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BasedBased onon twotwo inversioninversion formulasformulas forfor enumeratingenumerating wordswords inin thethe freefree monoidmonoid byby 
adjacencies,adjacencies, wewe presentpresent aa newnew approachapproach toto aa classclass ofof permutationpermutation problemsproblems havinghaving 
Eulerian-typeEulerian-type generatinggenerating functions.functions. WeWe alsoalso showshow thatthat aa specializationspecialization ofof oneone ofof 
thethe inversioninversion formulasformulas givesgives Diekert'sDiekert's liftinglifting toto thethe freefree monoidmonoid ofof anan inversioninversion 
theoremtheorem duedue toto CartierCartier andand Foata.Foata.

1.1. INTRODUCfIONINTRODUCfION 

ThereThere areare aa numbernumber ofof powerfulpowerful theoriestheories ofof inversioninversion [9,[9, 10,10, 13,13, 16)16) 
forfor dealingdealing withwith combinatorialcombinatorial objectsobjects havinghaving generatinggenerating functionsfunctions ofof 
EulerianEulerian -type-type 

UsingUsing twotwo suchsuch inversioninversion formulas,formulas, wewe presentpresent newnew derivationsderivations ofof Stanley'sStanley's 
[13][13] generatinggenerating functionsfunctions forfor generalizedgeneralized q-Eulerianq-Eulerian andand q-Eulerq-Euler polynopolyno
mialsmials onon r-tuplesr-tuples ofof permutations.permutations. WeWe furtherfurther indicateindicate howhow oneone ofof thethe 
inversioninversion formulasformulas givesgives Diekert'sDiekert's [5][5] liftinglifting toto thethe freefree monoidmonoid ofof anan 
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inversion theorem of Cartier and Foata [4]. The inversion theorems we use 
enumerate words in the free monoid by adjacencies. 

An alphabet X is a non-empty set whose elements are referred to as 
letters. A finite sequence (possibly empty) w = X 1X 2 ••• x of n letters isn 
said to be a word of length n. The empty word will be denoted 1. The set of 
all words formed with letters in X along with the concatenation product is 
known as the free monoid generated by X and is denoted by X*. We let 
X+ be the set of words having positive length. 

From X, we construct the adjacency alphabet A = {a XY : (x, y) E 

X X X}. The adjacency monomial and the sieve polynomial for w = x I X 2 

... X n E X* of length n ~ 2 are defined respectively as a(w) = aX,X,aX2X3 

... a and a(w) = (a - lXa - 1) '" (a - 1). For 0 s n S 
X,,-tXn XtX2 X2 X ) x n _ t X " 

1, we set a(w) = a(w) = 1. In Z[A] «X» , the algebra of formal series 
of words in X* with coefficients from the commutative ring of polynomials 
in A having integer coefficients, the following inversion formulas hold: 

THEOREM 1. According to adjacencies, the words in X* are generated by 

1 

L a(w)w = (1 - L a(w)Wr (1) 
WEX· WEX+ 

THEOREM 2. For non-empty subsets U, V ~ X, the words according to 
adjacencies in U*V = {uv: u E U*, V E V} are generated by 

L a(w)w = (1- L a(w)Wr 
1

( L a(w)w). (2) 
WEU'V WEU+ wEU'V 

Theorem 1 may be deduced from Stanley's [14, p. 266] synthesis of an 
inversion formula on clusters due to Goulden and Jackson [10, p. 131] with 
a related result of Zeilberger's [16] that enumerates words by mistakes. 
Theorem 2 bears comparison to (but is not equivalent to either) Viennot's 
[15] formula that counts heaps of pieces with restricted maximal elements 
and with a theorem of Goulden and Jackson [10, p. 238] for strings with 
distinguished final string. Proofs of Theorems 1 and 2 are deferred to 
Section 6. In passing, we mention that Hutchinson and Wilf [11] have given 
a closed formula for counting words by adjacencies. 

