
InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 1

Knowledge Management Enterprise Services (KMES)
Concepts and Implementation Principles

Jens Pohl, Ph.D.

Executive Director, Collaborative Agent Design Research Center (CADRC)
California Polytechnic State University (Cal Poly)

San Luis Obispo, California, USA

Abstract
The purpose of this paper is to present concepts and implementation principles related to the
design and development of reusable software services that are capable of assisting users at the
operational level. Knowledge Management Enterprise Services (KMES) are an implementation
of the service-oriented architecture paradigm, with a focus on the exchange of data within the
meaningful context of a particular application (i.e., knowledge) domain. This requires a KMES
service to incorporate a high level representation of this knowledge domain in the form of an
ontology that is shared among all collaborating services within the application environment and
at the same time specialized to the perspective that is appropriate to the servicing capabilities of
the particular KMES service.
Although KMES services can operate in any distributed system environment, they represent a
step toward semantic web services by incorporating many of the same objectives, such as self-
sufficiency, interoperability, discovery, asynchronous interaction with clients, and context-based
intelligence. Therefore, this paper also deals briefly in an Appendix with the notion of web
enabled and the different types of thin-client user-interfaces that are prevalent today.
Finally, the paper discusses the software development process of a software system environment
that maximizes the use of KMES services. Based on our CADRC Center’s experience with the
development of mostly military decision-support systems incorporating collaborative software
agents, such KMES-based systems offer several advantages including a significant reduction in
development time, decreased software development costs, and higher quality end-products.

Keywords

agents, context, data, data-centric, decision-support, design, development process, evaluation,
information, information-centric, intelligence, KMES, knowledge management enterprise
services, ontology, representation, semantic web, service-oriented architecture, software, thin-
client, web enabled, web services.

The Service-Oriented Architecture Paradigm

The notion of service-oriented is ubiquitous. Everywhere we see countless examples of tasks
being performed by a combination of services, which are able to interoperate in a manner that
results in the achievement of a desired objective. Typically, each of these services is not only
reusable but also sufficiently decoupled from the final objective to be useful for the performance
of several somewhat similar tasks that may lead to quite different results. For example, a

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 2

common knife can be used in the kitchen for preparing vegetables, or for peeling an orange, or
for physical combat, or as a makeshift screwdriver. In each case the service provided by the knife
is only one of the services that are required to complete the task. Clearly, the ability to design
and implement a complex process through the application of many specialized services in a
particular sequence has been responsible for most of mankind’s achievements in the physical
world. The key to the success of this approach is the interface, which allows each service to be
utilized in a manner that ensures that the end-product of one service becomes the starting point of
another service. In this way the adapter that is required when you take your laptop computer on a
business trip to another country interfaces between the foreign electrical outlet and the electric
plug of your computer, which in turn interfaces with the electric cables that interface with the
power unit, and so on.

In the software domain these same concepts have gradually led to the adoption of Service-
Oriented Architecture (SOA) principles. While SOA is by no means a new concept in the
software industry it was not until web services came along that these concepts could be readily
implemented (Erl 2005). Initial attempts to provide the required communication infrastructure,
such as the Distributed Computing Environment (DCE) and the Common Object Request Broker
Architecture (CORBA) did not gain the necessary general acceptance (Mowbray and Zahavi
1995, Rosenberry et al. 1992). Web services and SOA are similar in that they both support the
notion of discovery (Gollery 2002). Web services employ the Universal Description Discovery
and Integration (UDDI) mechanism for providing access to a directory of web services, while
SOA services are published in the form of an Extensible Markup Language (XML) interface.

So what is SOA? In the broadest sense SOA is a software framework for computational
resources to provide services to customers, such as other services or users. The Organization for
the Advancement of Structured Information (OASIS)1 defines SOA as a “… paradigm for
organizing and utilizing distributed capabilities that may be under the control of different
ownership domains” and “…provides a uniform means to offer, discover, interact with and use
capabilities to produce desired effects with measurable preconditions and expectations”. This
definition underscores the fundamental intent that is embodied in the SOA paradigm, namely
flexibility. To be as flexible as possible a SOA environment is highly modular, platform
independent, compliant with standards, and incorporates mechanisms for identifying,
categorizing, provisioning, delivering, and monitoring services.

The Existing Web Services Environment
Web services are a particular implementation of the SOA paradigm. According to the World
Wide Web Consortium (W3C) a web service may be defined as “… a software application
identified by a Uniform Resource Identifier (URI), whose interfaces and bindings are capable of
being defined, described, and discovered by XML artifacts”2. Currently most web services
interact with other services or users utilizing the Hyper-Text Transfer Protocol (HTTP) to
exchange XML-based messages defined in the Service Oriented Architecture Protocol (SOAP).

