
A COMPARISON OF LOW-GRAVITY MEASUREMENTS ON-BOARD COLUMBIA 

DURING STS-40 

M. 1. B. Rogers C. R. Baugher 
Center for Microgravity and Materials Research Acceleration Characterization and Analysis Project 

University of Alabama in Huntsville NASA Marshall Space Flight Center 
Huntsville, Alabama 35899 USA MSFC, Alabama 35812 USA 

R. C. Blanchard R. DeLombard W. W. Durgin
 
OARE Project Technologist SAMS Project Manager Aerospace Engineering
 

NASA Langley Research Center	 NASA Lewis Research Center Worcester Polytechnic Institute 
Hampton, Virginia USA Cleveland, Ohio USA Worcester, Massachusetts USA 

D. H. Matthiesen W. Neupert P. Roussel 
Case Western Reserve Univ. Code 680 European Space Agency 

NASA Lewis Research Center	 NASA Goddard Space Flight Ctr. Keplerlaan 1 
Cleveland, Ohio USA Greenbelt, Maryland USA Noordwijk, The Netherlands 



A COMPARISON OF LOW-GRAVITY MEASUREMENTS ON-BOARD COLUMBIA 

DURING STS-40 

Abstract 

The first NASA Spacelab Life Sciences mission (SLS-l) flew 5 June to 14 June 1991 on 

the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's 

adaptation to the low-gravity conditions of space flight and the body's readjustment after the 

mission to the 1 g environment of earth. In addition to the life sciences experiments manifested 

for the Spacelab module, a variety of experiments in other scientific disciplines flew in the 

Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several 

principal investigators designed and flew specialized accelerometer systems to better assess the 

results of their experiments by means of a low-gravity environment characterization. This was 

also the first flight of the NASA Microgravity Science and Applications Division (M'SAD) 

sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA 

Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment 

accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems 

and discuss and compare the resulting data. During crew sleep periods, acceleration magnitudes 

in the 10-6 to 10-5 g range were recorded in the Spacelab module and on the GAS Bridge 

Assembly. Magnitudes increased to the 10-4 g level during periods of nominal crew activity. 

Vernier thruster firings caused acceleration shifts on the order of 10-4 g and primary thruster 

firings caused accelerations as great as 10-2 g. Frequency domain analysis revealed typical 

excitation of Orbiter and Spacelab structural modes at 3.5,4.7,5.2,6.2, 7, and 17 Hz. 



1. Introduction 

The first NASA Spacelab Life Sciences mission (SLS-l) flew 5 June to 14 June 1991 on 

the orbiter Columbia (mission STS-40). The purpose of the mission was to investigate the human 

body's adaptation to the low-gravity conditions of space flight and the body's readjustment after 

the mission to the 1 g environment of earth. In addition to the life sciences experiments 

manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in 

the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several 

principal investigators designed and flew accelerometer systems to characterize the low-gravity 

environment. This was done to better assess the results of their experiments. This was also the 

first flight of the MSAD-sponsored SAMS and the first flight of the OEX-sponsored OARE. This 

paper presents a brief introduction to seven accelerometer systems which measured and recorded 

acceleration levels during STS-40 and discusses the resulting data. 

2. Accelerometer Systems 

The STS-40 accelerometer systems to be discussed are listed in Table 1. Two of the 

systems flew in support of individual crystal growth experiments - the Worcester Polytechnic 

Institute (WPI) Fluid Behavior and Zeolite Crystal Growth Experiments, and the GTE Gallium 

Arsenide Crystal Growth Experiment.[I,2] The NASA Goddard Orbiter Stability Experiment 

(OSE) was designed to characterize Orbiter g-jitter by measuring angular accelerations using sun 

sensors. The ESA Solid State Micro-Accelerometer (SSMA) recorded data as part of a 

component performance testing procedure. The OARE system, a space accelerometer package 

with on-orbit calibration capabilities, was designed to measure and record the Orbiter 

aerodynamic acceleration environment from the free molecule flow regime through the rarefied­

flow transition into the hypersonic continuum regime. [3,4] The OEX High Resolution 

