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This paper documents a comparison of overset grid and grid deformation schemes ap
plied to flapped and non-flapped NACA airfoil configurations in order to determine the 
relative accuracy and computational efficiency of each method. This study is part of a 
larger effort to use computational fluid dynamics to perform moving control surface cal
culations. Three different cases, using both overset and deformed grids, are considered, 
including: a) lift and moment comparison of a quasi-steady, non-flapped 0012 airfoil, b) 
lift and moment comparison of a dynamically pitching non-flapped 0012 airfoil, and c) lift 
comparison of a dynamic pitching and oscillating flapped 0012 airfoil. These results are 
compared to experimental data from various sources. Two flow solvers of common lineage 
were used for the computations: Cobalt for overset and rigid mesh motion and AVUS for 
the deformable mesh motion. All of the methods produced nominally similar results. As 
expected, the rigid mesh technique required the least amount of computational resources, 
while the deformable mesh technique required the greatest amount of computational re
sources due to its serial implementation. However, in the end, it is difficult to recommend 
one method over another as the application of each method may be dependent on the 
project being solved. 

Nomenclature 

c Airfoil chord length 
Cl Lift coefficient, Cl=l/(q c) 
Cm Pitching moment coefficient, Cm=Mz/(q c2) 
Cy Normal force coefficient, Cy = fy/(q c) 
fy Normal force 
l Lift force 
Mz Pitching moment 
q Dynamic pressure, q = 1 ρ∞U2 

2 ∞ 
SA Spalart–Allmaras turbulence model 
U Velocity in x direction 
y Spacing normal to surface 
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Subscripts 

∞ Free-stream conditions 

Symbols 

α Angle of attack, degrees 
Δt Global time step, seconds 
ρ Density 

Superscripts 

+ Wall units 

I. Introduction 

For many years, high-fidelity CFD solutions (i.e. solutions of the Navier-Stokes equations with appropriate 
turbulence modeling) for full aircraft configurations have been commonplace. The speed and efficiency at 

which high performance computing (HPC) machines are currently able to operate is astounding compared to 
the capabilities of ten years ago, and this trend shows no signs of slowing. As a result, the use of high-fidelity 
CFD to predict the stability and control characteristics of new aircraft designs is much more plausible instead 
of only being used to help understand complex flow behaviors and the associated instabilities discovered in 
wind tunnel or flight tests. While the routine use of CFD to fully populate an aerodynamic database 
for a new aircraft configuration is still not computationally tractable today, the simulation of particular 
flight conditions or configurations where complex flow phenomena are expected to exist can translate into 
a significant savings in wind tunnel and flight test costs. This is especially true if costly problems such as 
abrupt wing stall and tail buffet are discovered early in the design phase. 

In future aircraft designs, the flow field surrounding the vehicle will only become more complex as thrust 
vectoring, active aeroelastic structures, and other related technologies are implemented for stability and 
control augmentation. Unmanned combat vehicles will operate in flight regimes where highly unsteady, 
nonlinear, and separated flow characteristics dominate since there are no man-rating requirement.1 

It would be beneficial to have the ability to accurately analyze and evaluate the non-linear stability 
and control characteristics of an aircraft and possible associated armament earlier in the design phase than 
currently possible. Traditionally, a combination of linear aerodynamic theory and empirical data, scale model 
wind tunnel tests, and full-scale flight tests are used to assess the stability and control characteristics of a 
new aircraft design. The current linear modeling methods have been very successful but the accuracy is 
beginning to suffer as high performance designs include larger regions of vortical or separated flow. Wind 
tunnel techniques are expensive and time consuming but still the method of choice today for new flight vehicle 
designs. Still, complex models and facilities are necessary to represent the dynamic behavior associated with 
maneuvering vehicles and the associated control surface deflections. Additionally, there are various blockage, 
scaling, Reynolds number, and support interference effects to contend with. Finally, flight testing is extremely 
accurate and telling, but there are obvious downsides relating to cost and safety with this technique. 