The applications we give rely on the fact that setting axy = 1 eliminates 
all words containing xy as a factor from the right-hand sides of (1) and (2). 
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For instance, suppose that X = {x, y, z}. Set au = a, a ty = b, and the 
remaining ail = 1. Theorem 1 yields 

I: a(w)w 
WE{X,y,Z}' 

1 

'" ( )n- 1 )n-l(l-y-z-L.n>la-l Xn-Ln>l(a-l b-l)xny 

= (1 + x - ax)( 1 - ax - y - z + (a - b) xy + (a - 1) xz) - 1 • 

2. A KEY BIJECTION 

In applying Theorems 1 and 2 to the enumeration of permutations, we 
make repeated use of a bijection that associates a pair ( u, A), where u is a 
permutation and A is a partition, to a finite sequence w of non-negative 
integers. Let N = {O, 1,2, ... } and N n be the set of words of length n in 
N *. The rise set, rise number, inL!ersion number, and nann of w = iii 2 ••• in 
EO N n are respectively defined to be 

Ris w = {k : 1 ::; k < n, i k ::; i k t I} , ris w = IRis wi, 

inv w = I{( k, m) : 1 ::; k < m ::; n, i k > i m} I, Ilwll = i l + ... +i". 

The set of non-decreasing words in N" (i.e., partitions with at most n 
parts) will be denoted by P". A permutation u in the symmetric group Sn 
on {t, 2, ... , n} will be viewed as the word u(I)u(2) .. · u(n). The key 
bijection used in Sections 3 and 4 may be described as follows. 

LEMMA 1. For n z 1, there exists a bijection In: Sn X Pn --) N n such that 
Ris u = Risw and invu + IIAII = Ilwll whenel'er In«(r, A) = w. 

Proof First, for u EO S" and 1 ::; k ::; n, let ck be the cardinality of the 
set (j: k + 1 ::; j ::; n, (r(k) > u(j)}. The number ck counts the inversions 
in u due to u(k). The word c = c j c 2 ... c n is known as the Lehmer code 
[12] of u. Note that invu = C 1 + ... +cn = llell and that Ris u = Ris c. As 
an illustration, the Lehmer code of u = 5 1 342 EO S5 is C = 40 1 1 O. 
Also, inv u = 6 = IleII and Ris u = f2,3} = Ris c. 

Next, for (a, A) = (u(l)u(2)· .. u(n), Al A2 ... A,,) EO Sn X Pn, define 
l"cu, A) to be the word w = i 1i2 ... in EO N n , where ik = C k + \r(k) for 
1 ::; k ::; n. When In( a , A) = w, we clearly have the properties 

k E Ris u iff Ck + AU(k) ::; CH I + Au(H 1) iff k EO Ris w, 

inva + IIAII = C 1 + ... +cn + AI + ... +An = Ilwll. 
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For example, the map f'i sends the pair (u, A) = (5 1 342, 111 1 2) E 

55 X P5 to the word w = 61221 E N 5. Note that Ris u = {2,3} = Ris w 
and that invu + IIAII = 6 + 6 = Ilwll. 

The inverse of In may be realized by applying the insertion-shift bijec
tion presented in [6] to the word w to obtain (u- I , A). The description of 
In given above was suggested by Foata (personal communication). 

3. q-EULERIAN POLYNOMIALS 

As the first application of Theorem 1, we derive a generating function 
for the sequence 

An(t,q) = L tris"qinva. 
fTESll 

The polynomial An(t, 1) is the nth Eulerian polynomial. We further obtain 
the generating function for Stanley's [13] generalized q-Eulerian polynomi
als on r-tuples of permutations. . 

The first step in obtaining a generating function for the distribution of 
(ris, inv) on 5n is to appropriately define the adjacency monomial and sieve 
polynomial for the alphabet N. Toward this end, we set aij = t if i :5 j and 
aij = I otherwise. For w = i,i 2 ... in' note that a(w) = t rlSW and that 

a( w) = {( t - 1) n - I if i I :5 i 2 :5 ... :5 in 
o otherwise. 