1 OASIS is an international organization that produces standards. It was formed in 1993 under the name of

SGML Open and changed its name to OASIS in 1998 in response to the changing focus from SGML (Standard
Generalized Markup Language) to XML (Extensible Markup Language) related standards.

2 See web site at: http://www.w3.org/TR/wsa-reqs#IDAIO2IB.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 3

The SOAP standard defines an XML language and a set of rules for formatting objects and data
that are independent of the programming language, operating system, and hardware platform.

Existing web service environments such as Microsoft’s ‘.Net’ software (Thai 2003, Chappell
2006) typically comprise a web server that utilizes HTTP for communication, UDDI as part of
the standard definition of web service registries, a registry that already contains an entry for the
accessing application, and any number of web services designed to facilitate some of the
operations that the accessing application may wish to perform. In this respect, current web
service environments rely on the notion of predefined registrations and discovery and do not
support the notion of opportunistic discovery. UDDI, an international standard that defines a set
of methods for accessing a registry, is structured to provide information about organizations,
such as: who (about the particular organization); what (what services are available); and, where
(where are these services available). However, UDDI does not provide descriptions of the
available services in a semantic form that can be automatically interpreted by software (e.g.,
software agents), rather the descriptions are hard-coded or subject to human interpretation.

Communication between an application and a web server is almost always initiated by the
application (i.e., the application sends a request and the web server sends a response).
Specifically, the Uniform Resource Locator (URL) contains an identification of the particular
web server to be used. This web server then finds the HTML page that corresponds to the URL
and returns that page in the response. Immediately after the response has been sent the
connection between the application and the web server is terminated and only reactivated if
another response is requested. In this way a web server is able to handle many concurrent
requests from applications.

Adding Meaning to Web Services
There are several reasons why computer software, and therefore web services, must increasingly
incorporate more and more intelligent capabilities (Pohl 2005). Perhaps the most compelling of
these reasons relates to the current data-processing bottleneck. Advancements in computer
technology over the past several decades have made it possible to store vast amounts of data in
electronic form. Based on past manual information handling practices and implicit acceptance of
the principle that the interpretation of data into information and knowledge is the responsibility
of the human operators of the computer-based data storage devices, emphasis was placed on
storage efficiency rather than processing effectiveness. Typically, data file and database
management methodologies focused on the storage, retrieval and manipulation of data
transactions, rather than the context within which the collected data would later become useful in
planning, monitoring, assessment, and decision-making tasks.

What are the enabling facilities that will allow software to interpret the meaning of data as an
intelligent partner to the human user? This is a question that has engaged our CADRC Center in
intensive explorations for the past 20 years. Several years before the advent of the Internet and
the widespread promulgation of SOA concepts we started building distributed software systems
of loosely coupled modules that were able to collaborate by subscription to a shared information
model. Today, our KMES components are based on the same foundational principles to enable
them to function as decoupled services. These principles include:

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 4

• An internal information model that provides a usable representation of one or more of
the following three information areas: (a) the application domain in which the service is
being offered; (b) the internal operational domain of the software application itself; and,
(c) the role of the service within the external environment. In other words, the context
provided by the internal information model must be adequate for the software
application to perform as a useful adaptive set of tools in its area of expertise, be able to
monitor and diagnose its own internal operational state, and describe its nature in
response to external inquiries.

• The ability to reason about events within the context provided by the internal
information model. Eventually these reasoning capabilities should extend beyond the
ability to render application domain related services and perform self-monitoring
maintenance and related operational efficiency tasks, to the ability of a service to be
able to describe its capabilities and understandings to other external parties (i.e., other
services and human users).

• Facilities that allow the service to discover other services and understand the nature and
capabilities of these external resources.

• The ability of a service to learn through the acquisition and merging of information
fragments obtained from external sources with its own internal information model. In
other words, the internal information model must be dynamically extensible.

• The ability of a service to understand the notion of intent (i.e., goals and objectives) and
undertake self-activated tasks to satisfy its intent. A typical relatively simple intent
might be the objective of finding another service application capable of providing a
specific service such as a weather forecast or an available weapon for destroying a
given target. Far more sophisticated would be an objective that is only vaguely defined,
such as the solution of a problem for which the solution approach is known in general
terms only (e.g., locate the likely position of an enemy unit that has not been sighted for
24 hours).

