Fire Protection Engineering Culminating Report

June 2015

Fire Protection Engineering Analysis

For Building 910 - Sandia National Labs/CA

Livermore, CA

BY: Mo Mosallaei, P.E., CBO
Statement of Disclaimer

This project report is a result of a class assignment; it has been graded and accepted as fulfillment of the course requirements. Acceptance of this report in fulfillment of the course requirements does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include, but may not be limited to, catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project.

Keywords:

ASET
RSET
Building Code
Prescriptive-Base Design
Performance-Based Design
Executive Summary

This Fire Protection Engineering analysis was performed on Building 910 in Sandia National Laboratories in Livermore, CA to examine the building’s fire safety and fire protection criteria which originally adhered to the 1985 Uniform Building Code. The object of this analysis is to determine the degree of compliance with the prescriptive codes in place today as well compliance with performance based analysis.

For the prescriptive analysis consisted of evaluating the buildings occupancy classification, type of construction, egress design, fire detection and alarm systems, fire sprinkler system, Halon System, and structural fire protection are evaluated in terms of the life safety of the occupants. Each system was examined based on the requirements of the 2013 California Building Code and the 2013 California Fire Code, and the corresponding NFPA codes and standards. The sprinkler water demand was calculated and compared to the available supply to ensure adequacy of the water pressure and flow. The fire alarm system was analyzed for proper spacing of detection and adequate response of audio and visual notification appliances. The electrical demand of the alarm system was calculated to ensure the battery backup supply was sufficient for the required duration. The Halon system was evaluated to verify an adequate supply and concentration for total flooding as well as keeping in acceptable toxicity limits. The structural fire protection analysis confirmed proper materials and separation requirements existed in the building.

In the performance based design analysis computer models were used to simulate egress in fire conditions. These models produced outputs that could be compared to pre-selected acceptable tenability limits for the occupants to determine if the Available Safe Egress Time (ASET) was longer than the Required Safe Egress Time (RSET). This outcome would signify a successful performance.

In the first design fire scenario several scattered items located under a part of machinery related to a boiler ignites after being exposed to radiative heat from a nearby boiler. The fire is shielded from the high temperature ceiling sprinklers which are located at a height of 18 feet which never activate during the 10-minute fire model due to the combination of ceiling height, temperature ratings and the relatively small size of the fire. The boiler room doors were assumed to be left propped open enabling the passage of smoke into the exit corridor. The RSET was calculated to be 140 seconds while the ASET was 580 seconds. The tenability test was easily passed for the basement fire as the relatively few (50) basement occupants exit the building in less than half of the available time.

In the second design fire scenario a work station with an excessive fire load is ignited when a space heater is left on for several hours. The ensuing fire size is potentially 1.5 MW, however the sprinklers activate beginning at 70 seconds at the heat release rate (HRR) of 195 kW and the fire does not grow any larger. The required safe egress time (RSET) is calculated to be 253 seconds, while the conditions remain tenable for at least 260 seconds in both directions of egress.
Table of Contents

Statement of Disclaimer

Executive Summary

Project Overview

Applicables Codes

CBC Code Information

Alternative construction types

LSC Code Information

Site Plan/Sateline Photo

Occupant Loads

Exit Arrangement

Basement Egress Plan

First Floor Egress Plan

Second Floor Egress Plan

Third Floor Egress Plan

Emergency Evacuation Plan

Estimation of Evacuation time

Fire Alarm System

Fire Alarm System Types & Requirements

Detection Devices

Location and Placement of Detection Devices

Analysis of Fire Detector Response
Alarm Notification Appliances

Emergency Communication Systems

Power Requirements for Fire Alarm systems

System Commissioning and ITM (fire alarms)

Fire Suppression

Water Supply and Demand

Sprinkler System

Hydraulic Graph

Standpipe System

ITM Schedule (Sprinklers)

Halon System and Calculations

Halon Safety Analysis

Reserve Supply Requirements

Structural Fire Protection

Fire Resistance Requirements

Calculating Fire Resistance

Performance Code Information

Performance Criteria

Design Fire Scenarios

Fire Design Scenario 1

Determination of RSET for Basement Fire

Determination of ASET for Basement Fire

Fire Design Scenario 2
Determination of RSET for 3rd Fl. Fire

Determination of ASET for 3rd Fl. Fire

Conclusions

Recommendations

Sources

Appendix 1 – Egress floor plans

Appendix 2 – Fire Alarm Plans

Appendix 3 – Sprinkler Plans

Appendix 4 – Structural Plans
Project Overview:

This building is located at the Sandia National Laboratories branch in Livermore, CA (commonly referred to as SNL/CA). The SNL/CA site is a US Department of Energy site and the setting is similar to that of a college campus. This building was chosen because of its relative architectural complexity (3-stories and a basement) and with regards to occupancy classification (non-separated mixed use), as well as the many fire protection related components within it such as a Halon fire suppression system, two fire alarm systems including a voice alarm, and some of the security restrictions that make egress more challenging in some areas of the building.

Building 910 is a 3-story concrete structure with a basement. The building is fully sprinklered. The basement level houses computer server rooms as well as boiler rooms and other mechanical equipment. The first floor of the building houses office spaces and the second and third floors house laboratories. The type of construction of the building per the 2013 California Building Code (CBC) is Group B/L (non-separated mixed use). The type of construction for the building is IIB. The California Building Code (CBC) requires a 1-hour separation between laboratories and other spaces in the building. There are stairway enclosures at the East and West ends of the building which are each structurally independent from the remainder of the building.

The original code of record for the building is the 1985 Uniform Building Code (UBC).
Applicable Codes and Standards used in Prescriptive Analysis:

DOE Order 420.1.B utilizes the local Building and Fire Code regulations with some adjustments.

- 2013 California Building Code (CBC)
- 2013 NFPA 13 – Standard for installation of Sprinkler Systems
- 2015 NFPA 12A – Standard on Halon 1301 Fire Extinguisher Systems
- 2013 NFPA 14 – Standard for the Installation of Standpipe and Hose Systems
- 2014 NFPA 25 – Standard for the ITM of Water-Based Fire Protection Systems

Original Code of Record:

- 1985 Uniform Building Code (UBC) and related standards.

Applicable Codes and Standards used in Performance Analysis:

CBC Code Information for Building 910

Occupancy: B/L (Non-separated Mixed use)

Type of Construction: IIB

Open perimeter around the entire building for at least 80 feet in all directions.

Fully Sprinklered

Number of stories: 3 with a basement

(The basement meets the CBC requirements for a basement classification – At least 50% of the perimeter 6 feet below grade level or any part 12 feet below grade level. The entire floor level is 12 feet below grade)

Base Allowable Area and height per story per Table 503:

Group B: 23,000 ft² / 3 stories
Group L: 17,500 ft² / 3 stories
The entire building must meet the height/area limitations for group L.

Actual area per story: 14,600 ft²

(The frontage increase is not needed. Note, Group L is not eligible for a sprinkler height/area increase)

Occupant Load Factor:

Office/Business areas: 100 (gross)
Laboratory areas (Non-educational): 100 (Net)

Calculations still performed to illustrate the maximum possible height and area in case of future additions to the building:

\[A_a = \{ A_t + [A_t \times I_f] + [A_t \times I_s] \} \] \hspace{1cm} (Equation 5-1, 2010 CBC)

Frontage Increase: \[I_f = \frac{F}{P - 0.25} \frac{W}{30} = \frac{(540 ft/540 ft) - 0.25}{30/30} = 0.75 \] \hspace{1cm} (Equation 5-2)

Per CBC Section 506.3, Exception 4, The sprinkler area increase does not apply to buildings with L occupancies.
Maximum possible Area: \(A_a = \{23000 \text{ ft}^2 + [23000 \text{ ft}^2 \times 0.75] + [23000 \text{ ft}^2 \times 0]\} = 40,250 \text{ ft}^2 \)

Per CBC Section 504.2, the sprinkler height increase and story increase does not apply to buildings with L occupancies.