Theorem 1 reduces to 

Next, we assign the weight W(i) = zqi to each i E N and extend W to a 
multiplicative homomorphism on N*. Let (q; q)o = 1 and, for n ~ 1, set 
(q; q)n = (l - qXl - q2) ... (l - qn). Then, Lemma 1 and (3) justify the 
calculation 

1
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1 

1 - Ln?,(t - l)n~lzn/(q;q)n 

1 - t 
(4)e( - z( 1 - t), q) - t' 

where e(z, q) = Ln?OZn/(q; q)n is a well-known q-analog of e Z
• 

The common rise number of an r-tuple (aI' az, , a) of permutations 
in S~ = Sn X ... X Sn is defined to be cris(a j , a z, , a,) = In j~ 1 Ris ajl. 
The argument in (4) is readily adapted to deriving Stanley's [13] generating 
function for the polynomials 

(5) 

We sketch the details for r = 2 and then state the general result. 
For letters i = (i" i z) and j = (j l' iz) in the alphabet N X N, we define 

if i, ~ iz and)1 ~iz 

otherwise. 

For (v, w) = (i,i z ... in,J,h ... in) E (N X N)*, we have a(v, w) = 
tcriS(I."l, where cris(v, w) = IRis u n Ris wI. Also, 

if i l ~ i z ~ ... ~ in and ij ~ iz ~ 

otherwise. 

The map of Lemma 1 applied component-wise to (Sn X Pn) X (Sn X PJ, 

is a bijection to N n X N n with cris(a1, a z) = cris(v, w), inv a l + IIAII = II v II, 
and invaz + II ILII = Ilwll. Repeating (4) with appropriate modifications 
gives 

I: A n.Z(t,ql'qz)zn = I-t , 
n?O (qj; qt)n(q2; qZ)n J(z(1 - t), qt, qz) - t 

where J(z,ql,qz) = L n2:o(-l)nZ n/(QI;ql)n(qz;qZ)n is a bibasic Bessel 
function. We note that replacing z by z(l - q l Xl - qz) and letting 
Ql' Qz -) 1- give the original result of Carlitz, Scoville, and Vaughan [3] 
that initiated the study of statistics on r-tuples of permutations. 
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If we let q = (q\, q2' ... , q,) and (q; q)n,r = (q\; q\ )n(q2; q2)n ... (q,; q,)n' 
it follows in general that 

THEOREM 3 (Stanley). For r ~ 1, the sequence {An,,(t,q)}n;;,O is gener-
ated by 

L An,,(t,q)zn = 1 - t 
n;;,O (q;qkr F,(z(1-t),q)-t' 

where F,(z, q) = Ln ;;, o( -onzn /(q; q)n, r' 

Further consideration of statistics on r-tuples of permutations is given in 
[7, 8]. In [7], we extend the technique of Carlitz et al. [3] and present 
recurrence relationships that refine Theorem 3. We also discuss several 
related distributions. In [8], we obtain a stronger version of Theorem 3 by 
using Theorems 1 and 2 in combination with a map that carries more 
information than does the bijection of Lemma 1. 

4. q-EULER POLYNOMIALS 

Andre [1] shows that if En is the number of up-down alternating 
permutations in Sn (that is, 0' E Sn such that O'(l) < 0'(2) > 0'(3) < 0'(4) 
> "'), then 

~ Enz n 
= 1 + sin z 

L..., . (6)
n;;,O n. cos z 

The number En is known as the nth Euler number. 
We now apply Theorems 1 and 2 to the more general problem of 

counting the set of odd-up pennutations 

&'n = {o' E Sn: 0'(1) < 0'(2),0'(3) < O'(4), ... } 

by inversion number and by the number of even indexed rises 

ris 2 0' = I{k E Ris 0' : k is even} I. 
Toward this end, let 

En(t,q) = L t'is 2 <Tq inva. 