• The ability of a service to increase its capabilities by either generating new tools (e.g.,
creating new agents or cloning existing agents) or searching for external assistance.

The Concept of Knowledge Management Enterprise Services
Knowledge Management Enterprise Services (KMES) are self-contained software components
that offer their capabilities as services to external service requestors. Whereas in a SOA-based
software system the available services normally operate at a lower system level as enablers of
higher level functional capabilities, a KMES component is the incarnation of one or more of
those functional capabilities. In other words, KMES components are services that operate at the
functional level of the application domain.

They are designed to be platform independent and adaptable to a variety of applications. It is this
adaptability that promotes their high degree of reusability. Some KMES components may have
quite narrow capabilities such as the reformatting of weather data into a software interpretable
weather forecast, while others will incorporate larger functional domains such as the optimum
routing of goods from multiple origins along alternative routes to multiple destinations.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 5

However, all of the services that operate within a given application domain are closely aligned to
the knowledge context of that domain by sharing the same information model. While the
software code of a KMES component is reusable, its internal information model needs to be
reconfigured as it is moved from one application domain to another. This ensures that the KMES
services within any particular application environment are able to exchange data within the
functional context of that environment.

For example, in the transportation domain the optimum routing of goods from multiple origins
along alternative routes to multiple destinations would include the following KMES components,
providing their services within the common context of a shared information model:

• Conveyance load-planning (i.e., ships, barges, trucks, railcars, and aircraft of
various types).

• Packaging of different kinds of shipping units (e.g., containers, pallets).
• Storage management in marshalling yards and warehouses.
• Route planning and re-planning.
• Map-based presentation for geospatial tracking.
• Scheduling.
• Interoperability bridges to external data feeds and other applications.
• Graphical and textual report generators.

This is in stark contrast to the large software systems that have been developed in the past and
that invariably lead to a stove-piped architecture with almost insurmountable interoperability
problems. Typically, in the case of these legacy systems the above functional capabilities have
required the development of several systems with considerable duplication (e.g., user-interfaces,
persistence facilities, and report generation) and largely incompatible data schemas.

A KMES-based system governed by SOA principles, on the other hand, is intended to meet
several technical objectives that are aimed at maximizing horizontal and vertical interoperability.
First and foremost, a KMES is designed to be as self-sufficient as the state of current technology
will allow. Ideally, self-sufficiency should include platform independence with self-installing,
self-configuring, and self-scaling capabilities. Second, it must incorporate discovery capabilities.
However, discovery capabilities that are truly useful will require some degree of built-in
intelligence. The combination of self-sufficiency, discovery and intelligence is potentially very
powerful since it supports interoperability at the information level. In other words, KMES
components are able to exchange data in the context that is provided by the shared virtual model
of a particular real world knowledge domain.

Third, a KMES incorporates intelligent tools in the form of agents that support meaningful
human-to-agent and agent-to-agent collaboration. These agents rely on the context provided by
the internal information model to an even greater degree than do the discovery capabilities. In
both cases the availability of context is a prerequisite for automated reasoning capabilities that
can be applied to the interpretation of data changes, the opportunistic analysis of events, the
spontaneous search for additional resources, and the generation of warnings and alerts.

Fourth, a KMES is capable of exposing functionality through objectified, domain-centric client
interfaces. To take full advantage of this capability the KMES must support asynchronous

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 6

interaction with its external clients. This in turn requires adherence to industry-standard patterns
such as JavaBeans3, Property Change Management4, and so on.

Fifth, by virtue of its internal information model a KMES is readily adaptable to operate in terms
of application-specific notions and concerns. However, this also means that when reference is
made to the reusability of a KMES then this refers to the software code and not the internal
information model. Reconfiguring a KMES to a new application domain will involve
initialization with the ontology of the new knowledge domain. Capitalizing on their decoupled
nature, KMES components can be replaced with improved versions as the technology advances.

In summary, KMES modules are adaptable, self-contained software components that are capable
of performing specific tasks within a net-centric environment. Service-oriented KMES
capabilities typically take the form of distributable services whose functionality is exposed to
potential clients as domain-centric objects employing key industry-standards. In other words,
interaction between KMES services and their clientele occurs in terms of object-level operations
(i.e., object creation, property modification, etc.) over the domain model exposed by such
services. Such object-level manipulation is partnered with the asynchronous notification of
events to interested parties (i.e., clients as well as the KMES service itself). For example,
consider a KMES Route Planning service. Such a service could be invoked by a client creating a
set of domain objects (e.g., requirements, constraints, and route topology objects) defining the
context of their request. Listening to such objects, the KMES Route Planning service responds
by processing this context into a solution. This solution would, in turn, be exposed as a set of
objects based on the service’s domain model interface. In the same asynchronous manner by
which the service became aware of the client’s initial request, the client in turn will receive its
results through object-level event notification.