When applied to stability and control problems, high-fidelity CFD is definitely in a position to overcome 
many of the downsides of the techniques mentioned previously. Many of the opportunities and challenges 
associated with the application of CFD to aircraft stability and control were discussed heavily at a NASA-
sponsored symposium on Computational Methods for Stability and Control (COMSAC).2,3 Although it 
appears that an organized approach to computational stability and control is lacking, the application of 
computational techniques to aircraft stability seems to be of interest to a number of organizations based 
on current literature and various other current research endeavors with which the authors are familiar. 
However, the representation of moving control surfaces in high-fidelity CFD solutions is lacking, especially 
when dealing with unstructured meshes. This is likely due to the overhead involved with the generation of 
grids for various control surface deflections and the fact that adding conventional control surfaces to existing 
structured or unstructured grids is not a trivial undertaking, especially considering the refinements necessary 
to properly model the separated flow regions spawned by large surface deflections.4 By no means are the 
authors implying that the stability problem is insignificant or trivial. Indeed, this is the topic of another 
paper.5 
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II. Previous Research
 

A number of researchers have integrated flight controls into CFD simulations, but a thorough treatment 
of the problem with appropriate validation still seems to be lacking. Most of the research has been focused on 
aeroservoelastic problems associated with transonic conditions where only small surface deflections are ap
plicable. NASA’s COMSAC program2,3 initially extended the well-known transonic small disturbance code 
CAP-TSD to represent control surfaces but noted that restrictions in the code prevented proper implemen
tation. Also, this technique would not be applicable to the wide range of flight conditions where high-fidelity 
CFD is required. The majority of techniques applied to Navier-Stokes or Euler solvers are applicable only 
to structured grids. A transpiration method was used to model the Benchmark Active Controls Technology 
(BACT) wing with its moving controls.6 Here, the velocity components at the boundary were altered to 
present the control surface with the desired deflection to the flow field. One of the more common approaches 
is to generate multiple grids representing key surface deflections and then use an interpolation technique to 
compute intermediate deflections. Trans-finite interpolation is then used to deform the volume grid due to 
the moving surface.7,8,9 Another popular technique is to represent the moving surface as a separate struc
tured block and then use an overset capability to implement the surface and volume movement.10,11 When 
the flow solver allows topology changes during a solution or if time-dependent surface deflections are not a 
requirement, a remeshing technique may also be included with an overset procedure to model the moving 
surface.12,13 Another interesting technique in the literature includes the use of a meshless solver.14 The abil
ity to model large surface deflections is promising, but the proper representation of the moving boundaries 
appears to be a complex issue with meshless techniques. 

In contrast to the structured grid approaches, very few control surface implementations for unstructured 
meshes have been accomplished. This is unfortunate considering the advantages of unstructured domains 
such as better representation of complex geometries, shorter and more automated generation time frames, 
and suitability to adaptive mesh refinement techniques.15 The Arnold Engineering and Development Cen
ters (AEDC) FD-CADRE software (Fluid Dynamics-Computational Analysis of Dynamically Responsive 
Environment)10 applies an overset technique to unstructured grids to model store separation. The issue of 
modeling components that are attached and moving relative to a parent body is discussed as being complex 
and the focus of future work. The SIKMA (Simulation of Complex Maneuvering Aircraft) project from 
DLR implements an overset technique for modeling moving controls on an aeroelastic vehicle using the TAU 
flow solver.16 A hierarchical motion-node structure is implemented to keep the overset grid assembly for 
the moving control connected properly as the elastic wing deforms. Inviscid results for surfaces with no 
gap representation are presented as part of the most recent SIKMA project update. Murayama et al model 
an all-moving tailplane in the simulation of a high-speed civil transport aircraft.17 In their technique, the 
tailplane mesh is continuous with the fuselage mesh, and a mapping method is implemented to slide the 
surface mesh as the tailplane rotates. A spring analogy is used to deform the volume mesh. 

One of the complex issues associated with the proper modeling of moving control surfaces in CFD meshes 
is the representation of the gaps between the moving surface and the fixed structure. Very few of the projects 
mentioned previously have accurately modeled these gaps.7,8,9 Many of the projects have webbed the control 
surfaces to the fixed structure to avoid the massive shearing associated with the large deflections of encased 
controls such as conventional ailerons and rudders. As such, many of the projects mentioned previously 
only report results for small deflection magnitudes (10 deg). However, it should be noted that the results 
presented generally compare well with experiments when such comparisons are made. 