UE&'n 

Note that E n(O,1) = En' The analysis is split into two cases: n odd and n 
even. We only present the odd case, which requires use of Theorem 2. 
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Let U = {i = i 1i 2 : iI' i 2 EN with i l ~ i 2}, V = N, and X be the union 
of U and V. For i = i li2, j = jlj2 E U, and k E V, we set 

if i2 ~jl if i 2 ~ k 
and 

otherwise otherwise. 

Viewing a word w E U*V as being in N*, let ris 2 w denote the number of 
rises in w having even index. Theorem 2 implies that 

m
Lm2" o(t - 1) L O$;,$;,$- -$i "i 1i 2 12m, 12mE Iris,wW = ( 7) 

WEU'V 1 - Lm 2" 1(1 - l)m- 'LO $/, <;, s. -$1,}11 2 ... i 2m 

Again set W(i) = zqi for i E N and multiplicatively extend W to N*. 
Let UmV = {Ul': U E U* is of length m, l' E V}. From Lemma 1, the 
bijection f2m+ 1: &'2m + 1 X P2m + 1 -> UmV satisfies the properties ris 2 a = 

ris 2 wand inva + IIAII = Ilwll whenever f2mT ,(a, A) = w. It then follows 
from (7) that 

2m + 1L E2m + 1( I, q ) z 

m>O (q;qhm+' 
= L Z2m+1 I: Iris,<Tqinv<T+IIAII 

m~O (fT. A)EtfT1m \- \XPZm \"r 

E Iris,WW(W) 
WEU'V 

L (I l)m 2mli L I,+---+l'm,'
m~O - Z O<;il-s;' si1mt1q 

Lm2" O(t - 1)m z 2m 
+

I /(q;qhm+1 
~ ( ) m- 1 2m ( . )1 - L-m 2" 1 1 - 1 z / q, q 2m 

(1 - I)'! 2 sin q ( zli----=t ) 
(8) 

cosq ( d 1 - 1 ) - 1 

where cos q z = L n2"u(_l)nz 2n/(q;q)2n and sin q z = Ln2"o(_l)n z 2n+l/ 
(q; q )2n + I' As the even case is essentially contained in the analysis above, 
we have 

L En(l,q)zn (1 - 1)(1 + (1 - 1)-1!2 sinq (zll=t)) 
n2"O (q; q)n cos q ( zll=t) - 1 
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Setting t = 0, replacing z by z(l - q), and letting q ~ 1- give (6). 
Generalization to r-tuples of m-permutations is relatively straightfor

ward. Let Sn, m denote the set of a E Sn satisfying the property that 
a(k) > a(k + 1) implies k is a multiple of m. Note that Sn,2 = &'n. For 
(al ,a2, ... ,ar) E S~,m' define cris m(a"a2'''''o;.) to be the number of 
kEn j~ I Ris OJ such that k is a multiple of m. Combining the ideas 
behind Theorem 3 and (8) gives 

THEOREM 4. For m, r ~ 1, the sequence ofpolynomials 

" tcrism(t71,t72, ... ,t7,lq,invCTlq2invt72 ... qrinVCT,E (t q)n,m,r' = ~
 
(CT\, 0"2"" l rT,)E S~,m
 

is generated by 

L En,m,r(t,q)Zn (l-t)(1 +L;~-/(l-t)-P/m¢m,p,r(Z?r=t,q)) 

n> 0 (q; q) n, r ¢m,o,r(z"fl-t ,q) -t 

where ¢m,p,,(z,q) = Lv;,.o(-IYzvm+p/(q;q)vm+p,r· 

Theorem 4 is essentially due to Stanley [13]. Note that En J r{t, q) is 
equal to the generalized q-Eulerian polynomial defined in (5). Th~s, taking 
m = 1 in Theorem 4 gives Theorem 3 as a corollary. We further remark 
that ¢m, p, I(Z, q) is a q-Olivier function. When r = 1 and t = s = 0, 
replacing z by z(l - q) and letting q ~ 1- give the initial result of Carlitz 
[2] on m-permutations. 