Maximum possible Height: \(H = 55 \text{ feet, 3 stories} \)
Alternative allowable construction types

It is already established that Building 910 with the occupancy group B/L is code compliant with the construction type IIB. Checking Table 503 of the CBC, the building is also compliant with any higher rated type of construction (Types IIA, IA, and IB) because the higher construction types have a higher base allowable tabular area and base height. The following illustrations indicate whether the building is also code compliant using lower rated types of construction:

Type IIIA
Limiting Allowable Base Area: 28,500 ft²; Limiting Allowable Height: 65 ft, 5 stories
Type IIIA is allowed without any adjustments to allowable base area.

Type IIIB
Limiting Allowable Base Area: 17,500 ft²; Limiting Allowable Height: 55 ft, 3 stories
Type IIIB is allowed without any adjustments to the allowable base area.

Type IV HT
Limiting Allowable Base Area: 36,000 ft²; Limiting Allowable Height: 65 ft, 5 stories
Type IV HT is allowed without any adjustments to the allowable base area.

Type VA
Limiting Allowable Base Area: 18,000 ft²; Limiting Allowable Height: 50 ft, 3 stories
Type VA is allowed without any adjustments to the allowable base area.

Type VB
Limiting Allowable Base Area: 6,500 ft²; Limiting Allowable Height: 40 ft, 2 stories
Type VB is NOT allowed without adjustments to the allowable base area. It is also NOT allowed with the height. No height adjustments are allowed for L occupancy buildings.
Using the open frontage increase: Allowable adjusted area = 11,375 ft², which is still not enough.
Therefore Type VB is not allowed for this building.
LSC Code Information for Building 910

Open perimeter around the entire building for at least 80 feet in all directions. (see page 5)

Fully Sprinklered

Number of stories: 3 with a basement

Use: Business/Industrial (Per Table 7.3.1.2) Required separation is 1-hour

Occupant Load Factor:
 Business Use: 100
 Industrial Use: 100
Satellite Photo/Site Plan indicating open perimeter for Bldg. 910
Occupant Loads

The building is a 3-story with a basement. The basement level is mostly vacant and houses mechanical rooms, boiler rooms, and storage space as well as the communication center. The first floor consists of offices, and meeting rooms. The second and third floor are a combination of office and laboratory spaces. While the calculated occupant load of the overall building is 584 people, the actual occupant load is closer to 200. The performance code analysis was performed with an occupant load of 50 for the basement (Actual occupant load is 20), and the full 146 for the third floor (actual occupant load is 60).

<table>
<thead>
<tr>
<th>Floor</th>
<th>Area (ft²)</th>
<th>Occupancy Classification</th>
<th>Occupant Load Factor</th>
<th>Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>14,600</td>
<td>B/S2</td>
<td>100</td>
<td>146</td>
</tr>
<tr>
<td>First Floor</td>
<td>14,600</td>
<td>B</td>
<td>100</td>
<td>146</td>
</tr>
<tr>
<td>Second Floor</td>
<td>14,600</td>
<td>B/L</td>
<td>100</td>
<td>146</td>
</tr>
<tr>
<td>Third Floor</td>
<td>14,600</td>
<td>B/L</td>
<td>100</td>
<td>146</td>
</tr>
<tr>
<td>TOTAL</td>
<td>584</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exit Arrangement

Section 1021 of the 2013 CBC requires at least two exits per story when the occupant load is between 1 and 500 for the story. Each floor level in building 910 is equipped with two exits. The exits are located at the East and West ends of each story. The building is completely symmetrical and the exits are continuous fire rated stairway enclosures. The exits are arranged as remotely to each other as possible and meet the remoteness requirements of CBC Section 1015.2.1 as well as travel distance requirements of Section 1016, and common path of egress travel requirements of Section 1014.3.

Basement Egress Plan:

There is one main corridor down the middle of the basement level leading to the East and West stairways. Occupants go one level up to get to the 1st floor exits. The basement level is mostly telecommunication hubs and boiler rooms. While this portion of the building is classified as group B occupancy, the actual occupant load is much less than that of an office environment. The door to each stairway is 36 inches wide, and each stairway is 60 inches wide. The estimated actual occupant load is 20 (10 per stairway). The maximum travel distance from the furthest point is approximately 130 feet. The maximum common path of egress as shown is 35 feet which is below the allowable 100 feet (increased from 75 feet due to the sprinkler system).
First Floor Egress Plan:

The Eastern side of the floor serving Suite 110 and Suite 121 has one linear corridor while the West side of the floor has a loop corridor because it serves the small offices along the exterior walls as well as laboratory suites in the interior. The corridor is 5 feet wide that lead to double leaf exit doors that are 6-feet wide (two sets in the East lobby and one set in the West enclosure). This is the Exit floor with the East end exiting through the stairway enclosure and the West end through a lobby area. There is a barrier gate at the top of the stairway leading to the basement so that occupants coming from the upper floors do not continue to go down to the basement in dark conditions. The occupant load of the floor is 146 with an assumed 73 being served by each side. The maximum travel distance from the furthest away point is 135 feet and the maximum common path of egress travel is approximately 40 feet which is less than the allowable 100 feet (increased from 75 feet due to the sprinkler system). Suite 121 is a high security area with classified weapons work. There is a standing policy in that suite of having one person stay back to shut down all systems in case of a fire alarm or other emergency which makes a full evacuation slightly more challenging.
Second Floor Egress Plan:

The corridor layout on the second floor consists of two connecting 5 feet wide loops that lead to double leaf exit doors that are 6-feet wide going into the stairway enclosures on the East and the West end of the building. The occupants of the floor consist of those in offices and laboratories. The laboratory spaces are types working with electrical systems, so they contain very minimal flammable liquids and gases if any. The maximum travel distance from the furthest point is 140 feet, and the maximum common path of travel distance is approximately 25 feet which is lower than the allowable 75 feet. The occupant load for the floor is 146 with each stairway assumed to serve half of that number. The entire second floor is classified as a Sensitive Compartmented Information Facility (SCIF) which is a vault type room. This will make the entrance into the second floor restricted because once someone exits the second floor into a suite that will lead to the stairway enclosures, they cannot go back inside without the proper security clearance and the combination of the floor locks. The occupants are not willing to have the doors unlock automatically with the activation of the fire alarm system, therefore in order to achieve compliance, each lobby area leading to the stairway enclosures will have to install an exterior stairway. This will assure that all parts of the floor have access to two means of egress per CBC section 1021.1.
Third Floor Egress Plan:

The corridor layout on the second floor consists of two connecting 5 feet wide loops that lead to double leaf exit doors that are 6-feet wide going into the stairway enclosures on the East and the West end of the building. The occupants of the floor consist of those in offices and laboratories. The laboratory spaces are types working with electrical systems, so they contain very minimal flammable liquids and gases if any. The maximum travel distance from the furthest point is 140 feet, and the maximum common path of travel distance is approximately 25 feet which is lower than the allowable 75 feet. The occupant load for the floor is 146 with each stairway assumed to serve half of that number.
Emergency Evacuation Plan