Acceleration Package (HiRAP) was also designed to measure low frequency aerodynamic 

accelerations with the goal of determining Orbiter re-entry aerodynamic flight performance 



characteristics. [5-14] SAMS flew in support of the Solid Surface Combustion Experiment 

(SSCE). SAMS was designed to support multiple experiments and multiple missions; it is 

scheduled to fly on all Orbiter missions which include MSAD-sponsored low-gravity experiments. 

The resulting data base is expected to contribute to the characterization of the low-gravity 

environment of Orbiters. [15-17] The locations of the GAS Bridge Assembly and of the SAMS 

units in the Spacelab are shown in Figs. 1 and 2. 

2.1 GTE Gallium Arsenide Crystal Growth Experiment 

The GTE experiment was designed to study the effect of reduced gravity on the growth of 

gallium arsenide (GaAs) semiconductor material. [1] The experiment was located in GAS Canister 

G-052 and was oriented with the accelerometer x- and y-axes parallel to those of the Orbiter and 

with the z-axes anti-parallel. The GTE triaxial sensor accelerometer was developed and tested 

prior to the STS-40 flight on a NASA KC-135 Microgravity Research Aircraft.[2] On STS-40, a 

Sundstrand QA-2000 sensor was aligned with the crystal growth axis (x-axis) and two QA-1400 

sensors were used in the y- and z-directions. The measurement range for the system was 1x10-5 

to lx10-2 g and the data were lowpass filtered at 16 Hz with a 3 dB/decade rolloff. A Tattletale 

IV microcomputer was used for data processing and storage, allowing 155 kilobytes of memory 

per axis. 

A specialized data processing technique was developed to reduce memory requirements. 

For a two second period, 100 measurements were made and initially stored. For each two second 

block of data, a least squares fit to the data was computed and the slope and intercept of the fit 

were recorded. Two other statistics were recorded - the standard deviation of the 100 samples 

and the value of the point with the largest deviation from the intercept value. Upon calculation 

and storage of these values, the 100 data points were discarded and the next two seconds of data 

were recorded. At five minute intervals, absolute time, relative time, microcomputer temperature, 

and accelerometer temperature were recorded. 



2.2	 WPI Fluid Behavior and Zeolite Crystal Growth Experiments 

The WPI accelerometer system flew on STS-40 in conjunction with zeolite crystal growth 

and fluid behavior experiments in GAS Canister G-408. The zeolite crystal growth experiment 

involved nucleation and subsequent growth from solution. It was hypothesized that the mass 

transfer and, thus, the growth rate would be functions of the g-jitter environment. The fluid 

behavior experiment involved measurements of quantity and heat and mass transfer in the re­

establishment of equilibrium. It was expected that these processes as well as transfer of additional 

liquid to the test vessels would also be affected by the g-jitter environment. 

The accelerometer system was flown to assess the performance of these experiments as a 

function of the acceleration environment. The system consists of three piezoelectric sensors and a 

system for analog signal processing, digital sampling, and storage of data. Accelerometer axes 

were aligned with the roll, pitch, and yaw axes of the Orbiter. A low frequency data cutoff of 

approximately 0.8 Hz was established by the a.c. nature of the piezoelectric elements. The high 

frequency cutoff was set at 10Hz using a lowpass filter associated with the signal amplifiers. 

Each of the three channels was monitored by positive and negative peak detectors which were 

read at a rate of 1 Hz. The greatest magnitude value for each one second window for each 

channel was stored together with sign. For the data presented here, the magnitude of the 

acceleration vector (root sum of squares of the three axes) is used. Resolution of the system was 

10 ~g, and full scale was 20,000 ~g. 

