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Based on two inversion formulas for enumerating words in the free monoid by
adjacencies, we present a new approach to a class of permutation problems having
Eulerian-type generating functions. We also show that a specialization of one of
the inversion formulas gives Diekert’s lifting to the free monoid of an inversion
theorem due to Cartier and Foata.

1. INTRODUCTION

There are a number of powerful theories of inversion [9, 10, 13, 16]
for dealing with combinatorial objects having generating functions of
Eulerian-type

1
1+, (-D"(1-0)"""c,z"

Using two such inversion formulas, we present new derivations of Stanley’s
[13] generating functions for generalized g-Eulerian and g-Euler polyno-
mials on r-tuples of permutations. We further indicate how one of the
inversion formulas gives Diekert’s [3] lifting to the free monoid of an
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inversion theorem of Cartier and Foata [4]. The inversion theorems we use
enumerate words in the free monoid by adjacencies.

An alphabet X is a non-empty set whose elements are referred to as
letters. A finite sequence (possibly empty) w = x,x, --- x,, of n letters is
said to be a word of length n. The empty word will be denoted 1. The set of
all words formed with letters in X along with the concatenation product is
known as the free monoid generated by X and is denoted by X*. We let
X" be the set of words having positive length.

From X, we construct the adjacency alphabet A ={a,, :(x,y) €
X X X}. The adjacency monomial and the sieve polynomial for w = x,x,
- x, € X* of length n > 2 are defined respectively as a(w) = a, , a

_ XX XXy
a, , and aw)=(a,, —Na,, —DAa, , — D For0<nc<
1, we set a(w) = a(w) = 1. In Z[ A] < X > , the algebra of formal series
of words in X * with coefficients from the commutative ring of polynomials

in A having integer coefficients, the following inversion formulas hold:

THEOREM 1. According to adjacencies, the words in X* are generated by

Y a(w)w = (1— ¥ Zz(w)w)—l. (1)

wex* wex*

THEOREM 2. For non-empty subsets U,V C X, the words according to
adjacencies in U*V = {uv :u € U*, v € V} are generated by

Y E(w)w). 2)

welU*V

Y a(w)w = (1 - Y Zi(w)w)_](

wel*V wel*

Theorem 1 may be deduced from Stanley’s {14, p. 266] synthesis of an
inversion formula on clusters due to Goulden and Jackson [10, p. 131] with
a related result of Zeilberger’s [16] that enumerates words by mistakes.
Theorem 2 bears comparison to (but is not equivalent to either) Viennot’s
[15] formula that counts heaps of pieces with restricted maximal elements
and with a theorem of Goulden and Jackson [10, p. 238] for strings with
distinguished final string. Proofs of Theorems 1 and 2 are deferred to
Section 6. In passing, we mention that Hutchinson and Wilf [11] have given
a closed formula for counting words by adjacencies.

The applications we give rely on the fact that setting a,, = 1 eliminates
all words containing xy as a factor from the right-hand sides of (1) and (2).
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For instance, suppose that X = {x,y,z}. Set a,, =a, a,, = b, and the
remaining a;; = 1. Theorem 1 yields

Y. a(w)w

welx,y, z}*

1
l-y-z-%,.(a-1)""x"~%, (a-1)"(b-1)x"y

(1 +x—ax)(1 ~ax~y—z+(a—b),\y+(a—l)xz)‘l.

2. A KEY BIJECTION

In applying Theorems 1 and 2 to the enumeration of permutations, we
make repeated use of a bijection that associates a pair (o, A), where o is a
permutation and A is a partition, to a finite sequence w of non-negative
integers. Let N ={0,1,2,...} and N” be the set of words of length »n in
N*. The rise set, rise number, inversion number, and norm of w = i,i, -+ i,
€ N" are respectively defined to be

Risw={k:l <k <n,i, <i,,}, risw = |[Ris w|,
invw =|{(k,m):1 <k <m<n,i,>ill wll =i, + - +i,,.

The set of non-decreasing words in N” (i.e., partitions with at most n
parts) will be denoted by P,. A permutation ¢ in the symmetric group S,
on {1,2,...,n} will be viewed as the word o(1)a(2)--- o(n). The key
bijection used in Sections 3 and 4 may be described as follows.

LEMMA 1. For n = 1, there exists a bijection f,: S, X P, = N" such that
Ris o = Risw and inv o + [|All = |wll whenever f (o, A) = w.