The building is required to have an approved fire safety and evacuation plan per Section 404.2 of the 2013 California Fire Code (CFC) since the building is a group B occupancy with an occupant load of more than 100 above the lowest level of exit discharge. There are eight volunteer individuals known as the Building Evacuation Lead Team (BETL pronounced “beatles”) who are tasked with assisting with building evacuations in emergencies. These individuals’ work stations are spread through the building with strategic equipment placed at their desks such as radios, readily visible safety vests, mega phones and building rosters. There is a designated area of assembly in an adjacent open space where all the members of the workforce (MOW) are trained to gather in case of the activation of the fire alarm. The BETL’s then account for the presence all of the MOW at the designated assembly area. In some of the buildings where an occupant with a wheelchair or an elderly occupant may be stationed, there may be specific BETL’s assigned to assist specific people where extra help might be needed. The BETL’s also help direct traffic, look for people that may have been in an area where they may not have heard the alarm Managers are required to train the staff in the evacuation process including the egress routes, emergency reporting and the assembly area location. There is a fire drill conducted twice a year where the emergency evacuation process is timed and evaluated. The building and the designated assembly area (yellow triangle) are shown below:
Estimation of Evacuation Time:

Using the hydraulic model in assessing emergency movement from Chapter 13, section 3 of the 4th edition of the SFPE handbook we can calculate the t_e using the basic hydraulic model.

Assumptions (Per SFPE 4th edition Section 13-3 and Module 7, Slide 14):

- All persons will start to evacuate at the same instant.
- Occupant flow will not involve any interruptions caused by decisions of the individuals involved.
- All or most of the persons involved are free of disabilities that would significantly impede their ability to keep up with the movement of a group.

The prime controlling factor is the stairway door(s). Queuing will occur therefore the specific flow F_s will be the maximum specific flow F_{sm}. All occupants will start the egress flow at the same time. The population will use all facilities in the optimum balance. From SFPE Table 3-13.5, the maximum specific flow through the stairway doorways is 24 person/min/ft, and the maximum specific flow through the stairways is 18.5 person/min/ft.

<table>
<thead>
<tr>
<th>Egress Component</th>
<th>Width (inches)</th>
<th>Effective Width (inches)</th>
<th>Max. Specific flow (person/min/ft)</th>
<th>Max. Flow (person/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Stairway</td>
<td>60</td>
<td>48 [4.0]</td>
<td>18.5</td>
<td>74</td>
</tr>
<tr>
<td>West Stairway</td>
<td>60</td>
<td>48 [4.0]</td>
<td>18.5</td>
<td>74</td>
</tr>
<tr>
<td>East Stairway door</td>
<td>36</td>
<td>24 [2.0]</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>West Stairway door</td>
<td>36</td>
<td>24 [2.0]</td>
<td>24</td>
<td>48</td>
</tr>
</tbody>
</table>

From Chapter 13, section 3, Equation 10:

$$t_p = \frac{P}{F_c} = \frac{\text{Population at pinch point}}{\text{Calculated flow}} = \frac{146}{2} \frac{\text{persons}}{48 \text{ persons/minute}} = 1.52 \text{ minutes}$$

This represents the time spent at the pinch point (stairway door). With all floors being evacuated simultaneously maximum specific flow is assumed. We can use equation 5 from SFPE Chapter 13 to find the movement speed through the stairways (assume standard 7-11
thread/ riser types stairs) \(k = 212 \) per Table 3.13.2. and the D value for a stairway = 0.16 (figure 3.13.8 and 3.13.7)

\[
S = k - akD = 212 - [(2.86)(212)(0.16)] = 97 \text{ ft/min}
\]

From the example in module 7, assume 4 x 8 landings on each stairway and 12 ft. vertical height per landing. From SFPE Table 3.13.3 the conversion factor for 7-11 type stairs is 1.85.

Total distance per floor including the landing length and converted vertical distance:

Distance traveled per floor = 12(1.85) + 2(8) = 38.2 ft. Time per floor = distance/speed = \(\frac{38.2 \text{ feet}}{97 \text{ feet/min}} \) = 0.39 minutes per floor.

Overall occupant load for vertical travelers = 146 (4 floors) = 584 persons

Persons using each stairway = \(\frac{584}{2} \) = 292 persons.

Using the egress table, the \(F_{sm} \) for stairs is 74 persons/minute and the \(F_{sm} \) for doors is 48 persons/minute. \(\rightarrow \) Evacuation time for stairway through doors = \(\frac{292 \text{ persons}}{48 \text{ persons/min}} \) = 6.08 minutes

Adding the time for people of the last floor and the time for each floor to get to the stairway:

Total estimated evacuation time = 6.08 minutes + 1.52 minutes = **7.6 minutes**
Fire Alarm System:

System Fundamentals

The Fire alarm system in building 910 is an addressable Siemen’s MXL with a main FACP for the majority of the building and a pad 3 type supplemental panel for some of the annexed spaces and some of the outdoor chemical storage sheds associated with this building. The voice-alarm system located in a suite on the first floor is a stand-alone system with its own MXL panel.
Fire Alarm System Types & Requirements

The fire alarm system in building 910 is a protected premises fire alarm system with automatic addressable components and multiple zones. All alarm, trouble and supervisory signals are received not only at the building panel, but also in building 964 which is the location of Sandia security forces and is attended 24 hours a day. This is a proprietary supervising station per 2013 NFPA 72 Section 3.3.283.2. Alarm signals are also relayed to the responding fire department which is located at the Lawrence Livermore National Laboratory across the street from Sandia. The response time to building 910 is generally less than 3 minutes. The application, installation and performance of the fire alarm system in building 910 complies with the requirements of Chapter 23 (23.1.1) of the 2013 NFPA 72.

Detection Devices

The building is equipped with ionization smoke detection devices in all of the lab and shop spaces. High velocity ionization smoke detectors are provided in all of the computer server rooms (both on the ceiling and under the floors). All HVAC systems are equipped with ionization duct detectors. The building is fully sprinklered, and of course the sprinklers act as heat detection devices. As previously mentioned there are other types of detectors that are connected to the fire alarm system such as flammable gas detectors and toxic gas detectors.
Ceiling Mounted smoke detector in a laser laboratory environment

Ceiling mounted ionization smoke detector in a laboratory

A flammable gas detector in building 910
Location and Placement of Detection Devices

The smoke detectors in this building are placed in laboratory rooms. Most of these rooms are not large enough to require more than one detector. Where multiple detectors are provided they are placed per manufacturer’s listings or at every 30 feet in each direction. Flammable gas and toxic gas detectors are provided in the order of one per lab when dictated by the functionality of the lab. The duct detectors are placed in the return air ducts when the ventilation rate of the HVAC system exceeds 2,000 CFM which is all of the systems for this building. The placement of smoke detectors complies with section 17.7 of the 2013 NFPA 72. Other types of initiating devices located throughout building 910 include manual pull stations. The CBC requires manual pull stations placed at all exits and at every 200 feet. Building 910 complies with the placement requirements for all initiating devices.