2.3	 NASAlGSFC Orbiter Stability Experiment 

The primary objective of the Orbiter Stability Experiment (OSE) was to obtain a 

. characterization of the Orbiter's spectrum of high frequency angular motions. The OSE measures 

angular accelerations directly with sun sensors by observing changes in the orie!1tation of the 

Orbiter in pitch and roll relative to the Sun. The OSE detected the Orbiter's motion by measuring 

the direction of incoming sunlight with two precision Lockheed Intermediate Sun Sensors (LISS) 

provided by the Lockheed Missiles and Space Co. SPARCS Office, White Sands Missile Range, 

NM, under contract to the Wallops Flight Facility of the NASA Goddard Space Flight Center. 



The system can measure angular changes as small as 0.25 arc sec, the level set by data 

digitization. Electronics noise is about 0.2 arc sec RMS for the most sensitive pitch and roll 

channels. The OSE recorded the position of the Sun relative to the Orbiter during the sunlit 

portions of orbits 34, 35, and 39, for a total duration of three hours. It was necessary for the 

OSE sensors to be oriented toward the Sun within two degrees before observations could be 

made, and the Orbiter was held in a -zo solar inertial attitude with a deadband of 0.1 arc degree 

during observations. The sensors were mounted to the top plate of GAS Canister G-507 and 

aligned to the GAS Bridge within 1 arc min in pitch and 7 arc min in roll. 

The two LISS were oriented to provide signals of opposite polarity for Orbiter pointing 

deviation as a means of discriminating against unintended electrical noise pickup. The analog 

signals from the sensor were passed through an 11 Hz lowpass filter with 12 dB/octave rollotI: 

amplified, and sampled at a rate of 58 Hz for each of four (two pitch and two roll) data channels. 

The data stream was recorded on a Lockheed 4200 tape recorder for playback after the mission. 

The instrument was operated both with and without a solar input to determine the level of internal 

electronic noise. 

2.4 ESA Solid State Micro-Accelerometer 

The primary objective of the Solid State Micro-Accelerometer experiment (SSMA) was to 

test a new type of highly sensitive accelerometer in low-g to characterize performance in the 

absence of the 1 g environment ofEarth. The system was also designed to provide an engineering 

test demonstration of the sensors to prove suitability for applications on future flights. The 

SSMA was located in GAS Canister G-02I. Each accelerometer unit included a small proof mass 

(15 micro-gram) and supporting silicon springs fabricated from mono-crystalline silicon and 

combined on a hybrid substrate with the analog readout electronics. The micro-structure and 

associated ,micro-electronics were sealed and mounted in a standard, 14 pin dual-in-Iine 

electronics package as an integral unit. The accelerometers were designed to operate within the 

acceleration range ±80 milli-g with a sensitivity of 125 voltslg and a frequency range from d.c. to 

100 Hz. 



Twelve accelerometers (among which were two dummy units) were mounted in a three 

axis array on a one axis vibrating table designed to provide variable calibration signals during 

flight. Four accelerometers were oriented with their sensitive axis parallel to the vibration axis of 

the table and to the Orbiter pitch axis (y-axis), 3 parallel to the Orbiter roll axis (x-axis), and 3 

parallel to the Orbiter z-axis. The array configuration was chosen to assess the transverse effects 

of the accelerometers and to compensate, at the processing level, for external disturbances. The 

SSMA experiment consisted of 51 measurement sequences: 31 with excitations from 1 Jlg to 40 

miIli-g at rates between 0.1 and 50 Hz (sinusoidal); 12 without excitation; and 8 self-test 

sequences. 

The Data Acquisition System was designed to sample, digitize, and store in a Mass 

Memory Unit the signals of the 12 accelerometers; the thermistor readings of accelerometer 

temperature; the displacement transducer signals from the vibrating table; the temperature and 

voltage outputs from the Data Acquisition System; the temperature, pressure, and voltages from 

the battery; and the signals from a Real Time Clock and an Advanced Real Time Clock. To 

minimize the amount of stored data and to avoid aliasing effects, the accelerometers and 

displacement transducer signals were sampled at 16 times the excitation frequency and filtered 

through a digital signal processor with a cut-off frequency of 4 times the excitation and a rolloff 

of-SO dB. 