Proof. First, for o € §, and | < k& < n, let ¢, be the cardinality of the
set {j:k+ 1 <j<n,o(k)> o(j)}. The number ¢, counts the inversions
in ¢ due to o (k). The word ¢ = ¢,c, -+ ¢, is known as the Lehmer code
[12] of o. Note that inve = ¢, + -- +¢, = llc|l and that Ris o = Ris ¢. As
an illustration, the Lehmer code of o =51342€ 8, is ¢ =40110.
Also, invo = 6 = ||c]| and Ris o = {2,3} = Risc.

Next, for (o, M) =(oc(Do2)- o(n), A\A, - X)) €S, X P,, define
flo,A) to be the word w =ii, - i, € N", where i, = ¢, + A, for
1 < k < n. When f,(o, A) = w, we clearly have the properties

k €Risaiff ¢, + Ay, < sy + Agrs ) iff k € Risw,

inve + Al =c¢; + - +c, + A+ - +A, = lwll.
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For example, the map f; sends the pair (o, ) =(51342,11112)
S5 X Ps to the word w = 61221 € N°. Note that Ris o = {2,3} = Risw
and that invo + [|All =6 + 6 = |jw].

The inverse of f, may be realized by applying the insertion-shift bijec-
tion presented in [6] to the word w to obtain (o', A). The description of
f, given above was suggested by Foata (personal communication).

3. g-EULERIAN POLYNOMIALS

As the first application of Theorem 1, we derive a generating function
for the sequence

A"(I,Q) - Z tl'iS(IqinV(I'

gES,

The polynomial A,(t, 1) is the nth Eulerian polynomial. We further obtain
the generating function for Stanley’s [13] generalized g-Eulerian polynomi-
als on r-tuples of permutations. )

The first step in obtaining a generating function for the distribution of
(ris, inv) on §, is to appropriately define the adjacency monomial and sieve
polynomial for the alphabet N. Toward this end, we set a,; = ¢ if i <j and
a;; = 1 otherwise. For w = i|i, --- i, note that a(w) = ¢™" and that

n—1 e s . .
a(w) = (t—=1) 1fz|s'12s---31
0 otherwise.

n

Theorem 1 reduces to

1

Z trisww -

n-1 .. .
weN* 1-X,..(t-1) Zosi,siz.smsi,,’]lz iy

(3

Next, we assign the weight W(i) = z¢' to each i € N and extend W to a
multiplicative homomorphism on N*. Let (g; q), = 1 and, for n > 1, set
(g;9), =1 —gX1 —g*)---(1 — g"). Then, Lemma 1 and (3) justify the
calculation

At g)z" o .
Z n( q) - ZZ,, Z tl’lS(Iqan(I+|l)\||___ Z t"st(W)
n>0 (q;q)n n20  (o,)ES,XP, weN*
1

1- anl(t - l)n_lznzﬂsi,s'--si,,qiﬁ“.ﬂn
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1

=%, (- )" "2 /(q:9),

3 1 -1
TH{=(0-n. ¢ ®

where e(z,9) = L. ,2"/(q; q), is a well-known g-analog of e°.

The common rise number of an r-tuple (o, o,,..., o) of permutations
in 8, =5, X xS, is defined to be cris(a,, 05,..., ;) = IN}_; Ris o}l.
The argument in (4) is readily adapted to deriving Stanley’s [13] generating
function for the polynomials

— cris(oy, oy, a,)nvay inva, . oinva,
A, (1,41,92,---,4,) = % (TR T2 g g q"".

(5)

We sketch the details for r = 2 and then state the general result.
For letters i = (i}, {,) and j = (j, j,) in the alphabet N X N, we define

t ifi, <i,and j, <j,
1 otherwise.

For (o,w) =Gy iy jija = J) € (N X N), we have a(v,w) =
s where cris(e, w) = |Ris v N Ris wl. Also,

a(e,w) = {0~ )" ifi,<i,< -~ <iyand j, <j, < - <j,
’ otherwise.