KMES as a Net-Centric Architecture
The expressive, context-rich representation upon which many KMES capabilities are built
together with the significant potential for higher levels of decision-support lends itself to
incorporation of intelligent agent technology. When equipped with such enabling features, agents
can collaborate with users to assist in formulating solution alternatives, compare and contract
their associated costs, and aid in successful execution through constant monitoring and the
performance of necessary mediation. For example, agents in a military logistical domain can
receive status reports, track shipments, incorporate suitable and available assets in plans, and
provide appropriate updates on location and security risks. Others may track the path of
incidence and provide appropriate graphic and textual updates for action. Finally, agents can
interpret incoming signals, identify significant events (i.e., changes), and modify proposals to
meet the changing situation as it develops. The vision of such intelligent agents is quite

3 JavaBeans are reusable software components (i.e., classes) written in the Java computer language. Based on

certain conventions (i.e., naming, construction and behavior) a JavaBean is used to encapsulate several objects
into a single object that can then be passed around.

4 Property Change Management refers to the ability to access diverse documents across a network (i.e., Internet
or intranet) without the need for manual intervention. For example, the Web Interface Definition Language
(WIDL) automates interactions with HTML/XML documents and thereby allows the Web to serve as an
integration platform.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 7

compelling and it is now generally believed to be a critical component for successfully
harnessing the increasing complexities of a net-centric environment.

Figure 1: Conceptual KMES-based net-centric architecture

Existing data-centric systems lacking the adaptive, interoperability characteristics described
above can be integrated into such an agent-empowered KMES software environment through
the use of interoperability bridge facilities that effectively map the data model in one system
to the information model of the other. This allows for a meaningful bi-directional interaction
and exchange of data in context. Such bridges have been successfully demonstrated by
military organizations for linking legacy data-centric systems to intelligent command and
control systems (Pohl et al. 2001). The technology is inherently scalable and allows for the
efficient and effective interconnection of multiple participants within a heterogeneous net-
centric environment.

Conceptually, an intelligent net-centric software environment typically requires the seamless
integration of a KMES-based information management facility with existing data sources. This
can be achieved with an information-centric architecture that consists essentially of two
components (Figure 1): a data-centric Data Capture and Integration Layer that incorporates
linkages to existing data sources; and, an Intelligent Information Management Layer that
overlays the data layer and utilizes software agents with automatic reasoning capabilities,
serving as decision-support tools.

The Intelligent Information Management Layer architecture (Figure 1) utilizes intelligent
software agents capable of collaborating with each other and human operators in planning, re-
planning, monitoring, and associated decision-support environments. Typically such intelligent
systems are based on software development frameworks, such as the ICDM (Integrated

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 8

Cooperative Decision Making) and TIRAC™ (Toolkit for Information Representation and
Agent Collaboration) software development frameworks used by CDM Technologies and the
Collaborative Agent Design Research Center (CADRC) at Cal Poly5 for the development of
military and commercial systems, respectively (Pohl et al. 2004a and 2004b).

Data Capture and Integration Layer: The bottom layer of the system takes the form of an
operational data store and/or Data Warehouse, implemented within a commercial off-the-shelf
relational database management system (RDBMS). This repository integrates data extracted on a
periodic basis from several external sources into a common data schema. Although not a
requirement, the design of the data schema is typically closely modeled on the structure of the
ontology of the Intelligent Information Management Layer to minimize the required data-to-
information and information-to-data mappings between these two system layers. Further, to
facilitate an object-oriented environment, content managed by the Data Capture and Integration
Layer is exposed to its information-oriented clients (e.g., KMES-based environments) as objects
rather than relational tables. Translation between these two forms is typically accomplished
through employment of some form of Object Relational Mapping (ORM) technology.

In conformity with normal enterprise data management practices the Data Capture and
Integration Layer incorporates the following four characteristics:

• It is subject-oriented to the specific business processes and data domains relevant to the
application area (e.g., goods movement across national borders or tactical command and
control in a military theater).

• It is integrated so that it can relate data from multiple domains as it serves the data needs
of the analysis functions performed by collaborative agents in the Intelligent Information
Management Layer.

• It is periodically synchronized with events and changes occurring in the external data
sources from which it derives its content.

• It is time-based to support the performance of analyses over time, for the discovery of
patterns and trends.