2.5 Orbital Acceleration Research Experiment 

The Orbital Acceleration Research Experiment (OARE) is a triaxial electrostatic 

accelerometer package with complete on-orbit calibration capabilities.[3,4] The OARE consists 

of three orthogonal, electrostatically suspended proof mass sensors, a full in-flight calibration 

station, and a microprocessor which is used for in-flight experiment control, processing, and 

storage of flight data. The experiment system is designed to measure low frequency «5 Hz), 

low-level acceleration (nano-g sensitivity), and is principally directed at characterizing the 

Orbiter's aerodynamic behavior in the rarefied-flow flight regime. The OARE system is mounted 

as a payload on the floor of the cargo bay on a keel bridge spanning bay 11. 



2.6 High Resolution Acceleration Package 

The High Resolution Acceleration Package (HiRAP) consists of a set of three orthogonal, 

pendulous, gas-damped accelerometers, each with a resolution of 1 Ilg and a measurement range 

of approximately ±8000 Ilg. The HiRAP is designed to measure high-altitude aerodynamic 

acceleration on the Orbiter vehicle during atmospheric re-entry. The HiRAP is mounted in a wing 

box of the cargo bay, such that the orthogonal HiRAP axes are aligned with the Orbiter body 

axes. Data are collected at 112 Hz, and two lowpass filters at 20 Hz and 2 Hz are applied. The 

HiRAP absolute accuracy over its twelve flights since 1983, after in-flight calibration, is 3 to 7 Jlg. 

[5-14] 

2.7 Space Acceleration Measurement System 

The Space Acceleration Measurement System was developed to monitor and measure the 

low-g environment of Orbiters in support of MSAD-sponsored science payloads. [15-17] 

Resulting data are used by microgravity investigators in assessing the influence of acceleration on 

flight experiments. On STS-40, SAMS was manifested to support the Solid Surface Combustion 

Experiment (SSCE). SAMS consists of three remote triaxial sensor heads, connecting cables, and 

a controlling data acquisition unit with a digital data recording system using optical disks with 200 

megabyte storage capacity per side. With the availability of crew access to change the disks, data 

storage capacity is essentially unlimited. On STS-40, three triaxial sets of Sundstrand QA-2000 

sensors recorded data at 25 samples per second with a 5 Hz lowpass filter applied (140 dB/decade 

rollotI). The SAMS control electronics and data recording package was mounted in the Spacelab 

in SMIDEX Rack 5. The three triaxial sensor heads were mounted 1) on the Spacelab floor on 

the base of the Body Restraint System, 2) on the connector bracket panel of the SMIDEX in Rack 

5, and 3) on the SSCE in Rack 7, see Fig. 2. The orientations of the SAMS heads with respect to 

the Orbiter coordinate system are given in Table 2. 

3. Results 

The accelerometer systems flown during STS-40 recorded data during a variety of time 

periods. There is some overlap, however, early in the mission and especially during crew sleep 



periods. A comparison of the results from these periods provides an indication of the low-g 

environment at various locations. 

3.1 GTE Gallium Arsenide Crystal Growth Experiment 

According to the pre-flight mission plan, the GTE experiment was to be activated at MET 

02/10:35. The accelerometer system was to start recording data 4 hours, 55 minutes later. 

Crystal growth was scheduled to begin at the same time as data recording. These times were 

selected to coincide with a crew sleep period, to reduce the effects of crew related g-jitter. While 

the exact time of experiment activation was not recorded, examination of the data indicates that 

the full five hours of crystal growth and accelerometer data recording did take place during a 

quiescent period. 