The map of Lemma 1 applied component-wise to (S, X P,) xX (S, X P,),

fo X fulay, A 0, 1) = (fn(f"]’)‘)’fn(o'z’#)) =(v,w),

is a bijection to N" X N" with cris(o,, 0,) = cris(v, w), inv o, + [|All = llvl],
and inva, + || ull = lwl. Repeating (4) with appropriate modifications
gives

A, 1,9,,9,)2" L1

n=0 (91:90) 2925 92) 0 N J(Z(l - t)"h"h) -t

where J(z,q,,9,) = L, (= 1"2"/(q,;9,),(q,; g5), is a bibasic Bessel
function. We note that replacing z by z(1 — g, X1 — ¢q,) and letting
q,,4;, — 1~ give the original result of Carlitz, Scoville, and Vaughan [3]
that initiated the study of statistics on r-tuples of permutations.
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Ifweletq =1(qy,q;,....9) and (q; @), , = (9,5 9,),(92; 92), "~ (4,59,
it follows in general that

THEOREM 3 (Stanley). For r > 1, the sequence {A, (t,q)},, , is gener-
ated by

A, (t,q)z" 1—1¢
nx>0 (q;q)n,r Fr(l(l - t),(]) _t’

where F(z,q) = L, (- 1"z2"/(q;q),, ,-

Further consideration of statistics on r-tuples of permutations is given in
[7, 8]. In [7], we extend the technique of Carlitz et al. [3] and present
recurrence relationships that refine Theorem 3. We also discuss several
related distributions. In {8], we obtain a stronger version of Theorem 3 by
using Theorems 1 and 2 in combination with a map that carries more
information than does the bijection of Lemma 1.

4. g-EULER POLYNOMIALS

André [1} shows that if E, is the number of up—-down alternating
permutations in S, (that is, o € S, such that o(1) < ¢(2) > ¢(3) < ¢(4)
> ---), then

E z" 1+ sinz

= : (6)

n! cos 2

n>0

The number E, is known as the nth Euler number.
We now apply Theorems 1 and 2 to the more general problem of
counting the set of odd-up permutations

G,={ceS,:0(l) <o(2),0(3) <o(4),...}
by inversion number and by the number of even indexed rises
ris,o =|{k € Ris o : k is even}|.
Toward this end, let

E,,(t,CI) — Z tfisquin\’tf_

cEEC,

Note that E,(0,1) = E,. The analysis is split into two cases: n odd and n
even. We only present the odd case, which requires use of Theorem 2.
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Let U={i=ii,:i,i, € N with i, <i,}, V=N, and X be the union
of Uand V. Fori =1ii,,j=jj, €U, and k € VV, we set
t if i, <}j

ay = and a, =
¢ 1 otherwise i {

t ifi, <k
1 otherwise.

Viewing a word w € U*V as being in N*, let ris, w denote the number of
rises in w having even index. Theorem 2 implies that

m
Z prisawy, = Zmz(l(t_l) lesilsizs-«-si

m- 1 .. .
wel*V 1 - Zmz](t - 1) Z()g,l<i15.,.g,2ml|l‘> A %}

< am

Lily " lam

2m 4|

Again set W(i) = zq' for i € N and multiplicatively extend W to N*.
Let U™V ={uv:u € U* is of length m,v € V}. From Lemma 1, the
bijection f,, . .1 @5, X Py, . — U™V satisfies the properties ris, o =
ris, w and invo + ||All = [iw]l whenever f,,,, (o, A) = w. It then follows
from (7) that

m+ 1

E2m+l(t’ q)22m+l
m=0 (q;q)2m+l

Z 22m+ 1 Z Ifiﬁz qunvuﬂ\/\n

i

m=0 (o AEF,, (X Py
- Z tns:ww(w)
wel*V

m 1
L, .ot = 1) Z'mwzugi,s“-m

= f2mtl

- Z’"Zl(t N 1)'" Izzmzﬂsils~~~513mqi'+“4+il"'
Zmz()(’ - 1)m22'"+1/(q;q)3,,,“

m—1_2m
L=, ..t~ 17 277/(4:9)2n

(1 =0)sin (V1 — 1) ,
B cosq(zx/l———;) -t (8)

qil+"'+i2m+|

where cos, z =L, (~1)"2°"/(g;9),, and sin, z =L, (=1)z*"*1/
(¢; )2, As the even case is essentially contained in the analysis above,
we have

E(t,q)z" (1 =01+ (1 =0 sing (2T 1))

nao (4:@)n B cos (V1 —1) — ¢
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Setting ¢ = 0, replacing z by z(1 — g), and letting ¢ — 1~ give (6).

