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Summary.—New empirical evidence and statistical deriva­
tions of Benford’s Law have led to successful goodness-of­
fit tests to detect fraud in accounting data. Several recent 
case studies support the hypothesis that fabricated data 
does not conform to expected true digital frequencies. 

A recent article in the Wall Street Journal (Berton, 1995) re­
ported that the District Attorney’s office in Brooklyn, New York 
detected fraud in seven New York companies by using a statistical 
goodness-of-fit test to ascertain that a significant part of the compa­
nies’ accounting data had been fabricated. The purpose of this note 
is to communicate empirical discoveries in accounting and theoreti­
cal advances in statistics which strongly suggest that the logarithmic 
distribution called Benford’s Law is a valid a priori  distribution for 
the expected digital frequencies of many true data sets, and to com­
municate case studies in accounting which support the hypothesis 
that fabricated data do not closely follow this law. 

Benford’s Law is an empirical statistical law which states that 
in many tables of numerical data, the significant digits are not uni­
formly distributed as might be expected but rather obey a certain 
logarithmic probability distribution (recall that, for example, the 
first significant digit of 0.0501 is 5, the second is 0, and so on). 
Specifically, Benford’s Law is the probability distribution on signifi­
cant digits which states that, in particular, 
(1) Prob(first significant digit = d) =  log10 1 +  1  for d = 1, 2, . . . , 9,

d 
and � � �9 1(2) Prob(second significant digit = d) =  log10 1 +k=1 10k+d 

for d = 0, 1, 2, . . . , 9. 
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For example, (1) says that the first significant digit is 1 with 
probability log10 1 +  1  = log10(2) � 0.301, and is 9 with prob­= � � 1 
ability log10 1 +  1  = 0.046. Similarly, (2) says that the proba­9 � � �9 1bility the second significant digit is 3 is log10 1 +  = k=1 10k+3 

1 1 1 �log10 1 +  +log10 1 +  + · · ·+log10 1 +  = 0.17. It is easy 13 23 93 
to check that the probabilities in (1) and (2) are all decreasing in d, 
and sum to (1). 

Benford’s Law also specifies distributions of third and higher 
significant digits, and even specifies the joint distributions of these 
significant digits, e.g., the probability that the first two significant 
digits are 5 and 0 respectively, which is not simply the product of 
the probability the first significant digit is 5 times the probability 
the second significant digit is 0 – the significant digits are dependent 
[cf. Hill, 1995a for the exact formulas]. Benford’s Law is the only 
probability distribution on significant digits which is invariant under 
changes of scale (e.g., converting from metric to English units), or 
under changes of base (e.g., replacing base 10 by base 8 or 2, in which 
case the logarithm base 10 is replaced by logarithm to the new base). 

Empirical evidence of Benford’s Law has appeared in a wide 
variety of contexts: tables of physical constants, newspaper articles 
and almanacs, and numerical computations in computing [cf. New­
comb, 1881; Benford, 1938; Raimi, 1969; Hill, 1996]; certain aspects 
of cognitive arithmetic (Ashcraft, 1992; Dehaene and Mehler, 1992); 
and many areas of accounting including tax, stock market, and de­
mographic data (Nigrini, 1995). 

These empirical discoveries are supported by new mathematical 
laws of probability (Hill, 1995a, 1996) which both explain and predict 
the appearance of the logarithmic distribution. Roughly speaking, 
this new statistical principle says that, if probability distributions 
are selected at random and random samples are then taken from 
each of these distributions in any way so that the over-all process 
is “unbiased,” then the leading significant digits of the combined 
sample will always converge to Benford’s Law. This theorem helps 
explain why data sets such as numbers from front pages of newspa­
pers, large accounting tables, or stock market figures tend to obey 
Benford’s Law since they are composed of samples from many dif­
ferent distributions. 
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This prevalence of the logarithmic distribution in true account­
ing data sets has led to its recent use to detect fraud, under the 
hypothesis that when people fabricate data they do not choose num­
bers which follow the logarithmic distribution. It is well documented 
that people cannot behave truly randomly even when it is to their 
advantage to do so (Chapanis 1953; Bakan, 1960; Neuringer, 1986), 
and recent case studies support the hypothesis that concocted data 
do not follow Benford’s Law closely. Nigrini (1994a) analyzed distri­
butions of numbers from 873 fraudulent checks in an embezzlement 
scheme and described three other case studies in accounting involv­
ing falsified data, and in another study (Nigrini, 1994b) investigated 
tax-fraud digital distributions. Even when people invent numbers 
without a goal such as fraud in mind, the digital frequencies do not 
conform well to Benford’s Law (Hill, 1988). Many of these case 
studies suggest an overabundance of leading digits in the mid-ranges 
4–6 in fabricated data, but comprehensive experimental verification 
and a general theory for the distribution of fabricated data are still 
missing. 
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