Overset grid technologies are one way to overcome many of these issues, and Meakin et al18 describes 
these techniques for structured grids. Unstructured grids, however, require greater computational capacity 
and memory requirements due to the necessary grid-point searches and interpolations. Noack et al19 have 
developed the DiRTlib library and SUGGAR code to implement these methods for unstructured domains, 
and the methods utilized by Cobalt in this paper use a similar, proprietary scheme. The hole-cutting 
procedure is based on an octree method, described again by Noack.20 

An alternative to overset techniques for representing moving components is the deformation of the mesh. 
A number of mesh deformation schemes have been successfully implemented to support CFD studies of 
aeroelastic vehicles. Samareh includes a good review of many of these techniques in a fairly recent pa
per.21 Specific to structured grids, trans-finite interpolation is a common way to relocate (regenerate) mesh 
nodes.22,23 Applicable to both structured and unstructured meshes, a series of linear and torsional springs 
may be used to model the stiffness of edges and angles, respectively, in the grid.24,25,26 After the surface 
deformation is implemented, the volume nodes are relocated based on the solution to the coupled system. 
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The volume mesh may also be modeled as an elastic solid where updated node locations are determined by 
solving the elasticity equations.27 Kholodar et al28 implement a hybrid technique for unstructured viscous 
meshes where the prismatic boundary layer region of the mesh is relocated according to the changing normal 
basis vectors of the moving surface and the tetrahedral volume mesh is then updated according to the spring 
analogies mentioned previously. A few efficient algebraic techniques are also discussed in recent literature. 
Samareh21 and Liu et al29 both discuss promising algebraic techniques. Samareh implemented an unstruc
tured mesh deformation technique based on quaternion algebra, and Liu et al implemented a point location 
technique based on a Delaunay tetrahedralization of the outer boundary and deformable surface. 

III. Case Setup 

A. Flow Solver 

The team did not have access to a flow solver that would allow both overset and deformable mesh capability 
for 2-D flow. However, the team was able to find a suitable compromise. The commercial code Cobalt 
and the Air Force Research Laboratory’s Air Vehicle Unstructured Solver (AVUS) both share the Cobalt60 

codebase.30 Cobalt recently added an overset capability31 and an updated version of AVUS that includes 
dynamic mesh motion terms was recently integrated into the CREATE-AV/Kestrel project,32 enabling a 
coupled deformable mesh capability.33 

Cobalt60 is a hybrid unstructured Navier-Stokes flow solver and is considered highly robust and accurate 
with excellent parallel performance. The code has been validated on a number of problems.30 Tomaro et 
al converted Cobalt60 from explicit to implicit, enabling CFL numbers as high as one million.34 Grismer 
et al,35 then parallelized the code, yielding a linear speedup on as many as 2800 processors. Forsythe et 
al,36 provided a comprehensive testing and validation of the various RANS models, including the Spalart-
Allmaras, Wilcox k-ω, and Menter’s SST turbulence models. It is the well validated selection of turbulence 
models that makes Cobalt60 a useful codebase for full aircraft computations. 

As mentioned above, AVUS shares a common code base with Cobalt. Thus, it also employs a cell-
centered, finite-volume scheme that is first order accurate in space. However, documentation from Cobalt 
Solutions, LLC suggests that changes were made to the Riemann solver and the inviscid flux scheme to 
improve performance and lower dissipation in the commercial Cobalt code. The AVUS solver still uses the 
original exact Riemann solution method of Gottlieb and Groth.37 Linear gradients within each cell are 
determined via a least-square reconstruction technique resulting in second order spatial accuracy, although 
it is expected that the stencils used in the reconstruction differ between Cobalt and AVUS. Cobalt and 
AVUS both achieve first and second order temporal accuracy via the unconditionally stable point-implicit 
scheme implemented by Tomaro et al.34 Recent work by Koomullil38 incorporated moving mesh capabilities 
into AVUS allowing for mesh coordinate updates to be made at each time step via a file-in, file-out (FIFO) 
technique. AVUS was heavily re-factored as part of the ongoing CREATE-AV/Kestrel program such that 
the flow solver is only tasked with integrating the governing equations for the fluid domain one time step 
at a time. All input and output operations to include mesh coordinate updates for rigid or deforming mesh 
motion are accomplished externally and communicated directly in memory as part of the Kestrel execution 
paradigm.32 Other small updates were made as part of the Kestrel program such as the addition of a solution 
update limiter, but none of these changes are expected to result in substantially different results compared 
to the original AVUS code. 