Generalization to r-tuples of m-permutations is relatively straightfor-
ward. Let S, , denote the set of o € S, satisfying the property that
a(k) > o(k + 1) implies k is a multiple of m. Note that S, , = &,. For
(o), 09,...,0) €S, ., define cris, (o, 03,...,0,) to be the number of
k€ Nf_, Risg; such that k is a multiple of m. Combining the ideas
behind Theorem 3 and (8) gives

THEOREM 4. For m,r > 1, the sequence of polynomials

— Cris,,(7y, 03,..., Nainvey inve, | _invo,
En,m,r(t’q) - Z t R 7 q; 'q; ¢ q,

(o, 05,..., a)ES]
is generated by

Epm Atz (-0[14E /-0, , (V=1 ,q))

P € H ) P d)m‘()‘,(szI—t,q) —t

>

where @, . (z2,q) = L, (= D22 /(q; @,y 1 .-

Theorem 4 is essentially due to Stanley [13]. Note that E, ; (r,q) is
equal to the generalized g-Eulerian polynomial defined in (5). Thus, taking
m =1 in Theorem 4 gives Theorem 3 as a corollary. We further remark
that @,  (z,q) is a g-Olivier function. When r=1 and ¢t =5 =0,
replacing z by z(1 — ¢) and letting ¢ — 1~ give the initial result of Carlitz
[2] on m-permutations.

5. FROM THE TRACE TO THE FREE MONOID

As the final application, we use Theorem 1 to obtain Diekert’s
[5, pp. 96-99] lifting to the free monoid of an inversion formula due to
Cartier and Foata [4] from a partially commutative monoid (or trace
monoid) in which the defining binary relation admits a transitive orienta-
tion.

Let 8 be an irreflexive symmetric binary relation on X. Define =, to
be the binary relation (induced by 8) on X* consisting of the set of pairs
(w,v) of words such that there is a sequence w = wy,w,,...,w,, =0,
where each w; is obtained by transposing a pair of letters in w,_, that are
consecutive and contained in 0. For instance, if X = {x,y,z} and 0 =

{(x, ¥),(y, x)}, then the sequence zyyx, zyxy, zxyy implies that zyyx =, zxyy.
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Clearly, =, is an equivalence relation on X*. The quotient of X*
by =, gives the partially commutative monoid induced by 6 and is denoted
by M(X, 0). The equivalence class w of w € X'* is referred to as the trace
of w.

Awordw = xx, - x, € X" is said to be a basic monomial if x,6x; for
all i # j. A trace W is said to be 6-trivial if any one of its representatives is
a basic monomial. If one lets 77 ( X, 6) be the set of é-trivial traces, the
inversion formula of Cartier and Foata reads as follows.

THEOREM 5 (Cartier and Foata). For 6 an irreflexive symmetric binary
relation on X, the traces in M(X, 8) are generated by

1
L -

iy’
weMX,0) L+ Yiermx o~

where I(t) denotes the length of any representative of t.

A natural question to ask is whether w and 7 can be replaced by some
canonical representatives so that Theorem 5 remains true as a formula in
the free monoid X*. As resolved by Diekert [5], such canonical represen-
tatives exist if and only if 6 admits a transitive orientation.

To be precise, a subset 9 of 0 is said to be an orientation of 6 if 6 is a
disjoint union of 0 and {(x,y):(y,x) e as. The setof t =18, -+ 1, € X*
satistying ,0¢,6 -+ 6t, is denoted by T*(X, §). Note that T*(X 6) isa
set of represematlves for the O-trivial traces 5 (X, 8) whenever 6 is
transitive. A word w = x;x, --- x, € X* is said to have a G-ad]acency in
position k if x; me We denote the number of O-ad]acenmes of w by
Gadjw Although Diekert did not explicitly introduce the notion of a
O-adjacency, his lifting theorem may be paraphrased as follows.

THEOREM 6 (Diekert). Let 6 be an irreflexive symmetric binary relation
on X and let 6 be an orientation of 6. Then, 0 is transitive if and only if there
exists a complete set W of representatives for the traces of M(X, 0) such that

1
Z nY:

Ky, "
we W 1+ Z:teT‘(X.ti)(_'l) t

Moreover, W = {w € X*: 5adj w = 0}.

