bureau) that includes any requests or ordersstpatticular RRT,
and any changes in conditions that impact the currergionisand location of
this RRT.

Registers a subscription profile with its home baS& I(Local Sheriff Station)
that includes any request for information, and any SitnaStatus Report
maintained by this LSS.

Power Outage Notification

The PSO (Power Supply Organization) alerts its subseriteat a rolling power blackout
condition is imminent (i.e., will commence within 15 mirgjtérigure 18).

PSO (Power Supply Organization): Utilizes its Power Level Agent to continuously monitor
the relationship between power demand and supply. The P®&@nitees that
demand is close to exceeding supply and sendélem to all appropriate
subscribers.

EOB (Emergency Operations BureaufReceives anAlert from the PSO (Power Supply
Organization) that the predefined rolling power blackout scleedull be
implemented within 15 minutes.

Utilizes its Station Monitor Agent to identify all LSSLocal Sheriff Stations)
that will experience power blackouts in their jurisdiatio

Warns all LSSs (Local Sheriff Stations) of the imemt power blackout
condition.

Alerts all LSSs (Local Sheriff Stations) in whosgigdictions blackouts will
occur and requests them to commence immediate implatieentof their
respective Blackout Response Plans.

Warns the RRTs (Rapid Response Teams) assigned to thssisSSs (Local
Sheriff Stations) in whose jurisdictions the first seblackouts are scheduled to
occur, to prepare for potential deployment.

Utilizes its Risk Agent to identify all high-risk enés in the jurisdictions of the
activated LSSs (Local Sheriff Stations). Utilizes Deployment Agent to
determine whether RRT (Rapid Response Team) involvenseanticipated
under normal conditions.

LSS (Local Sheriff Station): Each LSS assumddert status. The LSSs in whose jurisdictions
the first set of blackouts is scheduled to occur, preparejployment.

RRT (Rapid Response Team)the RRTs notified by the EOB (Emergency Operationse8u)
assumeilert status in preparation for potential deployment.

Power Outage Implementation

The PSO (Power Supply Organization) alerts its subscribatshe predefined rolling power
blackout schedule has been implemented (Figure 19).

25

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

PSO (Power Supply Organization): Utilizes its Power Level Agent to determine that demand
has exceeded the availability of electric power.

EOB (Emergency Operations BureaufReceives anAlert from the PSO (Power Supply
Organization) indicating that the predefined rolling powechsdat schedule has
been implemented.

Utilizes its Situation Agent to prepare the first v@nsof the EOB Situation
Status Report.

Alerts all LSSs (Local Sheriff Stations) in whoserigdictions the next
scheduled set of blackouts will occur, to prepare for potetgaloyment.

Warns the RRTs (Rapid Response Teams) assigned $b th&siLSSs (Local
Sheriff Stations) in whose jurisdictions the nextafdblackouts are scheduled to
occur, to prepare for potential deployment.

LSS (Local Sheriff Station): All activated LSSs utilize their Status Agent to preptre first
version of their LSS Situation Status Report.

The LSSs (Local Sheriff Stations) in whose jurisdimm$ the next set of
blackouts is scheduled to occur, prepare for deployment.

Traffic Accident in Power Qutage Area

A multi-car traffic accident occurs in a blackout areaated within the jurisdiction of a
particular LSS (Local Sheriff Station) (Figure 20).

) |

IEOB creates an Incident Agent. I

Incident
Agent

Schedule
Agent

Subscribes to
all accident
information.

RA lScheduIing Agent|
lorders RRT to assist|
LSS,

Local
Station
Agent

Figure 20: Traffic accideftert Figure 21: Routing assistangeest

26

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

EOB (Emergency Operations BureaufReceives ailert from a LSS (Local Sheriff Station) that
a multi-car traffic accident has occurred on Statehit@y 5 south of Harbor
Freeway.

LSS (Local Sheriff Station): Utilizes its Local Station Agent to determine that has
insufficient resources to deal with the multi-carficaficcident.

EOB (Emergency Operations BureaufReceives a request for assistance from the LSS (Loca
Sheriff Station) to deal with the multi-car trafaccident.

Utilizes its Scheduling Agent to assign a RRT (RapidpBRese Team) and
equipment to the multi-car traffic accident.