B. Grid and Boundary Conditions 

All grids used in this study were generated using Mississippi State University’s SimCenter tool.39,40 The grids 
included quadrilateral elements in the boundary layer and triangular elements away from the airfoil surface 
(see Fig. 1) with an initial grid spacing such that y+ was less than one based on the chord Reynolds number. 
Standard external flow boundary conditions were utilized for all cases, with adiabatic no-slip applied at the 
airfoil surface and Riemann invariant conditions at the farfield boundaries. 

The rigid motion and deformable mesh cases used a single grid. Each overset case used two grids: the 
quasi-steady and pitching case used a fixed background grid and a separate airfoil grid, while the pitching 
airfoil with the oscillating flap used a fixed background grid that included the airfoil and a separate flap grid. 
Attempts were made to keep the number of surface grid points equal between the rigid motion, deformable 
mesh, and overset grids. The overset grids were also created with a one-to-one cell spacing in the region 
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Figure 1. Enlarged view of grid near the leading edge of the airfoil. Note the use of quadrilateral elements in 
the boundary layer and triangular elements away from the surface. All grids were created with an initial grid 
spacing such that y+ was less than one based on the chord Reynolds number. 

where the two grids overlapped. As the overset grids are displaced, the total number of cells in the grid will 
change but is expected to remain close to the initial value. 

A grid convergence study was conducted for cases B, C, and D in section IV. Three grids were generated 
for each mesh movement type (rigid, overset, and deformation) and case. The various grids were then run 
through the prescribed motions and the results analyzed. There were no noticeable differences in the force 
and moment results due to grid cell density (a listing of the grid cell counts for case B in section IV can be 
found in Table 1). For the sake of consistency, all data in this report was generated on a medium grid. 

Table 1. A listing of cell count for the grids 
generated for the quasi-steady case (case B) in 
section IV. All grids were generated with a sim
ilar surface grid spacing. However, there was no 
way to control how Cobalt assembled the over-
set grids (which helps to explain the increased 
cell count for the overset grids). 

Coarse Medium Fine 

Rigid 51,715 97,245 198,540 

Overset 86,157 212,937 410,987 

Deformation 51,715 97,245 198,540 

C. Time Step 

Cases B, C, and D in section IV were run with second order temporal accuracy and a specified global 
time step. Additionally, a time step sensitivity study was conducted for case C in section IV. The time 
step sensitivity study showed little change in the normal force and pitching moment coefficients due to a 
decreased time step (Δt). The time steps for the results in section IV are as follows: 2.7×10−5 seconds for 
case B, 1.03504×10−5 seconds for case C, and 6.0×10−5 seconds for case D. 

D. Turbulence Model 

Two turbulence models were investigated: Spalart-Allmaras (SA) and Wilcox’s 1998 k-ω. Both turbulence 
models were able to capture the lift and moment curve characteristics for a static subsonic NACA 0012 
airfoil at varying angles of attack. However, because this paper will be used as the building block for future 
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complicated 3–D flowfields, the team decided to focus on the SA model due to it’s applicability to 3–D 
external aerodynamic flow. All calculations presented in this paper used the SA model. 

IV. Results 

Four distinct cases were run. The first case was a static angle of attack sweep used to verify that Cobalt 
and AVUS produced similar results. The second case was a low-frequency (1.8 Hz) sinusoidal pitching case 
that generated quasi-steady results. The third case was a high frequency (≈ 50 Hz) sinusoidal pitching case. 
The final case was a sinusoidal pitching airfoil with an independently oscillating plain flap. Additional details 
about these cases are given below. While experimental data is plotted where available, the purpose of this 
study was not to match experimental results. Instead, the focus was on determining the relative accuracy 
and computational performance between the various types of mesh movement strategies. Any discrepancy 
between experimental and computational results may be noted with some suggestions on possible cause, but 
investigation of discrepancies will be left to a follow-on study. 

A. Code-to-Code Validation 

A relatively simple code-to-code validation study was accomplished to “prove” that Cobalt and AVUS 
produced nominally similar results for a pitching NACA 0012 airfoil using rigid mesh motion and the SA 
turbulence model (this case is identical to the case in subsection B below). The code-to-code validation results 
are shown in Fig. 2. The agreement between the codes in the linear region is excellent, while there is a slight 
difference between the codes at angles of attack near stall. Both codes seem to exhibit flow unsteadiness as 
noted by the oscillations in the force and moment results near stall. Based on the agreement of the codes for 
rigid mesh motion, the team felt comfortable assuming that Cobalt and AVUS are comparable for purposes 
of this study. 