Analysis of Fire Detector Response

There are two fire scenarios in the building that are most likely to occur. One is from a boiler fire in the basement, and another is a laboratory fire on the 2nd or 3rd floors. First we will examine the boiler fire scenario. A boiler fire can either be due to a situation where excessive combustibles receive radiative heat from the flame(s) of the boilers within the room. The maximum size of the fire is assumed to be approximately 1 MW and it would be classified with a fire growth rate of “slow”. There are two smoke detectors placed in the boiler room along with 12 sprinklers. It is expected that the smoke detectors would activate in approximately 30 seconds and the sprinkler system would activate in approximately 60 seconds and prevent the fire from growing. If smoke gets out of the boiler room and reaches the telephone server room (also in the basement) then it is possible that the Halon fire suppression system may be activated in the telephone server room if the server room doors have also been left open.

The second fire scenario is that of a fire in an office or laboratory environment. Only small limited amounts of chemicals are permitted to be kept in each lab and even then they are kept in safety cabinets where they are stored with an additional level of safety. It is unclear whether such a fire would activate a smoke detector faster or a toxic gas (CO) detector. It would probably depend on the proximity of the fire to either of these detectors. I would again estimate that the detectors would activate in approximately 30 seconds and the sprinkler system would activate in approximately 60 seconds giving an opportunity for a maximum fire size of 1 MW with a “medium” fire growth classification. An office fire scenario is likely in cases
where excessive fuel loads accumulate in office environments with a possible ignition source being a space heater that may have been left on.

Alarm Notification Appliances

The notification appliances in building 910 consist of only bells. There are no visual notification appliances with the exception of one suite on the first floor which has its own separate stand-alone voice alarm system. These are indoor bells only (no water flow bell on the outside of the building). The bells are spaced approximately 100 feet apart in the corridor areas. There are also bells placed in the shop areas. A few of the labs also have bells to make up for any possible sound deficiencies. The ambient noise in this building is far less than the typical office building. A great number of the labs and offices located in this building are usually engaged in classified work so great care is taken to be deliberately quiet. The shop areas in the basement as well as the server rooms have higher ambient noises than typical offices; therefore I suspect that the alarm sounds from the bells have the most opportunity for deficiency in the basement. **Building 910 is not compliant with the visible notification requirements of 2013 NFPA 72 Section 18.5.**

A wall mounted fire alarm bell in building 910.
Alarm Notification Appliances Analysis

The NACS in the suite with the voice alarm system consist of speakers and one ceiling strobe in the main lobby of this area. The work done in this area is highly classified and sensitive. Unfortunately the standard evacuation procedures in this suite during a fire alarm call for a designated person to stay behind and close down all of the computers in use and to put away any classified material while others evacuate. The speakers in this suite have a pre-recorded message directing occupants to evacuate. It is my conclusion that with only one strobe in the suite that contains many rooms, this area does not comply with the visual notification requirements of 2013 NFPA 72 Section 18.5.

Emergency Communication Systems

The entire Sandia National Laboratories site is served by a Tone Alert Radio (TAR) system which is operated and maintained by the site’s security forces. This system can function even in the event of a power failure and is not connected to any buildings fire alarm system. There are pre-recorded messages that can be played on the TAR system as well as the capability for a live speaker if needed. TAR units are strategically placed all over every building (including building 910) for clear emergency instructions with a high degree of intelligibility. There are also loud speakers outdoors to alert the outside occupants to emergencies. Each TAR unit is plugged into a local power outlet which serves as the internal battery charger for that unit.
There is also another emergency communication system which is exclusive to building 910. One of the suites on the first floor is equipped with a voice alarm system instead of horns due to the sensitive classified nature of the work done in this area. The voice alarm system repeats the same pre-recorded message which directs the occupants to exit the building. There are six speakers placed within this suite and they provide a clear message with a high degree of intelligibility.

One of 30 Tone Alert Radio (TAR) units in building 910

Power Requirements for Fire Alarm & Communication Systems

Section 10.6.7 of the 2013 NFPA 72 requires secondary power supplies for fire alarm systems. The required capacity per Section 10.6.7.2 in an urban environment with reasonably quick fire department respondent access is enough battery power to sustain the fire alarm functions for a period of 24 hours of standby time and for 5 minutes of alarm time. There is also a requirement to add an additional capacity of 20% as a safety factor. The FACP in building 910 supports many smoke detectors (including several spaces with under-floor smoke detectors) as well as other initiation devices such as flammable gas sensors, toxic gas sensors and other of
initiation devices such as pull stations. The notification devices are only bells (with the exception of one suite on the first floor), but the overall load on the system is substantial. There is a sub-panel on the first floor back lobby because there are too many devices in the building including fire alarm devices on some of the chemical storage sheds located outside of the building. The FACP houses the batteries for the system which consist of two 18-amp-hour batteries shown below for a total of 36 amp-hours.

System Commissioning and Inspection, Testing & Maintenance (ITM)

The fire alarm system in building 910 is over 20 years old, and there are no records of any commissioning being performed. Furthermore, since this building is on federal property, local codes and ordinances would not have had any bearing on the installation and acceptance of such systems. NFPA 72 does not specifically require commissioning, however there are requirements for acceptance testing that come close to those of official commissioning. Generally commissioning involves testing every piece of a system and verification of performance. This process can be quite lengthy and cumbersome. It is often performed by inspection firms that specifically offer this service at high prices. The acceptance test of a fire alarm system when done properly should take at least two days. One day should be taken to observe at least a good representative sample of all initiation and notification devices in action. This includes performing smoke tests, pull station tests and measurement of the notification
devices using sound meters and light meters. Special care should also be taken to ensure that all visual notification devices are synchronized and reach all areas and spaces without obstruction. At the conclusion of testing on day one, the power supply should be disconnected and the system should automatically switch to battery power. The inspector should return approximately 24 hours later and perform all of the alarm tests again this time under battery power. The tests performed on the second should be run for a period of at least 5 minutes for all parts of the building. Section 14.2.2 of 2013 NFPA 72 lists the requirements for inspections of fire alarm systems. The inspections performed are the responsibility of the building owner.

Building 910 along with other buildings in Sandia is under contract to an inspection agency that performs annual inspections of the fire alarm system as a whole. All inspections are documented and kept permanently. In addition to these inspections, the entire building undergoes a thorough fire protection/prevention assessment every three years per Department of Energy regulations.

Fire Suppression

The hazard classification for the sprinkler system is Ordinary Hazard, Group 2. This is due to a Department of Energy requirement mandating OH-1 as the lowest allowable hazard classification within DOE facilities. The building was built in 1987, however this analysis is performed to the current codes and standards. The sprinkler system is equipped with seismic bracing and flexible hoses at some sprinkler head drops as well as flexible couples at wall penetrations per NFPA 13 Section 9.3.

Water Supply and Demand:

The water supply for the Sandia National Laboratories is provided by a private water main with very good pressure and flow. SNL/CA also has water tanks on top of a nearby hill that serve as an alternate supply.

Water supply available: 68 Psi Static, 63 Psi Residual, 2750 GPM flow.

System demand: 51 psi at 609 gpm

Hose Stream = 250 gpm
Smaller of the two risers, located in the West end of the building.

Sprinkler System:

Hazard Classification: Ordinary Hazard, Group 2

Design Density = 0.20 Area of Calculation = 1500 ft²

\[A_s = 100 \text{ ft}^2 \quad \text{Number of sprinklers Calculated} = \frac{\text{Design Area}}{\text{Area per sprinkler}} = \frac{1500}{100} = 15 \]

No. of sprinklers on a branch line = \[\frac{1.2\sqrt{A_s}}{S} = \frac{1.2\sqrt{1500}}{10} = 5 \text{ sprinklers.} \]

Sprinklers are ½ inch, RASCO brand with a K factor of 5.6

System Demand at riser: 51 psi at 609 gpm.
The sprinklers in the basement are located at only 6’ 8”. They are protected with a cover for both the sprinklers protection and occupants.