Creates an Incident Agent to monitor the responséhéo multi-car traffic
accident.

The new Incident Agent subscribes to the LSS (Lobali§ Station) in whose
jurisdiction the multi-car traffic accident has ocadr(to obtain all information
about this accident from now on).

Routing Assistance Required

The dispatched RRT (Rapid Response Team) cannot reachutti-car traffic accident due to
traffic congestion and requests assistance in determamiragternative route (Figure 21) to the
accident.

RRT (Rapid Response TeamBSends alert to the EOB (Emergency Operations Buread) a
requests assistance in determining an alternative rothe toaffic accident.

EOB (Emergency Operations BureaulJtilizes its Incident Agent to determine an alteweti
route. The Incident Agent accesses the WSK (Los Asg€leunty Web
Services Kiosk) and discovers the TCO (Traffic Con@oganization). It then
registers a subscription profile with the TCO that inctudsuting information,
and requests assistance in determining an alternativetootlie traffic accident.

TCO (Traffic Control Organization): Receives the request for assistance from the EOB’s
(Emergency Operations Bureau) Incident Agent and utilizeRouting Agent
to determine an alternative route to the traffic acdiden

Sends the alternate route to the EOB’s Incident Agent

EOB (Emergency Operations BureaufResponds to the RRT (Rapid Response Team) by sending
it the alternate route to the traffic accident.

Significance of the TEGRID Demonstration

The TEGRID proof-of-concept project was undertaken byGblaborative Agent Design Research
Center (CADRC) as an internally funded research emteaith three objectives. The first objective
was to explore the main capabilities that would be reduof Web service type entities (i.e., Cyber-
Spiders) serving as largely autonomous decision-support comfgoimea self-configuring, just-in-
time, intelligent decision-assistance toolkit of cbdeating software agents. Second, to determine if
the currently available information-centric softwaerhnology could support at least basic (i.e.,
meaningful and useful) implementations of these requegabilities. And, third, to build a working

27

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

experimental system that could serve as a test belbriger-term research studies focused on the
behavioral characteristics of self-configuring intelligesystems in general, and the ability of such
systems to deal with specific kinds of dynamic and gemproblem situations.

The principal capabilities that are required by a Cyber-$pasupport the desired self-configuring,
just-in-time, intelligent decision-support behavior haweer identified and demonstrated in the
TEGRID test bed environment, at least at a base léveinationality. These capabilities include the
ability to: discover desired existing external servicasgept and utilize services from external service
providers; provide services to external requesters; gaderstanding through the context provided by
an internal information model; automatically reasooutlavailable information within the context of
the internal information model; extend the internaformation model during execution;
spontaneously generate new agents during execution asatidor new capabilities arises; and, learn
from the collaborations that occur within the cyberspavironment.

References

Berners-Lee T. and M. Fischetti (1999); ‘Weaving thebWkhe Original Design and Ultimate Destiny of the Worlai&V
Web by its Inventor’; Harper, San Francisco, Califarnia

Cass S. (2004); ‘A Fountain of Knowledge’; IEEE Spectrumw.spectrum.ieée Jan.30.

Dreyfuss H. (1979); ‘What Computers Can'’t Do: The Limit#dificial Intelligence’; Harper and Rowe, New York, New
York.

Deyfuss H. and S. Dreyfuss (1986); * Mind Over Machine: Taed? of Human Intuitive Expertise in the Era of the
Computer’; Free Press, New York, New York.

Dreyfuss H. (1997); ‘What Computers Still Can't Do: A tiejie of Artificial Reason’; MIT Press, Cambridge,
Massachusetts.

Fellbaum C. (1998); ‘WordNet, An Electronic Lexical DatsdsaMIT Press, Cambridge, Massachusetts.
Ganek A. and T. Corbi (2003); ‘The Dawning of the Autono@omputing Era’; IBM Systems Journal, 42(1) (pp.5-18).

Gollery S. and J. Pohl (2002); ‘The TEGRID Semantic Vgplication: A Demonstration System with Discovery,
Reasoning and Learning Capabilities’; Office of Navas&rch (ONR)Workshop Series on Collaborative
Decision-Support Systems, hosted by the CollaborativentADesign Research Center (CADRC) of Cal Poly (Sais L
Obispo) in Quantico, VA, September 18-19.