(a) Normal Force Coefficient Comparison (b) Pitching Moment Coefficient Comparison 

Figure 2. Results of code-to-code validation study for a NACA 0012 airfoil using the SA turbulence model. 
The Reynolds number was 4.6×106 and the Mach number was 0.58. The pitching moment was calculated 
about 0.25c and a positive pitching moment indicates airfoil nose down. Good agreement is seen between the 
solvers before stall. While there is a slight difference in the solvers near stall, the difference is small enough 
to assume that the two codes are comparable. 

B. Quasi-Steady NACA 0012 

The first mesh movement case involved sinusoidally pitching a NACA 0012 airfoil at a relatively low frequency 
of 1.8 Hz (to correspond with run number 11 in Ref. 41). The case Reynolds number of 4.6×106, Mach number 
of 0.58, and an angle of attack of the oscillation of 8.99◦ ± 9.55◦ was such that the airfoil was allowed to 
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stall before α decreased and attached flow was re-established. The solution was computed using the SA 
turbulence model. The results for this case are shown in Fig. 3. It should be noted that the results in Fig. 3 
are limited to an alpha range of 5.845◦ ± 5.715◦ because the tabulated experimental results only covered 
that range of α. The computations included two complete pitch oscillations. However, the data in Fig. 3 is 
from the last complete pitch oscillation. 

(a) Normal Force Coefficient Comparison (b) Pitching Moment Coefficient Comparison 

Figure 3. Results of quasi-steady simulation on a NACA 0012 airfoil using the SA. Here the Reynolds number 
was 4.6×106 , the Mach number was 0.58, and the pitching moment was calculated about 0.25c. A positive 
pitching moment indicates airfoil nose down. There is reasonable agreement between all methods before stall. 
Near stall, the deformable mesh results seem to slightly overshoot the maximum normal force and slightly 
undershoot the maximum pitching moment. 

The normal force coefficient (Fig. 3(a)) matches very well between the rigid mesh and the overset mesh. 
There is also good agreement with the deformable mesh results before stall. As with the rigid mesh data 
in section A, the deformable mesh results tend to slightly overshoot the stall angle of attack and maximum 
normal force coefficient. Given the agreement between the rigid mesh and deformable mesh results in AVUS, 
there is no reason to believe that the deformable mesh capability is leading to the slight overshoot. All three 
methods exhibit some signs of flow unsteadiness as is noted by the oscillations in the force and moment 
results near stall. 

The pitching moment coefficient results (Fig. 3(b)) behave similarly to the normal force coefficient results. 
The rigid mesh and overset mesh results match each other throughout the angle of attack sweep. The 
deformable mesh results match reasonably well leading up to stall and undershoots the rigid mesh and 
overset mesh results near stall. 

C. Pitching NACA 0012 

The second mesh movement case involved sinusoidally pitching a NACA 0012 airfoil at a higher frequency 
of 50.32 Hz (to correspond with AGARD CT case 1 in Ref. 41). The flow conditions were very similar to the 
quasi-steady case; the Reynolds number was 4.8×106, the Mach number was 0.6, and the simulations were 
completed with the SA turbulence model. The angle of attack sweep was 2.89◦ ± 2.41◦ . The computations 
included four complete pitch oscillations. However, the data in Fig. 4 represents the last complete pitch 
oscillation. 

The normal force coefficient results (Fig. 4(a)) show that all three methods produce nominally identical 
answers. The general slope of the computed normal force curve is lower than that of the experiment. This 
is likely due to a slight under prediction of the viscous effects of the flow around the airfoil. The pitching 
moment coefficient results (Fig. 4(b)) show good agreement between the rigid mesh and overset mesh results. 
There is a noticeable difference in the deformable mesh results. Given the agreement of the normal force 
coefficient, it is unlikely that the discrepancy is due to something physical in the flowfield. 
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(a) Normal Force Coefficient Comparison (b) Pitching Moment Coefficient Comparison 

Figure 4. Results of purely pitching simulation on a NACA 0012 airfoil using the SA turbulence model. The 
simulation Reynolds number was 4.8×106, the Mach number was 0.6, and the pitching moment was calculated 
about 0.25c. The three mesh motion methods provide a similar result for normal force coefficient. There 
is a noticeable difference in the pitching moment coefficient. The deformable mesh difference will require 
additional investigation. 