The waterflow alarm was recently disabled when the contractors installed a new exterior stairway right on top of it.
Hydraulic Graph
Standpipe System:

There are standpipe stations (no hoses) at each level of each stairway. The standpipes are class 1, with a class 2 adapter in each cabinet. This almost makes the standpipes function similarly to a class 3 standpipe.
Inspections, Testing & Maintenance Schedule per NFPA 25

<table>
<thead>
<tr>
<th>Item</th>
<th>Inspection</th>
<th>Testing</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinklers</td>
<td>• Inspected from the floor level annually (5.2.1.1)</td>
<td>• Sample sprinklers submitted to testing agency (5.3.1.1)</td>
<td>• Sprinklers manufactured prior to 1920 must be replaced. (5.3.1.1.1.2)</td>
</tr>
<tr>
<td></td>
<td>• -Incorrect orientation check (5.2.1.1.3)</td>
<td>• Tested after 50 years and tests must be repeated every 10 years thereafter (5.3.1.1.1)</td>
<td>• Replacement sprinklers shall have the proper characteristics for the application intended (5.4.1.1)</td>
</tr>
<tr>
<td></td>
<td>• -Spare sprinkler supply and wrench for each type of sprinkler (5.2.1.4)</td>
<td>• Fast-response sprinklers must be tested after 20 years and tests must be repeated every 10 years thereafter (5.3.1.1.1.3)</td>
<td>• A supply of spare sprinklers and a sprinkler wrench for them shall be maintained on the premises (5.4.1.4, 5)</td>
</tr>
<tr>
<td></td>
<td>• -Maintain minimum clearances to storage (5.2.1.2)</td>
<td>• Testing should comprise of not less than 4 or 1% of the total number of sprinkler per sample (5.3.1.2)</td>
<td>**</td>
</tr>
<tr>
<td>Waterflow Alarm & Supervisory signal initiating devices</td>
<td>• Inspected quarterly to verify that they are free from physical damage (5.2.5)</td>
<td>• Tested quarterly (5.3.3.1)</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vane type and switch type waterflow alarm devices tested semiannually(5.3.3.2)</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Testing alarm shall be accomplished by opening the inspectors test connection (5.3.3.3)</td>
<td>**</td>
</tr>
<tr>
<td>Control Valve</td>
<td>• All valves inspected weekly(13.3.2.1)</td>
<td>• Tested annually by operating the control valve through its full range and returned to its normal position (13.3.3.1)</td>
<td>• Operating stems of outside screw and yoke valves shall be lubricated annually(13.3.4.1)</td>
</tr>
<tr>
<td></td>
<td>• Valves secured with a lock or supervised inspected monthly (13.3.2.1.1)</td>
<td>• PIVs shall be tested by opening until spring or torsion is felt in the rod every time the valve is closed. (13.3.3.2)</td>
<td>• The valve shall be completely closed and reopened to test its operation and distribute the lubricant (13.3.4.2)</td>
</tr>
<tr>
<td></td>
<td>• Inspection after any alterations or repairs(13.3.2.1.3)</td>
<td>• A main drain test conducted whenever the valve is closed and reopened at the system riser (13.3.3.4)</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>• Inspections shall ensure that the valves are in the normal open or closed position, properly sealed, locked or supervised, accessible, PIV’s are provided with correct wrenches, free from external leaks, provided with appropriate wrenches and provided with appropriate identification (13.3.2.2)</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Gauges</td>
<td>• Inspected quarterly to ensure they are in good condition and normal water supply pressure is being maintained (5.2.4.1)</td>
<td>• Either replaced every 5 years or tested every 5 years by comparison with a calibrated gauge. Gauges not accurate within 3% of the full scale shall be recalibrated or replaced (5.3.2.1-2)</td>
<td>**</td>
</tr>
<tr>
<td>Pipes & Fittings</td>
<td>• Inspected annually from the floor (5.2.2)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Item</td>
<td>Inspection</td>
<td>Testing</td>
<td>Maintenance</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Item</td>
<td>Inspection</td>
<td>Testing</td>
<td>Maintenance</td>
</tr>
<tr>
<td>Hydraulic Design Information Sign</td>
<td>• Inspected quarterly to verify that it is provided, attached securely to the sprinkler riser and is legible (5.2.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic Bracing</td>
<td>• Inspected annually from the floor (5.2.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Alarm Valve | • Inspected externally monthly to verify the gauges indicate normal supply water pressure is being maintained, no physical damage, all valves are in appropriate open or closed position and retard chamber and alarm drains are not leaking. (13.4.1.1)
• Inspected internally every 5 years unless tests indicate a greater frequency is needed (13.4.1.2) | | • Internal components shall be cleaned/repaired as necessary in accordance with manufacturer’s instructions. (13.4.1.3.1)
• System shall be returned to service in accordance with manufacturer instructions (13.4.1.3.2) |
| Backflow Preventer | • Double check assembly (DCA) valves shall be inspected weekly or monthly if the valve is secured with a lock or electronic supervision to ensure the OS&Y isolation valves are in the normal open position (13.6.1.1, 13.6.1.1.1)
• Reduced pressure assembly (RPA) valves shall be inspected weekly or monthly if the valve is secured with a lock or electronic supervision to ensure the differential-sensing valve relief port is not continuously discharging (13.6.1.2, 13.6.1.2.1) | • Exercised annually by conducting a forward flow test at the minimum flow rate of the system demand | • Maintenance of the backflow prevention assemblies shall be conducted per the manufacturer’s instructions in accordance with the policies of the AHJ. (13.6.3) |
| Fire Department Connections | • Inspected quarterly (13.7.1)
• -Verify the FDC is visible and accessible, couplings or swivels are not damaged, plugs or caps are in place, identification sign is in place, check valve is not leaking, automatic drain valve is operating properly and the FDC clapper is in place and operating properly. (13.7.1) | | • Components repaired or replaced as necessary in accordance with the manufacturer’s instructions. (13.7.2)
• Any obstructions present shall be removed (13.7.3) |
| Main Drain | | • Conducted annually for each water supply lead-in to the sprinkler system to determine whether there has been a change in the system. | |
Halon System and Calculations:

The basement houses office areas, a boiler room and the communications center. The 3,000 ft² communications center is protected with a Halon system in addition to the building’s wet pipe sprinklers. The communications center is mostly switchgear but it also contains some work areas for the staff, so it is considered an occupied space. The communications center has its own smoke detection system which triggers the Halon discharge. There is also a manual discharge pull station. The system can be turned off temporarily for maintenance and other services.

Calculating the volume: Ceiling Height = 10 ft. Underfloor depth= 4 ft.

\[V = 14 \text{ ft} \times 3,000 \text{ ft}^2 = 42,000 \text{ ft}^3 \]

Halon Quantity for total flooding:

\[W = \frac{V}{S} \left(\frac{C}{100-C} \right) = \frac{42000 \text{ ft}^3}{2.2062 + 0.005046(500) \left(\frac{7}{100-7} \right)} = 669 \text{ lbs.} \]

Where W= Weight of halon
s=2.2062+0.005046t
\(t= \text{minimum anticipated temperature of the protected volume (°F)} \)
\(V= \text{net volume of hazard ft}^3 \)
\(C= \text{Halon 1301 concentration, percent by volume} = 7\% \)

Add 20% minimum safety factor →
Total quantity required = 803 lbs.
Quantity Provided = 988 lbs.
The Halon control panel is very simple and it allows the deactivation of the system during maintenance periods. There is a manual activation switch in addition to the automatic activation by smoke detection.