A multi-tier architecture is used to logically separate the necessary components of the data layer
into levels. The first tier is the RDBMS, which ensures the persistence of the data level and
provides the necessary search, persistence, and transaction management capabilities. The second
tier is the service level, which provides the interface to the objectified data level and at the same
time supports the data access requests that pass through the mapping interface from the
Intelligent Information Management Layer to the Data Capture and Integration Layer. It is
designed to support request, response, subscribe, and publish functionality. The third tier is the
control level, which routes information layer and user requests to the service level for the update,
storage and retrieval of data. Finally, a view layer representing the fourth tier serves as a
graphical user-interface for the Data Capture and Integration Layer.

Information Management Layer: The Intelligent Information Management Layer consists of
KMES components in the form of a group of loosely coupled and seamlessly integrated
decision-support tools. The core element of each KMES component is typically an ontology that

5 ICDM and TIRAC™ are software development toolkits developed by principals of the CADRC Center at

California Polytechnic State University, San Luis Obispo and its commercial arm CDM Technologies, Inc.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 9

provides a relationship-rich and expressive model of the particular domain over which the
KMES capability operates. Normally, KMES components are based on a three-tiered
architecture incorporating technologies, such as distributed-object servers and inference engines,
to provide a framework for collaborative, agent-based decision-support that offers
developmental efficiency and architectural extensibility. The multi-tiered architecture clearly
distinguishes between information, logic, and presentation. Most commonly an information tier
consists of a collection of information management servers (i.e., information server, subscription
server, etc.) providing domain-oriented access to objectified context, while a logic tier houses
communities of intelligent agents, and a presentation tier is responsible for providing
meaningful interfaces to human operators and external systems.

A Typical KMES Ontology
This section discusses a portion of a domain-centric ontology upon which a particular logistics-
oriented KMES capability may operate. It should be made clear, however, that while in this case
the ontology deals with logistic operations, the domain, scope and expressiveness within that
domain, as well as the bias (i.e., perspective) of the model is driven by the use-cases that are
supported by the KMES capability, as well as the subject matter those use-cases operate over. In
the example provided below, the underlying KMES ontology is divided into several somewhat
related domains (Figure 2). While some of these domains describe application-specific events
and information (e.g., goods movement transactions, shipping routes, and so on) others describe
more general, abstract notions (e.g., event, threat, view, privacy). The goal in developing such an
ontology is to abstract general, cross-domain notions into high-level, extensible domain models.
As such, these descriptions can be refined and specialized across several application sub-
domains. In other words, more domain-specific, concrete notions can be described as extensions
of these abstract models.

Figure 2: Typical ontology domains within a military application area.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 10

Accordingly, a KMES ontology includes several primary meta-characteristics. Through
mechanisms such as inheritance as well as the application of underpinning analysis patterns,
these meta-characteristics can be propagated to more specific ontological components. To
illustrate, the simple application of inheritance allows, for example the abstract characteristic of
something being trackable to be propagated into more specialized entities. Applied to this
logistics example, if such a trackability notion is introduced at the physical.Mobile level then,
through inheritance, any entity that is a kind of physical.Mobile automatically receives the
property of being trackable. Taking this example further, a second meta-characteristic may relate
to the dispensability of an item. If this property is represented at the physical.Item level then,
similar to the trackable characteristic, anything that is a kind of a physical.Item automatically
receives the quality of being dispersible or suppliable. In addition, as an extension of
physical.Mobile, such suppliable items are also trackable. It can be readily seen that together
these two meta-characteristics provide an effective foundation for propagating fundamental
notions to hierarchically related definitions. Although inheritance can be a useful mechanism for
the propagation of fundamental characteristics to more specific classifications, an even more
powerful, and oftentimes less restrictive, technique is the application of extensible analysis
patterns. Such patterns offer adaptable model fragments, thereby providing a fundamental
definition of the notion being represented in the form of an extensible model architecture for
applying this underpinning concept to other elements of a domain model. Such patterns typically
employ a role metaphor, where elements of a model may essentially play the role of something
embodying the fundamental notion or characteristic.

The Capabilities of KMES Agents
KMES components equipped with intelligent agents may employ a variety of framework
technologies and reasoning paradigms to execute their agent-based logic. Regardless of the
specific agent technology employed, their capabilities can exist at a monitoring, largely reactive
level, or at a higher consequential and proactive level. In actuality, the event-oriented nature of
the former may, in fact, trigger the proactive reasoning of the latter. In the context of homeland
security, for example, such reasoning may produce: a warning6 that hazardous material is en
route; a warning that a truck has not reached a waypoint within a certain time limit; an alert that
a truck has not reached a waypoint within a more critical time limit; a warning that a truck is
near a higher risk area; an alert that a truck has stopped for more than a certain time near a
higher risk area; an alert that the loaded weight of a truck does not match the final weight at the
border check point; and so on.