Gollery S. (2002); ‘The Role of Discovery in Context-Builgi Decision-Support Systems’; Office of Naval Research
(ONR) Workshop Series on Collaborative Decision-Suppgstems, hosted by the Collaborative Agent DesigndReise
Center (CADRC) of Cal Poly (San Luis Obispo) in Quantitd, September 18-19.

Horn P. (2001); ‘Autonomic Computing: IBM’s Perspective oa 8tate of Information Technology’; IBM Corporation,
October 15 (www.research.ibm.com/autonomic/manifestat@ntic_computing.pdf).

Lucas J. (1961); ‘Minds, Machines and Goedel’; Philosogbypp. 120-4).
Patterson D., A. Brown, P. Broadwell, G. Candea, KerC J. Cutler, P. Enriquez, A. Fox, E. Kiziman, M. Macher, D.
Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman and mduliaft (2002); ‘Recovery-Oriented Computing (ROC):

Motivation, Definition, Techniques, and Case Studies’; W£kBley, Computer Science Technical Report (UCB//CSD-02-
1175), University of California, Berkeley, California, Mh 15, 2002.

28

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

Pedersen T. and R. Bruce (1998); ‘Knowledge Lean Word-Sesaenbiguitization’; Proceedingd' ®ational Conference
on Artificial Intelligence, July, Madison Wisconsin.

Pohl J.; ‘The Evolution of Intelligent Software and temantic Web’; InterSymp-2004, Proceeding® IrGernational
Conference on Systems Research, Informatics and @atiies, Baden-Baden, Germany, July 30 — August 5 (11-34).

Pohl J. (1998); ‘The Future of Computing: Cyberspace’; inl Boled.) Advances in Collaborative Decision-Support
Systems for Design, Planning, and Execution, focus symposiotarnational Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, Germany, AUgugt (pp.9-28).

Pohl J., A. Chapman, K. Pohl, J. Primrose and A. Woz(1i8R9); 'Decision-Support Systems: Notions, Prototypes, an
In-Use Applications'; Technical Report, CADRU-11-97, CAD &ash Center, Design Institute, College of Architeztur
and Environmental Design, Cal Poly, San Luis Obispo,JaAuary, 1997, reprinted July 1999 (pp.69-74).

Pohl J., M. Porczak, K.J. Pohl, R. Leighton, H. #iss\. Davis, L. Vempati and A. Wood, and T. McVittiand K.
Houshmand (2001); ‘IMMACCS: A Multi-Agent Decision-Support ®yst; Technical Report, CADRU-14-01,
Collaborative Agent Design (CAD) Research Centenl Roly, San Luis Obispo, CA. 2Edition)

Random (1999); ‘Random House Webster’s College Dictionagfid®@m House, New York, New York.

Searle J. (1980); ‘Mind, Brains and Programs’; The Brinavand Brain Sciences, 3 (pp. 417-24).

Searle J. (1992); ‘The Rediscovery of the Mind’; MIT Pr&anbridge, Massachusetts.

Wooldridge M. and N. Jennings (1995); ‘Intelligent Agents: Theorgt Practice’; The Knowledge Engineering Review,
10(2) (pp-115-152).

Semantic Web Bibliography
Berners-Lee T. (2002); ‘Weaving the Web’; Harper, Sam€isco, California.

Berners-Lee T. (2004); ‘What the Semantic Web Can Reptesen
(www.w3.org/Designissues/RDFEnot.hjml

Berners-Lee T., J. Hendler and O. Lassila (2001); eTtisemantic Web’; Scientific American, May
(www.scientificamerican.com/2001/0501issue/0501berners-leg.html

Brickley D. and R. Guha (eds.) (2002); ‘RDF Vocabularyddigsion Language 1.0: RDF Schema’; W3C Working Draft,
April 30 (www.w3.org/TR/rdf-schemy/

Business Week (2002); ‘The Web Weaver Looks Forward’; Irgerviwith TIM Berners-Lee, March 27
(www.businessweek.com/bwdaily/dnflash/mar2002/nf20020327_4579.htm

Carroll J. and J. De Roo (eds.) (2002); ‘Web Ontologyguage (OWL) Test Cases’; W3C Working Draft, October 24
(www.w3.0rg/TR/2002/WD-owl-test-20021024/

Casey M. and M. Austin (2001); ‘Semantic Web MethodolodtesSpatial Decision Support’; Institute for Systems
Research and Department of Civil and Environmental Endgimggddniversity of Maryland, November.