The nozzles are on the ceiling and spaced throughout the communications center and accessory areas.
Halon System Safety Analysis

Actual Concentration (based on available quantity) = 8.48%
Lowest Observed Adverse Effects Level (LOAEL) concerns Per 2015 NFPA 12A Section D.1 is due to exposure to decomposing Halon after contact with Fire or hot surfaces.

Maximum recommended exposure times based on concentration:
7% and below = 15 minutes
7 to 10 percent = 1 minute
10 to 15 percent = 30 seconds

Other Halon hazards in addition to toxicity include:
Noise – Often associated with loud discharges
Turbulence – High velocity discharge may cause injuries with direct contact
Cold Temperatures – Direct contact with vaporizing liquid can lead to frostbite burns

Signage and visual alarms on the entrance/exit doors warning people to stay out during a discharge.
Reserve Supply Requirements

NFPA 12A Section 4.1.1.3 requires a reserve quantity of halon when uninterrupted service is needed. Halon is not readily available in most commercial applications; however federal government facilities are permitted to maintain their existing supplies. The estimated time to replenish a significant spent quantity to SNL/CA is approximately one week. For this reason there is a reserve supply kept in a nearby storage building. The reserve supply is roughly in equal quantity to the supply currently in use.
Structural Fire Protection

Fire resistance requirements of building elements including the structural frame are governed by Section 602.1 of the 2013 CBC. There are also other portions of the code that dictate certain fire resistance ratings. These other Sections are based on use, hazards, proximity to other structures, exiting requirements, and other factors.

Fire Resistance Requirements

<table>
<thead>
<tr>
<th>BUILDING ELEMENT</th>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
<th>TYPE V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A²</td>
<td>B</td>
<td>A²</td>
</tr>
<tr>
<td>Primary structural frame² (see Section 202)</td>
<td>3³</td>
<td>2²</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bearing walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Interior</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonbearing walls and partitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nonbearing walls and partitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior²</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Floor construction and secondary members (see Section 202)</td>
<td>1 ³/²</td>
<td>1 ²</td>
<td>1 ³</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Roof construction and secondary members (see Section 202)</td>
<td>1 ³/²</td>
<td>1 ²</td>
<td>1 ³</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
There are no fire resistance rating requirements for any of the building elements based on Type of construction (Table 601) or Fire separation distance (Table 602). The remaining fire resistance requirements for Building 910 are as follows:

- The stairway enclosures on East & West ends of the building require a 1-hour rating based on CBC Section 1022.1.
- The laboratory spaces on the 3rd floor are required to be separated vertically and horizontally from the remainder of the building by 1-hour construction per CBC Section 443.4.1.1., and Table 508.4.
- Electrical rooms housing transformers larger than 112.5 kva, 1 hour rating per NEC Section 450-21.B

Calculating Fire Resistance

The following details are extracted from the plans for Building 910. See Appendix A.
Typical Floor Slabs for Bldg. 910

FIGURE 721.2.2.1.2

DETERMINATION OF SLAB THICKNESS FOR SLOPING SOFFITS

721.2.2.1.3 Slabs with ribbed soffits. The thickness of slabs with ribbed or undulating soffits (see Figure 721.2.2.1.3) shall be determined by one of the following expressions, whichever is applicable:

For \(s > 4t \), the thickness to be used shall be \(t \)

For \(s \leq 2t \), the thickness to be used shall be \(t_e \)

For \(4t > s > 2t \), the thickness to be used shall be

\[
t + \left(\frac{4t}{s} - 1 \right) \left(t_e - t \right)
\]

(Equation 7-5)

where:

\(s \) = Spacing of ribs or undulations.

\(t \) = Minimum thickness.

\(t_e \) = Equivalent thickness of the slab calculated as the net area of the slab divided by the width, in which the maximum thickness used in the calculation shall not exceed \(2t \).

Calculate the equivalent slab thickness per CBC Section 721.2.1.2

\[
\text{Thickness} = t + \left[\frac{4t}{s} - 1 \right] [t_e - t] = 5.5 \text{ inches} + \left[\frac{4 (5.5 \text{ inches})}{24 \text{ inches}} \right] [10 - 5.5] = 9.6 \text{ inches}
\]
721.2.2.1 Reinforced and prestressed floors and roofs. The minimum thicknesses of reinforced and prestressed concrete floor or roof slabs for fire-resistance ratings of 1 hour to 4 hours are shown in Table 721.2.2.1.

TABLE 721.2.2.1 MINIMUM SLAB THICKNESS (inches)

<table>
<thead>
<tr>
<th>CONCRETE TYPE</th>
<th>FIRE-RESISTANCE RATING (hour)</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siliceous</td>
<td></td>
<td>3.5</td>
<td>4.3</td>
<td>5.0</td>
<td>6.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Carbonate</td>
<td></td>
<td>3.2</td>
<td>4.0</td>
<td>4.6</td>
<td>5.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Sand-lightweight</td>
<td></td>
<td>2.7</td>
<td>3.3</td>
<td>3.8</td>
<td>4.6</td>
<td>5.4</td>
</tr>
<tr>
<td>Lightweight</td>
<td></td>
<td>2.5</td>
<td>3.1</td>
<td>3.6</td>
<td>4.4</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Per Table 721.2.2.1, the equivalent fire resistance rating for the slab is **4-hours**.

Evaluate the fire resistance of the walls per CBC Section 721.2.1.1

TABLE 721.2.1.1 MINIMUM EQUIVALENT THICKNESS OF CAST-IN-PLACE OR PRECAST CONCRETE WALLS, LOAD-BEARING OR NONLOAD-BEARING

<table>
<thead>
<tr>
<th>CONCRETE TYPE</th>
<th>MINIMUM SLAB THICKNESS (inches) FOR FIRE-RESISTANCE RATING OF 1-hour 1 1/2-hour 2-hour 3-hour 4-hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siliceous</td>
<td>3.5 4.3 5.0 6.2 7.0</td>
</tr>
<tr>
<td>Carbonate</td>
<td>3.2 4.0 4.6 5.7 6.6</td>
</tr>
<tr>
<td>Sand-lightweight</td>
<td>2.7 3.3 3.8 4.6 5.4</td>
</tr>
<tr>
<td>Lightweight</td>
<td>2.5 3.1 3.6 4.4 5.1</td>
</tr>
</tbody>
</table>

With a precast wall thickness of 5.5 inches (assume siliceous concrete for a conservative estimate), the fire resistive rating of the walls is at least **2-hours**.
Performance Code Information

Codes Referenced:
2012 NFPA 101 Chapter 5

Models used:
Egress Analysis: Pathfinder- 2014 Edition
In the performance based design analysis computer models were used to simulate egress in fire conditions. These models produced outputs that could be compared to pre-selected acceptable tenability limits for the occupants to determine if the Available Safe Egress Time (ASET) was longer than the Required Safe Egress Time (RSET). This outcome would signify a successful performance. The tenability limits are based on various codes and standards including NFPA 101, California Building Code, and SFPE Handbook both 3rd and 4th editions. In the models presented several assumptions were made which may or may not be valid in real situations. These assumptions include that people do not go back inside to look for objects or other people. There is also an assumption that all occupants move at the same speed. Other assumptions include cooperation (or at least lack of conflict) among occupants, as well as no added mishaps to the fire at hand (such as structural collapse or falling objects) impeding the path of egress.