The pitching case also provided an opportunity to examine the state of the grids for the three mesh 
movement methods at two different points in time. The first point in time (Fig. 5(a) through Fig. 5(c)) 
shows the state of the grid at the beginning of the simulation where α is 2.89◦ . The second point in time 
(Fig. 5(d) through Fig. 5(f)) shows the grid near the case maximum α deflection of 5.30◦ . 

D. Pitching NACA 0012 with an Independently Oscillating Flap 

A more complicated dynamic simulation was run involving an airfoil and a flap that pitch at different 
frequencies and amplitudes. The experimental data for this case was generated at a chord based Reynolds 
number of 1.63×106 and a Mach number of 0.4.42 The airfoil was sinusoidally pitched with a frequency of 5 
Hz and an amplitude of 4.0◦ ± 6.0◦ . The flap was sinusoidally deflected with a frequency of 10 Hz, with an 
amplitude of 0.0◦ ± 5.6◦, and a phase shift of -148◦. The simulations were completed using the SA turbulence 
model. 

The lift coefficient results are shown in Fig. 6. The overset mesh and deformable mesh results show similar 
behavior at higher angles of attack. The deformable mesh results show a greater change in lift coefficient as 
the airfoil is swept through the lower angles of attack. The deformable mesh result and overset mesh result 
seem to predict the same angle of attack where the lift coefficient will cross (around α = 3.5◦). It should 
be noted that it is unclear whether or not the experimental data was corrected for wind tunnel effects. It is 
also worth noting that the experimental apparatus was limited in its α sweep range and allowed the airfoil 
to stay near the maximum value longer than would be calculated from a pure sine function. 

E. Computational Timing 

There was considerable interest in determining the computational effort required for the various mesh move
ment methods. Table 2 shows the computational timings for the three cases and associated mesh movement 
methods. A lower number in the table corresponds to a lower computational cost. As expected, where avail
able for a given case, rigid mesh motion results in the lowest computational cost. However, there are limits 
to the types of problems that can be addressed with rigid mesh motion such as moving control surfaces. 
For these types of problems, overset and deformable mesh computations would be desired, From this study, 
overset computations appear to be less costly than deformable mesh computations. There is one caveat, 
however. The overset grid assembly process in Cobalt is handled in parallel while the deformable mesh 
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(a) Rigid mesh; α=2.89◦ . (b) Overset mesh; α=2.89◦ . (c) Deformable mesh; α=2.89◦ . 

(d) Rigid mesh; α=5.30◦ . (e) Overset mesh; α=5.30◦ . (f) Deformable mesh; α=5.30◦ . 

Figure 5. Comparison of grid movement schemes at two different points in time for a pitching NACA 0012 
airfoil with the SA turbulence model. The simulation Reynolds number was 4.8×106 and the Mach number 
was 0.6. Note that even the relatively low angle of attack results in transonic flow. 

Figure 6. Results of a pitching airfoil with an independently oscillating flap. The simulations used a NACA 
0012 airfoil with the SA turbulence model, a Reynolds number of 1.63×106 and a Mach number of 0.4. Both 
methods produce similar results at higher angles of attack. At lower values of α, the deformable mesh technique 
predicts a larger change in lift coefficient than the overset mesh technique. 
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process is handled serially in AVUS. There are plans to parallelize the deformable mesh process in a future 
release of AVUS (through the Kestrel project). 

Table 2. Computational timing results. Each value represents the total 
time to compute the solution multiplied by the number of processors, 
divided by the total number of iterations, divided by the total number 
of grid cells. 

Quasi-steady Pitching Pitching & Flapping 

Rigid 1.370×10−4 1.783×10−4 – 

Overset 5.024×10−4 4.649×10−4 3.997×10−4 

Deformation 5.469×10−4 5.562×10−4 5.586×10−4 

V. Conclusion 

A comparison between rigid mesh motion, overset mesh movement, and deformable mesh movement was 
completed. While there was not a clear advantage to one method over another, none of the methods had 
a clear disadvantage. The only exception may be the rigid mesh technique as it cannot be applied to cases 
with moving control surfaces. When taken in aggregate, all three methods produced surprisingly similar 
answers within a reasonable amount of computational resources. The deformable mesh technique showed 
the highest computational cost but this was likely due to the serial implementation of the deformable mesh 
process and will likely decrease when the process is parallelized. 
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