Within the same homeland security context (i.e., specifically inland border control), typical
higher level agent inferencing capabilities may include warnings and alerts that a particular
combination of circumstances involving encyclopedic data and truck-based or convoy-based
confirmation data entered at waypoints and checkpoints constitutes a higher risk situation.
Examples include, a particular driver transporting certain kinds of goods, or the combination of
an authorized substitute driver taking an authorized alternative route without apparent reason,
and taking a significantly longer time between two consecutive checkpoints. While none of these

6 Typically, agents will communicate with the user at different levels of urgency. For example, a warning may

simply draw the user’s attention to some particular event or situation, while an alert signifies that the user’s
focused attention is urgently required.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 11

individual anomalies might be sufficient to cause concern, their combined occurrence may well
constitute a risk requiring further actions.

Comparing the Development of Legacy and KMES-Based Systems
Considerable time and cost savings can be realized in the KMES approach, without sacrificing
quality. In fact, the quality of the software developed can increase due to both the extensive
formal validation and verification process appropriate for a core capability as well as the
informal validation and verification resulting from its repeated use in the field. This is readily
seen when we compare the development life-cycle of a legacy software system (Figure 3) with a
KMES-based system (Figure 4).

Software development projects, whether legacy or KMES-based, commence with the recognition
of a need. Typically this is a functional need that has been identified by an operational failure or
through some form of analysis driven by a desire to achieve a higher level of effectiveness in
supporting certain operations. This is followed by the formulation of an end-state vision and, if
this vision in conjunction with the need are sufficiently compelling, a decision to act. Once that
decision has been made the translation of the end-state vision into a set of use-cases on the basis
of which the actual product requirements are formulated. While both the initial level of detail
contained in the use-cases, consequential requirements specification, and the degree of
involvement of the development team in the formulation of these two artifacts will vary with the
type of project and the kind of development process adopted (e.g., prescriptive, agile), there is an
undisputed need for some form of formalized documentation describing these various aspects.

Figure 3: Development life-cycle of legacy software

Up to this point, as shown in Figures 3 and 4, there appears to be little difference between the
legacy and the KMES-based software development approaches. In either case the degree to

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 12

which the software marketing and development teams will be permitted to assist the customer
and end-user in establishing end-state objectives and requirements depends largely on factors
that are only indirectly related to the development approach. One of these factors is that as a
result of rapid advances in information technology the potential users of this technology are often
not aware of the kind of progressive capabilities that could significantly improve the efficiency
and effectiveness of their efforts.

Figure 4: Development life-cycle of KMES-based software

Once the requirements have been established the development process of legacy software will
normally proceed with the design of the system architecture (Figure 3). However, in the case of a
KMES-based solution the mature design and engineering principles have already produced an
open architecture exploiting the semantic-rich representation (i.e., context) and well-structured
interface protocols that will allow the KMES components to effectively interact (Figure 4).
Therefore, the substitute step in the KMES-based approach is the design of aspects specific to the
application logic, representation, and presentation, each of which may capitalize on supportive
building blocks offered by the KMES capabilities being employed. In fact, much of this effort
will essentially take the form of adapting off-the-shelf KMES capabilities to operate in terms of
application-specifics.

In the case of legacy software formulation of application-specific logic, representation, and
presentation is in addition to the formulation of the core functionality that would otherwise have
been taken care of by inclusion of KMES components. Further, the legacy design and
implementation of such core functionality is typically tailored to the specific application leaving
little opportunity for reuse. As a result, if the required KMES components are available then the
normal time consuming and costly development cycle of traditional software is avoided and
replaced by the relatively simple process of integrating KMES components into the target
operating environment. Even with the adoption of a spiral development cycle, the traditional
software development cycle can take years and account for as much as 60% of the total software

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 13

production cost and time. In the case of KMES-based software the component integration stage
can be completed in a matter of a few months and sometimes weeks. As a result, the delivery of
the first set of usable capabilities can be reduced to six months or less after the initiation of the
software development project.