Cohen P., R. Schrag, E. Jones, A. Pease, A. Lin, B, StaEaster, D. Gunning and M. Burke (1998); ‘The DARPgH
Performance Knowledge Bases Project’; Artificial Ifignce Magazine 19(4) (pp-25-49)
(reliant.teknowledge.com/HPKB/Publications/Almag.pdf)

DAML-ONT (2000); fvww.daml.org/2000/10/daml-ont.htjnl

29

Phillips-Wren G. and L. Jain (eds.); Decision Support Sysiemgent-Based Intelligent Environments; Knowledge-Bdstelligent
Engineering Systems Series; IOS Press, Amsterdam, Ttherdads, 2005 (pp. 3-34).

DAML+OIL (2001); (www.daml.org/2001/03/reference.himl

DAML-S (2002); (www.daml.org/services/daml-s/0)7/

Dean M., D. Connaolly, F. van Harmelen, J. HendleHdrrocks, D. McGuinness, P. Patel-Schneider, F. Starn_atein
((eds.) (2002); ‘OWL Web Ontology Language 1.0 Reference3CWWorking Draft 29, July and November 12
(www.w3.org/TR/owl-ref)

Daconta M., L. Obrst and K. Smith (2003); ‘The SemantiebWA Guide to the Future of XML, Web Services, and
Knowledge Management’; Wiley, Indianapolis, Indiana.

Ewalt D. (2002); ‘The Next Web’; Information Week, October
(www.informationweek.com/story/IWK20021010S0016

Fikes R. and D. McGuinness (2001); ‘An Axiomatic SemantcRDF, RDF Schema and DAML+OIL’; KSL Technical
Report (KSL-01-01), October
(www.ksl.stanford.edu/people/dim/daml-semantics/abstractraatio-semantics.htrl

Garshol L. and G. Moore (eds.) (2002); ‘The XML Topic MgpdM) Syntax’; JTC1/SC34:1SO 13250, July 22
(www.y12.doe.gov/sgml/sc34/document/0328 htm

Gil Y. and V. Ratnakar (2002); ‘Markup Languages: Comparisod Bxamples’; Information Sciences Institute,
University of Southern California, TRELLIS project
(www.isi.edu/expect/web/semanticweb/comparison html

Heflin J., R. Volz and J. Dale (eds.) (2002); ‘Requirermdat a Web Ontology Language’; W3C Working Draft, Jaly
(www.w3.org/TR/webont-req

Hendler J., T. Berners-Lee and E. Miller (2002); ‘Insgong Applications on the Semantic Web’; Journal of tistitute of
Electrical Engineers of Japan, 122(10), October (pp.676-680).

Horrocks I. (2002); ‘DAML+OIL: A Description Language ftte Semantic Web’; IEEE Intelligent Systems, Trends and
Controversies.

Manola F. and E. Miller (eds.) (2002); ‘RDF Primer’; W3@orking Draft, March 19 ww.w3.0rg/TR/2002/WD-rdf-
primer-20020319/

OIL (2004); (wvw.ontoknowledge.org/oi/

Ontolingua (2004);www.ksl.stanford.edu/software/ontolinghia/

OWL (2001); ‘The Web Ontology Languagesyw.w3.org/2001/sw/WebOnt/

Patel-Schneider P., I. Horrocks, P. Payes and F, vamé#an (eds.) (2002); ‘Web Ontology Language (OWL) Abstract
Syntax and Semantics’; W3C Working Draft, November 8
(www.w3.0rg/TR/2002/WD-owl-semantics-20021108/

Swartz A. (2002); ‘The Semantic Web in Breadth’; (logiocecom/semanticWeb-long)

W3C (1999); ‘Resource Description Framework (RDF) Model ampdte& Specification’; W3C Recommendation,
February 22.

W3C (2001); ‘XML Linking Language (Xlink) Version 1.0’; W3C Recorandation, June 27
(www.w3.org/TR/xlink)

W3C (2003); ‘Design Issues'wvw.w3.org/Designlssues/diagrams/sw-stack-2002.png

30