5. FROM THE TRACE TO THE FREE MONOID 

As the final application, we use Theorem 1 to obtain Diekert's 
[5, pp. 96-99] lifting to the free monoid of an inversion formula due to 
Cartier and Foata [4] from a partially commutative monoid (or trace 
monoid) in which the defining binary relation admits a transitive orienta
tion. 

Let () be an irreflexive symmetric binary relation on X. Define =0 to 
be the binary relation {induced by (}) on X* consisting of the set of pairs 
(w, u) of words such that there is a sequence W = Wo, WI"'" Wm = u, 
where each Wi is obtained by transposing a pair of letters in Wi _ 1 that are 
consecutive and containeci in (). For instance, if X = {x, y, z} and () = 

{(x, y), (y, x)}, then the sequence z)yX, zy~, zx}y implies that z)yx =0 zx}y. 
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Clearly, -0 is an equivalence relation on X*. The quotient of X* 
by =0 gives the partially commutative monoid induced by e and is denoted 
by M(X, e). The equivalence class wof w E X* is referred to as the trace 
of w. 

A word w = x,xz .,. X n E X* is said to be a basic monomial if x/ex} for 
all i =1= j. A trace wis said to be (}-trivial if anyone of its representatives is 
a basic monomial. If one lets r(x, e) be the set of {}-trivial traces, the 
inversion fonnula of Cartier and Foata reads as follows. 

THEOREM 5 (Cartier and Foata). For e an irreflexiue symmetric binary 
relation on X, the traces in M( X, e) are generated by 

" w= --------;:---
f..., ... ()/(i)' ' 

"'EM(X,8) + l..iE.'1~(X, 0) -1 t 

where l(i) denotes the length of any representative of i. 
A natural question to ask is whether wand t can be replaced by some 

canonical representatives so that Theorem 5 remains true as a formula in 
the free monoid X*. As resolved by Diekert [5], such canonical represen
tatives exist if and only if e admits a transitive orientation. 

To be precise, a subset 0 of e is said to be an orientation of () if e is a 
disjoint union of 0 and {(x, y): (y, x) E O}. The set of t = tlt o ... t E X* 
satisfying t,OtzO'" Otn is denoted by T+(X, 0). Note that i+(X,

n
0) is a 

set of representatives for the e-trivial traces g+(X, e) whenever 0 is 
transitive. A word w = xlXZ ... X n E X* is said to have a 1f.-adjacency in 
position k if x k Ox" ,. We denote the number of 1f.-adjacencies of w by 
Oadj w. Although Diekert did not explicitly introduce the notion of a 
1f.-adjacency, his lifting theorem may be paraphrased as follows. 

THEOREM 6 (Diekert). Let e be an irreflexiue symmetric binary relation 
on X and let 0 be an orientation of e. Then, 0 is transitive if and only if there 
exists a complete set W of representatives for the traces of M( X, e) such that 

1 
L w = I(ll . 

wEW 1 + L/ET'(X.oi -1) t 

Moreover, W = {w E X*: Oadj w = O}. 

To see how Theorem 1 intervenes in the matter, suppose that 0 is an 
orientation of e (not necessarily transitive for now). If for x, y E X we set 
a = a when xOy and a = 1 otherwise, then Theorem 1 reduces to xy xy 

1I: aO'adj W w = ------------:-:--- (9) 
... (l)n(l - a)'(/)-'t'wEX' 1 + l../E T'(X.O·) -
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When if is transitive, setting a = 0 in (9) gives the lifting of Theorem 5 to 
the free monoid as stated in Diekert's theorem. We close this section with 
two examples. 