KMES Benefits to the Customer
The principal benefits of KMES-based software systems are threefold: early delivery of usable
decision-support tools; decreased software acquisition costs; and, higher quality products. In the
experience of our Center, which is predominantly engaged in the design and development of
intelligent software systems for national security applications, the considerable time savings that
can be achieved with the KMES approach has been of particular interest to our military
customers. This is probably due to their increasing focus on adaptive planning capabilities. In
this military context adaptive planning is defined by the Adaptive Planning Roadmap7 as the
capability to create and revise plans rapidly and systematically, as circumstances require.

Our military customers quickly realized that the adaptive planning mandate will require new
planning and decision-support tools with superior capabilities (i.e., intelligence) that can be
rapidly implemented, and are extensible and replaceable to accommodate the evolving needs of
the user community. KMES-based software systems have the potential for meeting this challenge
by virtue of the following inherent advantages:

• Rapid delivery of meaningful capabilities, with the potential of achieving a first
usable product installation within three to six months after the initiation of a software
development project.

• Lower cost due to the replacement of the normally prolonged software development
period with a much shorter KMES integration period.

• Greater reliability and quality due to exhaustive core-component verification and
validation in conjunction with the maturity that comes from extensive in-field use.

• Interoperability through component design based on standard protocols and a
decoupled, multi-tiered framework.

• Flexibility to extend functional capabilities through plug-and-play components and an
open architecture.

• Multiple deployment options including net-centric delivery alternatives of hosted-
managed services.

7 Adaptive Planning Implementation Team (ODASD/JOWPD); ‘Adaptive Planning Roadmap’; Version 1, Final

Draft, 3 January 2005 and ‘Adaptive Planning and Execution Roadmap III’, Draft 8 February 2007, Joint
Chiefs of Staff, US Department of Defense.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 14

References
Chappell D. (2006); ‘Understanding .NET’; 2nd Edition, Independent Technology Guides,
Addison-Wesley, Boston, Massachusetts.

Erl T. (2005); ‘Service-Oriented Architecture (SOA): Concepts, Technology, and Design’;
Prentice Hall Service-Oriented Computing Series, Prentice Hall, Englewood Cliffs, New Jersey.

Gollery S. (2002); ‘The Role of Discovery in Context-Building Decision-Support Systems’;
Office of Naval Research Workshop on Collaborative Decision-Support Systems, Quantico,
Virginia, 18-19 September (Proceedings available from CADRC Center, Cal Poly, One Grand
Avenue (Bdg. 117T), San Luis Obispo, California 93407).

Mowbray T. and R. Zahavi (1995); ‘The Essential CORBA: Systems Integration Using
Distributed Objects’; Wiley, New York, New York.

Pohl J., M. Porczak, K.J. Pohl, R. Leighton, H. Assal, A. Davis, L. Vempati and A. Wood, and
T. McVittie, and K. Houshmand (2001); ‘IMMACCS: A Multi-Agent Decision-Support
System’; Technical Report, CADRU-14-01, Collaborative Agent Design (CAD) Research
Center, Cal Poly, San Luis Obispo, CA, June. (2nd Edition)

Pohl J., K. Pohl, R. Leighton, M. Zang, S. Gollery and M. Porczak (2004a); ‘The ICDM
Development Toolkit: Purpose and Overview’; Technical Report CDM-16-04, CDM
Technologies, Inc., San Luis Obispo, California, USA (May).

Pohl J., K. Pohl, R. Leighton, M. Zang, S. Gollery and M. Porczak (2004b); ‘The TIRAC™
Development Toolkit: Purpose and Overview’; Technical Report CDM-17-04, CDM
Technologies, Inc., San Luis Obispo, California, USA (August).

Pohl J. (2005); ‘Intelligent Software Systems in Historical Context’; in Jain L. and G. Wren
(eds.); 'Decision Support Systems in Agent-Based Intelligent Environments'; Knowledge-Based
Intelligent Engineering Systems Series, Advanced Knowledge International (AKI), Sydney,
Australia.

Rosenberry W., D. Kenney and G Fisher (1992); ‘Understanding DCE’; O’Reilly and
Associates, Sebastopol, California.

Thai T. L. (2003); ‘.NET Framework Essentials’; 3rd Edition, O’Reilly, Sebastopol, California.

Appendix: The Multiple Meanings of Web Enabled

The term web enabled is widely used with somewhat differing intended meanings. The following
explanation of this term was prepared as an internal communication by Steve Gollery, a Senior
Software Engineer in our CADRC Center. It is reproduced in abbreviated form in this paper as
an appendix for clarification purposes.