To see how Theorem 1 intervenes in the matter, suppose that g is an
orientation of 8 (not necessarlly transitive for now). If for x, y € X we set

a,, = a when xfy and a,, = 1 otherwise, then Theorem 1 reduces to
- 1
Y a®ivw = n Ko-1, (%)
wex* 1 +Zrer‘(x,o')(_1) (1 —a) t
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When 6 is transitive, setting @ = 0 in (9) gives the lifting of Theorem 5 to
the free monoid as stated in Diekert’s theorem. We close this section with
two examples.

TRANSITIVE EXAMPLE. Let X = {x, y, z} with 8 = {(x, y), (y, x), (x, 2),
(z, x)}. Among other possibilities, 6 = {(y, x), (z, x)} is a transitive orienta-
tion of 8. The G-adjacenmes of a word correspond to factors yx and zx.
Note that T*(X, 6) = {x, y, z, yx, zx} is a complete set of representatives
for the 6-trivial traces 77 ( X, #). Also, the only word in

XZXYy,  Xzyxy, Xzyyx, o2y, 2oy,
XY,  DYX, Y,  ZYX,  ZYYXX

xz’y;y={

having no éiadjacencies is xxzyy. From (9), we have

1
l—(x+y+2)+ (1 —-a)(x+z)

E ao'adj Wiy =

welx,y,z}*

Setting a = 0 gives an identity that can be viewed as having been lifted
from the trace monoid as in Theorem 6.

NON-TRANSITIVE EXAMPLE. Let X and 6 be as in the previous exam-
ple. The orientation 0 = {(y, x),(x, z)} is not transitive. Observe that the
word yxz in T7(X, 8) = {x, y, z, yx, xz, yxz} is not a 6-trivial trace. Also,
yxz— {yxz, xyz, yzx} contains two words having no 9—ad]acenCIes Neverthe-
less, (9) implies

- 1
Z aGad)ww___ > .
we(x.y, 2} 1—(x+y+z) + (1 —a)(x +xz) — (1 —a) yxz

6. PROOFS FOR THEOREMS 1 AND 2

To establish Theorem 1, we begin by noting that (1) is equivalent to

Laww- L[ T awae)w-

weX* weXt ‘w=ur,0#1

Thus, by equating coefficients, it suffices to show that

a(w)= X a(u)a(v) (10)

w=ut,r#1
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for all w € X*. We proceed by induction on the length /(w) of w. For
(w) =1, (10) is trivially true. Suppose /(w) > 2. Then w factorizes as
w = w,xy, where w; € X* and x, y € X. Assuming (10) holds for words of
length smaller than w, it follows that

a(w) = axya(wlx) =a(w,x) + (ax_\' - 1)“(”’&")

= a(w )a(y) +a(y) L a(w)a(vx)

WX =X

a(wx)a(y) + X a(w)a(v,y)

WY = U XY

Y. a(u)a(e),

w=ut,t#1

and the proof is complete.
We use an alternate approach to prove Theorem 2. Let W denote the
left-hand side of (2) and define

u/n+1 = Za(w)w»

w

where the sum is over words w = x,x; - x,,,, € U™V of length (n + 1).
Note that W = ¥, W, .. Since a(x,) = 1 and a(x,x,) =a, ., — litisa
triviality that )

W= Zﬁ(xl)a(xz,...,x,,ﬂ)w + Zﬁ(x,xz)a(xz X)W

w W

for n > 1. Similarly, the second sum on the above right may be split as

Zﬁ(xlxz)a(x3 X Wt Zﬁ(x1x2x3)a(x3 X)W
w ,

W

so that

2
Wi = Z Z‘_’(xl cex)alxg .y ot X)W
k

=1 w

+ L a(xxyxy)a(x; X, )W

W
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Iterating the above argument and then factoring give

M:

Wi = La(xy,. . x)a( X,y v X)W+ La(w)w
k=1 w w
n
- L (Zatu)w,. , + Tatwyw,
k=1 u w
where the sum to the immediate left of W, _, is overwords u = x, -+ x,

€ U" of length k. As the above recurrence relationship for W, | is valid
for n > 0, it follows that

W=( Y c_z(w)w)W+ Y a(w)w,

welUt welU*V

which implies Theorem 2.

Either of the preceding arguments may be easily modified to give an
inversion formula for words in X* that end in a fixed word v. Without
giving the details, we have

THEOREM 7. According to adjacencies, words ending in a word v =
b.b, - b, € X* of length m are generated by

Y. a(wo)we = (1 -y ﬁ(w)w)q(a(u) Y Zi(wbl)wv).

weXx* wex’ wex*
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