Several general comments can be made about the GTE accelerometer data during STS-40. 

Details have been presented previously.[I] The z-axis experienced the greatest variation and the 

x-axis was the most quiet. The lesser quality of the accelerometer sensors used for the y- and z­

axes is apparent; the increased temperature dependence of these sensors was manifested as larger 

drifts due to temperature variations. 

The data collected indicate that a relatively quiet acceleration environment existed for the 

GTE crystal growth experiment run. A total of 541 significant acceleration variations were 

recorded on the three axes. Events were considered significant when a relative change of at least 

lxlO-5 g occurred. For variations of 10-4 g or larger only 28 events were detected, with none in 

the most sensitive experiment axis (x-axis). The largest difference in average acceleration during 

the five hour crystal growth period was 2.5xlO-4 g. 

3.2 WPI Fluid Behavior and Zeolite Crystal Growth Experiments 

The GAS relay for this experiment package was activated at MET 00/10:47. The times 

indicated on Fig. 3 are relative to that MET. The total run time for the experiment was 

approximately 71 hours and acceleration data were continuously collected during that time. Fig. 

3 shows a two hour record beginning at experiment start plus four hours and illustrates two basic 

types of acceleration environment present during the experiment operation. Type A data were 



defined by pairs of acceleration pulses occurring approximately every 2 minutes with magnitudes 

of 5 to 7 miIli-g. This type of event is present during the entire 71 hours. Type B accelerations 

have magnitudes on the order of2 to 3 milli-g occurring at intervals of 10.1 seconds. 

The Type A accelerations resulted from an electromechanical relay used to control the 

oven heating system for the zeolite crystal growth experiment. The period was approximately 2.0 

minutes early in the experiment and became 1.9 minutes near the end of the experiment because 

decreasing payload temperature resulted in faster heat loss from the oven. Similarly, the duty 

cycle increased from 17 to 18 seconds over the course of the experiment because lower battery 

voltage necessitated greater heating times. 

The Type B accelerations resulted from relays in a power conservation system. Whenever 

precision temperature and pressure r~adings were required from the fluid behavior system, the 

analog circuits were energized and de-energized at approximately 10 second intervals. 

Between these events, accelerations on the order of 100 to 200 J.lg were recorded. Thus, 

the self-induced acceleration of the experiment package greatly exceeded the Orbiter accelerations 

whenever electromechanical devices were in operation. 

3.3 NASAlGSFC Orbiter Stability Experiment 

The OSE was operated for a total of three hours on STS-40: :MET 01123:56 - 02/02:01 

and 02/07:26 - 02/08:21. Only data from the first two hour interval have been processed to date. 

That interval included two periods of solar observation separated by about 30 min in the Earth's 

shadow. During this period, the offset of the Orbiters -zo-axis from the solar direction as the 

vehicle moved in its deadband about its pitch axis (+y-axis) produced a signal reminiscent of a 

rectified sine wave. Atmospheric drag forces typically rotated the Orbiter against one side of the 

deadband. The motions of the Orbiter about its roll axis (+x-axis) were less regular in frequency. 

The objective of the OSE was to record high frequency g-jitter in the Orbiter bay that 

might be superimposed on the expected larger scale motion of the Orbiter within its deadband. 

An initial scan of the first sunlit interval of observation indicates that any g-jitter must have been 

at or below the limit of detectability (0.25 - 0.5 arc sec). A typical example of the signal output 



for pitch channel A during an interval including an assumed thruster firing (which reversed the 

angular motion of the Orbiter) is shown in Fig. 4. 

Power spectral densities were calculated for periods of interest. The reversal of Orbiter 

motion due to a thruster firing at the extremes of its deadband is smooth. No detailed correlation 

of the data has yet been made, however, and it is not clear to what extent the smooth reversal of 

attitude is the result of a sequence of thruster firings or reflects a low frequency response by the 

Orbiter to a single firing. In any case, no angular vibrations at frequencies above about I Hz 

attributable to a vernier thruster firing are detectable with the present instrument. 