The phrase web enabled is sufficiently vague that it provides little guidance in
understanding the intent of the persons and organizations using it. This lack of definition
becomes critical in view of the fact that some meanings of web enabled severely limit the
capabilities of client-side software. The following list of the possible meanings of web
enabled may not be inclusive, but it does cover the main variations.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 15

1. A rich client, communicating with its server(s) using HTTP, SOAP, and so on. In
this configuration the capabilities of the rich client are essentially unconstrained
since it is entirely resident on the user’s computer. Performance considerations
will largely dictate the pattern of interaction between the client and the server.

2. A client implemented as a browser plug-in. This also can be a fairly rich client,
with many of the same kinds of interactions. It is likely that the use of a browser
plug-in will allow the implementation of most if not all of the functionality of a
rich client executing outside of a browser.

3. A client implemented as one or more applets running in a set of web pages.
Applets are designed to be as secure as possible, since they are downloaded from
a web site to the user's computer. Applets, for example, cannot read or write files
on the user's computer, so the user-specific state must be stored on the web site
that the applet came from and downloaded by the applet. The necessity of sending
all the executable code along with the information may mean that functionality
will need to be limited due to the time it takes to download. Applets are seen less
often now than they were in the 1990s. Many uses of applets have now been
replaced by JavaScript, Flash, and/or Ajax client-side code (see below for
descriptions of these techniques).

4. AJAX as an acronym for Asynchronous JavaScript and XML, is a recently-coined
term for a set of technologies that have been in use for some time. It is similar if
not identical to Dynamic HTML (DHTML). The core concept is that the user
interface to the application is provided by JavaScript running within the browser
and interacting with a web server by sending and receiving XML documents.
AJAX eliminates the need to completely replace web pages in response to user
input and allows user interaction that can be more like a desktop application than
a browser-based application. Building AJAX applications requires the use of
multiple development languages and skills. Development toolkits for AJAX-style
applications, such as the BackBase8 toolkit, have become available in recent
years. AJAX is useful for building applications that require high levels of
interactivity in an environment that permits JavaScript.

5. Flash9 is one of the standard plug-ins that nearly every browser user has
downloaded at some time or another. Flash has a bad reputation in some quarters:
probably everyone has at one time or another run into web sites that feature
pointless Flash animations that take too long to download and delay us from
getting the information we are looking for. But Flash also provides a highly
interactive user experience, and is being used to produce web applications with a
complete user interface. Like AJAX, Flash applications use scripting to
implement application behavior, and for communication with the web server.

6. A client implemented as a set of HTML pages. This is the most limiting form of
web enabled. With no executable code on the client, all changes to the
information presented to the user must be accomplished by regenerating the web

8 BackBase, San Mateo, California.
9 Flash is a Macromedia product that is now owned by Adobe Systems Inc., San Jose, California.

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007. [RESU91]

 16

page and sending the new version. This can only be accomplished in response to
action in the browser. For instance, the user clicks on a button, causing the
contents to be sent to the server in a form. The server constructs or loads a web
page and sends that page as the response. It is not possible for the web server to
push a new version of the page autonomously unless some other software is
installed on the user's computer.

Of these techniques, the only one guaranteed to be able to handle all types of user
interaction is the rich client. However, this is not what is normally meant by web enabled,
since the kind of communication that is used between client and server is invisible to the
user. In other words, from the user's point view the rich client would not seem to have
anything to do with the web.

The popular notion of web enabled assumes the use of a web browser of some sort. From
a development point of view, the preferred approach to building clients that run in a
browser would likely be AJAX. But in high-security environments the downloading of
JavaScript to a user's browser may not be permitted. In fact, there is little if any risk in
running JavaScript. The language does not permit destructive behavior and security holes
that existed in older browser versions have long been fixed. However, there is always the
possibility that draconian security regimes may be in place in some prospective
environments. In a worst case scenario, it would be necessary to fall back to using HTML
only pages.

The HTML web page approach is really only suitable for viewing text and pre-defined
images. The user would only be able to interact with the client and server by filling out
forms, submitting them, and receiving the result. An HTML client would be able to view
a graphic image such as a map in the kind of objectified geospatial framework that is
commonly used by the military to track friendly and enemy forces. However, the graphic
environment would not be interactive. For example, the user would not be able to drag
and drop objects (e.g., infrastructure objects such as bridges, buildings, routes) from one
location to another on the map. By contrast, in an AJAX or Flash-based application such
interaction would require some effort on the part of developer, but it could be
accomplished.

All forms of web-enabling have consequences for the possible functionality of a system,
but some consequences are more severe than others. It is important to know what the end-
users expect when they ask for a web enabled system, so that they can be made aware of
the limitations of each of the alternative implementations.