TRANSITIVE EXAMPLE. Let X = {x, y, z} with (J = {(x, y), (y, x), (x, z), 
(z, x)}. Among other possibilities, if = {(y, x), (z, x)} is a transitive orienta
tion of (J. The ~adjacencies of a word correspond to factors yx and zx. 
Note that T+(X, if) = {x, y, z, yx, zx} is a complete set of representatives 
for the (J..trivial traces :r(X, (J). Also, the only word in 

xzyxy, xzyyx, xxzyy,xzyxy = {XZXYY, zu::Y.Y, } 
~xy, D)'Yx, zyxxy, zyxyx, zyyxx 

having no ~adjacencies is xxzyy. From (9), we have 

. 1L alladjww = . 
WE{X,y,Z}* 1 - (x + y + z) + (1 - a)(yx + zx) 

Setting a = 0 gives an identity that can be viewed as having been lifted 
from the trace monoid as in Theorem 6. 

NON-TRANSITIVE EXAMPLE. Let X and (J be as in the previous exam
ple. The orientation if = {(y, x),(x, z)} is not transitive. Observe that the 
word yxz in T+(X, if) = {x, y, z, yx, xz, yxz} is not a 8-trivial trace. Also, 
yxz = {yxz, xyz, yzx} contains two words having no ~adjacencies. Neverthe
less, (9) implies 

1L aliadjww = -----------------2=---. 
WE{X,y,z}* 1-(x+y+z) +(I-a)(yx+xz) -(I-a) yxz 

6. PROOFS FOR THEOREMS 1 AND 2 

To establish Theorem 1, we begin by noting that (0 is equivalent to 

L a(w)w - L ( L a(u)a(v))w = 1. 
wEX* WEX+ w=w:,v,* 1 

Thus, by equating coefficients, it suffices to show that 

a(w) = L a(u)a(v) ( 10) 
w=UI',l.'=I- 1 
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for all W E X+. We proceed by induction on the length l( w) of w. For 
l(w) = 1, (0) is trivially true. Suppose l(w) z 2. Then w factorizes as 
W = w1xy, where WI E X* and x, y E X. Assuming (0) holds for words of 
length smaller than w, it follows that 

a(w) = a,ya(w1x) = a(w]x) + (ax)' - l)a(w]x) 

= a(w1x)a(y) + a(xy) 1: a(u)a(l'lx) 

I: a(u)a(l'), 
W=UI'",* I 

and the proof is complete. 
We use an alternate approach to prove Theorem 2. Let W denote the 

left-hand side of (2) and define 

Wn+1= I:a(w)w, 

where the sum is over words w = X 1X 2 ••• Xli tIE U*V of length (n + 1). 

Note that W = En;> oWn + I' Since a(x l ) = 1 and (i(X I X2 ) = ax,x, - 1, it is a 
triviality that 

for n z 1. Similarly, the second sum on the above right may be split as 

so that 

2 

Wn+1 E Ea(x1 ... Xk)a(xk+1 ••• xn+l)w 
k=l W 
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Iterating the above argument and then factoring give 
n 

J¥..+l = L La(x1,· .. ,xda(Xk + 1 '" X n + 1)W + La(w)w 
k= I w	 w 

f: (La(U)u )~+ I-k + La(w)w, 
k= I u	 w 

where the sum to the immediate left of Wn + 1- k is over words u = Xl'" X k 

E U+ of length k. As the above recurrence relationship for ~+ 1 is valid 
for n ~ 0, it follows that 

W= ( L a(w)w)w+ L a(w)w, 
WEU+ wEU'V 

which implies Theorem 2. 
Either of the preceding arguments may be easily modified to give an 

inversion formula for words in X* that end in a fixed word v. Without 
giving the details, we have 

THEOREM 7. According to adjacencies, words ending in a word v 
b]b2 ••• bm E X* of length m are generated by 

L a( WI') WI' = (1 - L a( w) wr1( a( v) L a( wb I) Wu). 
wEX*	 wEX· WEX* 
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