3.4 ESA Solid State Micro-Accelerometer 

The GAS relay for G-021 was activated at :MET 00/10:37. The SSMA sequences started 

4 hours, 33 minutes later during the first crew sleep period. From post-flight data analysis, no 

significant differences were found between the on-ground and the in-space performance of these 

new accelerometers. The measured noise of the devices was 0.1 Ilg RMS (0.6 IlgIHz). The 

success of the SSMA experiment demonstrates that the new type of accelerometers based on 

silicon technology are suitable and adequate for low-gravity applications. 

The SSMA also provided measurements of the dynamic environment, mainly during the 

experiment sequences for which the vibrating table was not excited and when the amplitude of 

induced accelerations was below 100 Ilg. The amplitudes of the micro-dynamic disturbances 

observed during the experiment were on average below 10 to 50 Ilg with the exception of some 

peak events correlated with Orbiter thruster firings. It was clear, after processing, that the 

relatively large signals observed in the time domain were essentially due to strong disturbances at 

specific frequencies. Fig. 5 shows data from Experiment Sequence No.5. In the time domain, 

the I Hz/6 Ilg calibration signal is clearly visible together with two strong external perturbations. 

Frequency modes of 3.7 Hz and 4.7 Hz dominate the frequency domain representations of this 

time period. 

Other frequency modes related to the vibrating table, Orbiter structural modes, and the 

Orbiter Ku band antenna (17 Hz) were observed in sequences of SSMA data. Within the low 



frequency observation band (d.c. - 1 Hz), the acceleration levels are very low. Long periods of 

quiet environment in low frequency regimes can be found in between successive Orbiter thruster 

firing events. The 4.7 Hz signal, observed consistently in the frequency domain, could also be 

clearly discerned in the time domain associated with strong events such as thruster firings. 

3.5 Orbital Acceleration Research Experiment 

Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the 

Orbiter while in low-Earth orbit. A typical sleep period (MET 07/16 - 07/18) was examined on 

STS-40. The results of the examination for the spacecraft y-axis are shown in Fig. 6. During the 

flight, a "trimmed-mean" filter was applied to the data which were stored aboard the Shuttle in the 

OARE data storage system.[3,4] An acceleration model which includes aerodynamic, gravity 

gradient, and rotational effects was constructed and compared with flight data. Comparison of 

the model to the flight data shows the instrument to be sensitive to all major expected low 

frequency acceleration phenomena in the y-axis. Variation of atmospheric drag among orbits was 

on the order of ±2x10-7 g. Some erratic instrument bias persists in the x- and z-axes. In these 

axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by 

making arbitrary bias adjustments. 

3.6 High Resolution Acceleration Package 

On STS-40, HiRAP data were recorded during ascent, orbit, and re-entry. During re­

entry, aerodynamic control surfaces used for Orbiter attitude and control require hydraulic power. 

This power is provided by a set of three auxiliary power units (APU). The exhaust gas ports for 

these pulsed turbines are located on the top of the Orbiter just in front and to the sides of the 

vertical tail. The exhaust jets of gas produce accelerations in the Orbiter negative z-direction. 

These APU accelerations were measured and recorded by HiRAP. 

Fig. 7 shows the HiRAP z-axis re-entry acceleration measurements for STS-40. The APU 

signals become evident at two times during Orbiter descent: just before the deorbit bum and just 

before the onset of atmospheric drag. The 112 Hz HiRAP data have been averaged over one 

second intervals to permit characterization of the acceleration changes. The time history of this 



data segment shows a shift at the ignition of the first APU, a sensor saturation during deorbit 

bum, a second shift at the ignition of the second and third APU, and the onset of atmospheric 

drag. The scattered points are the averaged thruster induced acceleration spikes. 