Another limitation of the fire models is that they accept only one type of fuel when setting up a fire scenario, whereas real life fire scenarios often involve a multitude of different fuels. With that in mind the models actually portray fire scenarios quite accurately as they are empirically designed based on years of fire tests.

Performance Criteria

There are three main conditions of tenability that should be maintained for safe egress during a fire event. These conditions are the ability to breathe, the ability to see and the ability to avoid excessive heat flux. The impediments to the ability to breathe are the toxic gases that are present in smoke. The most prevalent toxic gas in smoke is carbon monoxide. For this reason, carbon monoxide (CO) is often the only toxic gas evaluated in fire models. The fire models can measure and evaluate the three main tenability conditions which are visibility, carbon monoxide levels and heat exposure. The following are the accepted criteria for tenability.

- Maintain tenable conditions for the duration of the Required Safe Egress Time \Rightarrow ASET \geq RSET per SFPE handbook 4th edition:
 1. Visibility > 13 m (Assume unfamiliar occupants for a conservative analysis)
 2. Carbon Monoxide concentration < 1000 ppm
 3. Smoke layer Height > 1.83 m (6 ft)
- Prevent Flashover \Rightarrow Maintain upper layer temp < 500 °C
Design Fire Scenarios

The following fire scenarios are listed in Section 5.5.3 of the 2012 NFPA 101.

1. Occupancy Specific/activity related
2. Ultrafast-developing fire in primary means of egress
3. Normally unoccupied room
4. Concealed space next to large occupied room
5. Slowly developing fire, shielded from fire protection
6. Most Severe Fire/Largest Fuel Load
7. Outside Exposure Fire
8. Ordinary combustibles/Ineffective-unreliable fire protection

Fire Design Scenario 1:

Fire scenario 1 for building 910 takes place in the boiler room in the basement. The boiler room has 3 boilers along with other mechanical machinery such as condensers, regulators and other equipment. Some of the excessive combustible material left directly across from a boiler receives radiative heat from one of the boilers for a period of several days and ignites. The doors for the boiler room have been inadvertently left open and the fire from the smoke travels to the exit corridor.
The fuel for the fire shown above includes insulation for piping, a waste basket containing some trash, a piece of lumber, a 100-ft long rubber hose and other miscellaneous materials. The photo below is an indication of the height of the 286 °F sprinklers (approximately 16 feet), and an indication of how the fire is shielded from fire protection. Therefore the fire fits NFPA 101 scenarios 3 and 5 for unoccupied spaces and shielded fires.

The photo below shows that there is other fuel in the NE corner of the room that may sustain a fire for a longer period of time.
Egress Component data applicable to every floor

The following Table evaluates to the stairway doors which is applicable to every floor due to the building’s symmetry.

<table>
<thead>
<tr>
<th>Egress Component</th>
<th>Width (inches)</th>
<th>Effective Width (inches)</th>
<th>Max. Specific flow (person/min/ft)</th>
<th>Max. Flow (person/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Stairway</td>
<td>60</td>
<td>48 [4.0]</td>
<td>18.5</td>
<td>74</td>
</tr>
<tr>
<td>West Stairway</td>
<td>60</td>
<td>48 [4.0]</td>
<td>18.5</td>
<td>74</td>
</tr>
<tr>
<td>East Stairway door</td>
<td>36</td>
<td>24 [2.0]</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>West Stairway door</td>
<td>36</td>
<td>24 [2.0]</td>
<td>24</td>
<td>48</td>
</tr>
</tbody>
</table>

Basement Egress Calculations (Determination of RSET)

Calculating RSET:

Pre-movement time = 30 Seconds

Adjusted basement occupant load = 50

Movement speed:

\[S = k - akD = 212 - [(2.86)(212)(0.16)] = 97 \text{ ft/min} \]

Maximum Horizontal distance traveled = \(\frac{140}{2} + \frac{50}{2} = 125 \text{ ft.} \)

Time per floor = distance/speed = \(\frac{125 \text{ feet}}{97 \text{ feet/minute}} = 1.29 \text{ minutes} \)

Time through the stairway doors:

\[t_p = \frac{P}{F_c} = \frac{\text{Population at pinch point}}{\text{Calculated flow}} = \frac{\frac{50}{2} \text{ persons}}{48 \text{ persons/minute}} = 0.53 \text{ minutes} \]

Time needed to exit from basement area = 0.5 + 1.29 + 0.53 = 2.32 minutes = 140 seconds

Time comparison using Pathfinder was 111 seconds.
Determination of ASET for Basement Fire

The following results are extracted from the output files of the Pyrosim model for the basement.

Visibility reduces to 13 meters at 180 seconds > 140 seconds

Heat exposure reaches 60°C at 600 seconds > 140 seconds

Therefore the basement fire scenario passes the performance test.

The sprinklers do not activate because the fire is not large enough to provide enough heat to the high temperature, high ceiling sprinklers.
Fire Design Scenario 2
The second fire scenario takes place in an office space on the 3rd floor where excessive fire load in a work station is coupled with a space heater under the work station that is left on inadvertently for an entire shift. The fire has a potential to have a 1.5 MW output.

The average workstation fire has a peak heat release rate of 1500 kW.
Determinations of RSET for 3rd Floor Fire

3rd Floor Egress Calculations

- Pre-movement time = 30 Seconds
- Occupant load = 146
- Movement speed: \[S = k - akD = 212 - [(2.86)(212)(0.16)] = 97 \text{ ft/min} \]
- Maximum Horizontal distance traveled = \((140)+(50/2) = 165 \text{ ft.}\)
- Time per floor = distance/speed = \[\frac{165 \text{ feet}}{97 \text{ feet/min}} = 1.7 \text{ minutes}\]
- Time through the stairway doors:
 \[t_p = \frac{P}{F_c} = \frac{Population \ at \ pinch \ point}{Calculated \ flow} = \frac{146/2 \text{ persons}}{48 \text{ persons/minute}} = 1.52 \text{ minutes}\]

Time needed to exit from 3rd floor area = 0.5 + 1.7 + 1.52 = 3.72 minutes = 223 seconds

Comparative time using Pathfinder was 4.22 minutes (253 seconds)

Determinations of ASET for 3rd Floor Fire

Time needed to reach untenable limits for the 3rd floor fire based on the Pyrosim model:

- Visibility < 13 m at 260 seconds > 250 seconds
- Carbon monoxide exposure at 1000 ppm at 300 seconds > 250 seconds
- Heat exposure >60°C at 800+ seconds > 250 seconds.

Therefore the 3rd floor fire scenario meets the performance test criteria.

The sprinklers activate at 70 seconds which corresponds to a heat release rate of 195 kW, and prevent the fire from growing larger than that value.
Conclusions

- **The building is compliant from a prescriptive standpoint.**

 The building’s size, height, type of construction, occupancy classifications, fire ratings, fire suppression, fire alarm systems, exiting arrangement, interior surfaces and architectural features meet all of the minimum code requirements for the code of record as well as the current codes. The occupants have adequate means of receiving notifications and have adequate means of egress in all parts of the building. The chances of survivability in a fire are very good and there is good redundancy of fire protection systems for life safety as well as property protection. There is a need however to install visual fire alarm notification devices (strobes).