In the region surrounding the first APU transition, a measurement of the data shift 

represents a bias of about 15 J.lg. Data from the second and third APU transition show a shift of 

about 32 J.lg. It is at the second APU transition region that an in-flight HiRAP calibration is 

performed. This 32 J.lg shift is incorporated in the calibration aerodynamic signal. The shifts in 

the z-axis acceleration signal are consistent with shifts found in prior HiRAP mission data.[5-14] 

3.7 Space Acceleration Measurement System 

The SAMS units collected data for approximately 7 days during STS-40: MET 01/00:57 

- 08/01:38. SAMS was powered down twice during this time to allow operation of the Rotating 

Dome Experiment. Initial processing of the SAMS data as reported in the ACAP Early Summary 

Report[ 17] includes calculation and plotting of IO-second means and I-second RMS for 2-hour 

periods and frequency domain representations of composite magnitude spectra in color 

spectrogram form. Data correction for bias and temperature variations used both Sundstrand 

supplied information and information derived from mission data. Detailed analysis of specific 

segments of the STS-40 SAMS data has focused on periods of thruster firings. Fig. 8 shows an 

example of a visual correlation of thruster firing occurrences with I-second mean SAMS data 

during a period of otherwise low-level activity. Resulting accelerations (vector magnitude) 

reached 10-2 g. Variations in thruster-related acceleration result from the different combinations 

of jets fired and different pulse strength and firing duration. Fig. 9 shows a detailed example of 

one axis of SAMS data during a vernier thruster firing. Note that the effect of the firing is an 

overall linear shift of the vehicle, reflected in a shift of the mean acceleration. 

In general, the acceleration environment measured by SAMS during STS-40 is 

summarized as follows. During sleep periods, acceleration magnitudes were in the 5 J.lg range. 

During periods of crew activity, magnitudes ranged from tens to hundreds of J.lg. As seen in 

previous studies of Orbiter acceleration environment,[18-21] spectral representations of SAMS 



data were dominated by specific Orbiter and Spacelab structural modes, most notable are the 3.5, 

4.7, 5.2,6.2, and 7 Hz modes. The three modes >5 Hz are modulated by the 5 Hz lowpass filter 

applied to the data. 

4. Discussion 

The accelerometers which flew on STS-40 provided data in the frequency range up to 100 

Hz (ESA SSMA), but most were restricted to an upper bound of about 10Hz. This limited the 

contribution of higher frequency vibration and noise to the measured data, making the STS-40 

data some of the "quietest" acceleration data collected on an Orbiter mission. During crew sleep 

periods, acceleration magnitudes in the 10-6 to 10-5 g range were recorded in the Spacelab 

module and on the GAS Bridge Assembly. The acceleration magnitudes increased to the 10-4 g 

level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts 

on the order of 10-4 g and primary thruster firings caused accelerations as great as 10-2 g. The 

WPI accelerometer system recorded a number of acceleration events in the milli-g range which 

were identified as experiment related. The OSE accelerometer system measured no angular 

vibrations with frequencies greater than 1 Hz during a period of vernier firings. This is attributed 

to the g-jitter levels being below the instrument's limit of detectability. The HiRAP data show 

variations on the order of 10-5 g during APU firings during Orbiter re-entry. This is consistent 

with data collected during previous flights ofHiRAP, but cannot be compared with other STS-40 

accelerometer data because of the data collection time. OARE measured low frequency 

accelerations consistent with a model ofatmospheric and aerodynamic effects. 

Frequency domain analysis was applied to OSE, SAMS, and SSMA data. The SAMS and 

SSMA data show the typical excitation of Orbiter and Spacelab structural modes that is expected 

in accelerometer data. The most common of these modes in the STS-40 data are those at 3.5, 

4.7, 5.2, 6.2, and 7 Hz. The SSMA, recording data at a higher sampling rate than other 

instruments on STS-40, also measured the 17 Hz Ku-band antenna dither and Orbiter structural 

mode. The fact that the 4.7 Hz Spacelab mode was recorded by the SSMA on the GAS Bridge 



Assembly leads us to reevaluate our understanding of how accelerations propagate across loosely 

coupled structures. Further analysis of this phenomenon is required. Before drawing any 

conclusions about the Orbiter low-g environment, however, one must keep in mind that the 

environment monitored by SSMA was that of the accelerometer head linked to the cargo bay 

through the vibrating table, the GAS canister, and the GAS Bridge Assembly. 

The flight of the seven accelerometer systems discussed here made STS-40 the best 

instrumented low-g Orbiter flight to date. The analysis to date has greatly fortified our 

knowledge of the typical acceleration environment of a manned Orbiter in low-Earth orbit. 

Further work, specifically additional frequency domain analysis, comparisons of thruster firing 

times with accelerometer data, and comparisons of data from accelerometers in the Spacelab and 

on the Gas Bridge Assembly, will greatly increase our understanding of the propagation of 

accelerations throughout and across structures of the Spacelab and Orbiter. 
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Figure Captions 

Fig. 1. General locations of the Spacelab Module and GAS Bridge Assembly on Columbia 

during STS-40. 

Fig. 2. General locations of SAMS units in the Spacelab Module during STS-40: on the base of 

the Body Restraint System (BRS), on the connector bracket panel of the SMIDEX in 

Rack 5, and on the SSCE in Rack 7. 

Fig. 3. Peak acceleration magnitude versus time recorded by the WPI accelerometer system. 

Note Type A accelerations resulting from an electromechanical relay and Type B 

accelerations resulting from power conservation system relays. Time is from initiation 

of experiment operations. 

Fig. 4. Output of the OSE high sensitivity pitch channel during an interval when vernIer 

thrusters were active. Pitch offset is the angle between the solar direction and the 

optical axis ofa sun sensor. Time is from initiation ofexperiment operations. 

Fig. 5. Time history (a) and frequency domain representation (b) of SSMA y-axis data during 

Experiment Sequence 5. Note the 1 Hz / 6 J.1g calibration signal and structural 

frequency modes of 3.7 and 4.7 Hz. 

Fig. 6. OARE y-axis flight data compared with calculated atmospheric-aerodynamic model. 

Time is in MET. 

Fig. 7. HiRAP z-axis (1.0 sec mean) uncalibrated reentry data. Time is in GMT. 

Fig. 8. Overlay of thruster firing occurrences with I-second mean SAMS data during a period 

of low-level activity. Solid circles denote firings ofvernier thrusters~ open circles denote 

firings ofprimary thrusters. 

Fig. 9. Y-axis SAMS data during a period of vernier thruster firings. Note that the resultant 

linear shift of the vehicle is reflected in a shift of the mean acceleration in the time 

domain (a) and an increased d.c. component in the frequency domain (b). 



Table 1. STS-40 Accelerometer Systems 

Accelerometer 
SystemlExperiment 

Investigator / 
Contact Person 

Organization/Affiliation 

Fluid Behavior and Zeolite Crystal 

Growth Experiments 

William W. Durgin Worcester Polytechnic Institute 

Gallium Arsenide Crystal Growth David H. Matthiesen Case Western Reserve University 

/NASALeRC 

Orbiter Stability Experiment Werner Neupert NASA GSFC 

OARE Robert C. Blanchard NASALaRC 

HiRAP Robert C. Blanchard NASALaRC 

Solid State Micro-Accelerometer Philippe Roussel ESA 

SAMS Richard DeLombard NASA LeRC 
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Sensor Head SAMS Orientation With Respect to Orbiter 

Xo Yo Zo 

Spacelab floor Ys -Zs -Xs 

RackS -Ys* -Xs* -Zs* 

Rack 7 -Ys -Xs -Zs 

*with -28.9° rotation about Ys 