- **The Basement fire scenario passes the performance test.**

 The fire size in the basement is not large enough to activate the sprinklers. The calculated required safe egress time is far shorter than the time when tenability conditions fall below target levels. Even during a fire in the basement which is mostly vacant, the smoke and other fire by-products only affect the corridor and exiting system if a door leading to the corridor is assumed to be left open. The high temperature sprinklers in the boiler room and other mechanical areas of the basement are somewhat shielded due to the amount of machinery in these areas. If there is a small fire in these areas, it is likely that the sprinklers will not activate, however since these areas are equipped with smoke detection the fire would be quickly discovered.

- **The 3rd floor fire scenario passes the performance test.**

 The 3rd floor space heater fire is close to the maximum credible expected fire. The first sprinkler is activated in 70 seconds and the fire is kept under control. The occupants have adequate time to exit with the tenability conditions all in place. Even if one of the exits on the 3rd floor is unavailable, there is adequate time to reach the other exit in good visibility and low enough carbon monoxide levels. The smoke detection within the HVAC system would activate before the sprinklers and provide the means for notification, as well as the pull stations located at the exits.

 Perhaps the most telling conclusion is that the prescriptive codes work. By following the prescriptive codes we provide adequate occupant and property protection for the building with the given likely fire scenarios of a particular occupancy.
Recommendations

- **Good Housekeeping**

 Both fire scenarios involved housekeeping issues. Section 304.1 of the 2013 CFC prohibits the accumulation of unnecessary combustible materials that may become fuel for a fire. This includes avoiding excessive accumulation of combustibles as well as keeping all paths of egress clear.

- **Preventative and corrective maintenance**

 Perform all scheduled preventative maintenance for boilers and other mechanical equipment to keep them working in a safe and proper working condition. All exit signs, egress lighting and emergency lighting must be kept in working order.

- **Keep Fire doors closed**

 Fire doors help prevent the passage of heat and smoke and they must be kept closed to function properly. In the basement fire scenario closed doors would have confined the fire to the boiler room and the occupants would not have been affected. Keeping stairway enclosure doors closed ensures that stairways serve as a safe haven from the fire hazards in the remainder of the building.

- **Fire Safety Education**

 Train staff/occupants on acceptable types of space heaters with built-in safety features. Have education campaigns on importance of keeping exit aisle ways clear. Also reinforce requirements for immediate exiting when fire alarms are activated in order to reduce the pre-movement time. Train staff on importance of immediate exiting from spaces where Halon is about to be discharged, and other aspects of Halon system operations including the use of the discharge delay switch. Fire drills must to be held at least annually.
Sources:

2013 California Building Code, Published by the International Codes Council.

2013 California Fire Code, Published by the International Codes Council

2013 NFPA 13 – Standard for installation of Sprinkler Systems

2015 NFPA 12A – Standard on Halon 1301 Fire Extinguisher Systems

2013 NFPA 14 – Standard for the Installation of Standpipe and Hose Systems

2014 NFPA 25 – Standard for the ITM of Water-Based Fire Protection Systems

SFPE Handbook of Fire Protection Engineering, 4th Edition

SFPE Handbook of Fire Protection Engineering, 3rd Edition

2011 SNL/CA Water pressure and flow tests records, Sandia National Laboratories

Building Plan Archives, Sandia National Laboratories, Livermore, CA
SUPPRESSION: AUTOMATIC SPRINKLERS THROUGHOUT
DETECTION: DUCT DETECTION

FIRE ALARM CONTROL PANEL FOUND IN BASEMENT CENTRAL CORRIDOR
SATELLITE PANEL ON 3RD FLOOR WEST LOBBY. PANEL ALSO CONTROLS
REDWOOD CENTER (BREAKERS) AND CREDIT UNION

\[\text{\(\square\) FIRE EXTINGUISHER - CLEAN AGENT} \]
\[\text{\(\triangle\) FIRE EXTINGUISHER - DRY CHEMICAL, ABC} \]

NOTE: THERE ARE 3 FIRE EXTINGUISHERS ON THE ROOF
\[\text{\text{\(\square\)} EXTINGUISHERS 310D, 310F} \]

BUILDING 910
THIRD FLOOR

KEY PLAN
BILD. 910
ROOM 015 RENOVATION PLAN

KEY PLAN
ILZG. 950

NOTES:
1. CUTt-REMOVALS: SEE IN COLORS
2. Cast iron grates
3. Supply air grills: see with drawing
4. Return air grille: consult General Air with drawing
5. New O/E or ceiling

ELEVATOR
MECHANICAL EQUIPMENT
STORAGE
BOILER ROOM
MECHANICAL ROOM
TRAP ROOM
WATER POOL
WATER TANK
WATER RESERVOIR
WATER TANK
ELEVATOR SHAFT
MECHANICAL SHAFT
AREA WAY

ROOM 015 RENOVATION PLAN

KEY PLAN
ILZG. 950

NOTES:
1. CUTt-REMOVALS: SEE IN COLORS
2. Cast iron grates
3. Supply air grills: see with drawing
4. Return air grille: consult General Air with drawing
5. New O/E or ceiling

ELEVATOR
MECHANICAL EQUIPMENT
STORAGE
BOILER ROOM
MECHANICAL ROOM
TRAP ROOM
WATER POOL
WATER TANK
WATER RESERVOIR
WATER TANK
ELEVATOR SHAFT
MECHANICAL SHAFT
AREA WAY

ROOM 015 RENOVATION PLAN

KEY PLAN
ILZG. 950

NOTES:
1. CUTt-REMOVALS: SEE IN COLORS
2. Cast iron grates
3. Supply air grills: see with drawing
4. Return air grille: consult General Air with drawing
5. New O/E or ceiling

ELEVATOR
MECHANICAL EQUIPMENT
STORAGE
BOILER ROOM
MECHANICAL ROOM
TRAP ROOM
WATER POOL
WATER TANK
WATER RESERVOIR
WATER TANK
ELEVATOR SHAFT
MECHANICAL SHAFT
AREA WAY

ROOM 015 RENOVATION PLAN

KEY PLAN
ILZG. 950

NOTES:
1. CUTt-REMOVALS: SEE IN COLORS
2. Cast iron grates
3. Supply air grills: see with drawing
4. Return air grille: consult General Air with drawing
5. New O/E or ceiling

ELEVATOR
MECHANICAL EQUIPMENT
STORAGE
BOILER ROOM
MECHANICAL ROOM
TRAP ROOM
WATER POOL
WATER TANK
WATER RESERVOIR
WATER TANK
ELEVATOR SHAFT
MECHANICAL SHAFT
AREA WAY

ROOM 015 RENOVATION PLAN

KEY PLAN
ILZG. 950

NOTES:
1. CUTt-REMOVALS: SEE IN COLORS
2. Cast iron grates
3. Supply air grills: see with drawing
4. Return air grille: consult General Air with drawing
5. New O/E or ceiling

ELEVATOR
MECHANICAL EQUIPMENT
STORAGE
BOILER ROOM
MECHANICAL ROOM
TRAP ROOM
WATER POOL
WATER TANK
WATER RESERVOIR
WATER TANK
ELEVATOR SHAFT
MECHANICAL SHAFT
AREA WAY