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A direct, constructive proof is given for the basic representation theorem for
convex domination of measures. The proof is given in the finitistic case (purely
atomic measures with a finite number of atoms), and a simple argument is then
given to extend this result to the general case, including both probability measures
and finite Borel measures on infinite-dimensional spaces. The infinite-dimensional
case follows quickly from the finite-dimensional case with the use of the approxi-
mation property.
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1. INTRODUCTION

One of the basic theorems of convex domination is the result of Hardy
et al. (1929, 1959) [5, 6], which says that if x,,...,x, and y,,..., y, are real
numbers, then X7_ c(x;) > X7_,;c(y;) for all convex functions ¢: R — R if
and only if there exists a doubly stochastic n X n matrix M = (ml.j) with
yj = Xi_1my,x, for all j (that is, y = Mx, where y = (y;,...,y,)" and
x = (xq,...,x,)). This basic result has been extended to probability mea-
sures on finite-dimensional spaces by Blackwell (1953) [1] and by Stein and
Sherman (cf. [6]), to probability measures on various infinite-dimensional
spaces by Cartier et al. (1964) [2] and Strassen (1965) [10], and to general
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finite measures on R by Mirsky (1961) [8] and on infinite-dimensional
spaces by Fischer and Holbrook (1980) [4], whose proof relied heavily on
the Stein—Sherman theorem. The purpose of this note is twofold: to give
an elementary geometric proof in the finitistic case (purely atomic with a
finite number of atoms) in R”, in the spirit of the original result of Hardy
et al. in R?, and to show how this elementary result can be used to easily
give the general results with nonfinitistic measures and infinite dimen-
sional spaces (separable Banach spaces or compact convex metrizable
subsets of locally convex topological vector spaces).

Previous proofs of general cases have used various ad hoc arguments,
and it seems not to have been noticed that all follow from the finitistic
case. In particular, it should be of interest that the infinite-dimensional
result follows quickly from the finite-dimensional case by an application of
Grothendieck’s approximation property. The language of fusions of mea-
sures, introduced in [3] for probability measures, will be used as the most
natural setting for the proofs.

2. FINITE FUSIONS AND THE
FISCHER-HOLBROOK THEOREM

Throughout this paper, measure will mean finite, nonnegative countably
additive measure, and except for the last section, all measures will be
(Borel) measures with finite support on finite-dimensional Euclidean space
R?. For such a measure P, || P|| will denote its total mass P(R?), P(x) the
P-measure of the singleton {x} € R?, supp P the support of P, and b(P)
the barycenter (||| [xdP(x) € R?) of P. The Dirac delta measure 8(x)
for xe RY is 8(E)=1if x€E and =0 otherwise. For z € R, z*
denotes the positive part max{z, 0} of z, and for S c R, |S| denotes the
cardinality of S.

The next definition is a special case of Definition 3.5 in [3] of fusion for
more general spaces and measures.

DerINITION 2.1. Suppose P and Q are measures in R¢ with finite
supports suppP = X ={x,,...,x,} and suppQ =Y ={y,,...,y,}. Then
Q is a fusion of P if there exists a nonnegative row-stochastic n X m
matrix R satisfying

(i) PR=dand
(i) pXR= 1y,

where § = (py,...,p,) = (P(xy),..., P(x,) € R", PX = (pyxy,...,
p,x,) € R" (and similarly for d, qy ).



Intuitively, the fusion Q is obtained from P via R = (r;;) as follows.
Start with P, which places mass p; at {x,}, i = 1,..., n. The first atom of
Q, mass g, at y,, is formed by removing fraction r;, of the mass p; at x;
foreach i = 1,..., n, and fusing this total removed mass g, = X7_,r; p; at
the respective barycenter y, = g; *Xr v, p;x; € R (similarly for
Qo) Y2r-- 1 Qs Ym)-

(An alternative equivalent definition is that Q is a fusion of P if there is
a nonnegative column-stochastic n X m matrix T with ¥ =XT and
Ta; = B? ; the version in Definition 2.1 is chosen for symmetry and ease
of intuitive description. For measures with finite mean (barycenter), Q is a
fusion of P iff P is a dilation of Q; cf. [3].)

Let # denote the set of all nonnegative convex real-valued functions
on R4

DerINITION 2.2.  For two (finitely supported) measures P and Q on R,
P convexly dominates Q (written P > Q) if

/chzfch forall c € 7.

(An extension of this definition to more general measures and spaces and
its equivalence to the definition in [3] for probability measures are con-
tained in Section 5.)

The following theorem (conclusions (i) and (iii)) is the fusion version of
the finite-dimensional Fischer—Holbrook (1980) result.

THEOREM 2.3. Let P and Q be finite measures with finite supports in R.
Then the following are equivalent:

(i) fcdP = [cdQ forall c € # (i.e., P > Q).
(i) fcdP > [cdQ + ([Pl =1IQIDFc(v) forall c € 7.
(iii)  There exists a fusion P of P that majorizes Q, i.e., P > Q.
(iv) P=0Q+ Pl -1QID*8(v) is a fusion of P.
(where v = (IPI| = QD *(IPIB(P) ~ IQIIH(Q) € RY).

Observe that v is simply that point in RY where the “excess” mass
(IIP]l = IQID must be placed to retain the barycenter of P.

The equivalent combinatorial or matrix-theoretic version of (i)—(iii) is as
follows (the proof given below, however, will be in the above fusion
setting).

THEOREM 2.3. Fix positive integers n > m, and let {x,, ..., x,},{y,,

.., ¥} be finite subsets of RY. Then the following are equivalent:

) Xic(x) = X7 c(y) forallc € 7.
() Iije(x) = T je(y) + (n = m)e((n — m)"ME/ x; —
XiLiy)) forallc € Z.



(iii)  There exists a doubly stochastic n X n matrix M = (m,;) with
y=Xixmg forallj=1,....n, (e, y=I[Mxl,, where y =(y,, ...,
v x = (xq,...,x,), and [v], is the first m components of the column
vector v).

Remarks. The power of Theorem 2.3 and the key difference from the
constant mass (probability measure) analog is the surprising “something-
for-nothing’” implication (i) = (ii), which is vacuous if P and Q have the
same total masses. Given the set of inequalities (i), the stronger (recall
¢ > 0) set of inequalities (ii) follows. This implication clearly may fail for
individual ¢ (i.e., [cdP > [cdQ # [cdP = [cdQ + (||IP]| = [IQID*c(v)). It
should also be noted that the class # can be replaced by the class of
nonnegative convex polyhedral functions in the conclusion of the theorem,
since P and Q have finite supports.

3. PROOF OF MAIN THEOREM

To begin with, two geometric lemmas will be established that will be key
ingredients in the proof of the main theorem. The first will be used to
construct a fusion that preserves the integral of a special convex function,
and the second will be used to apply this technique to special points
guaranteed to be in the domain of such fusions. Throughout this section,
co(X) is the closed convex hull of X c R

DerINITION 3.1. For ¢: R > R, and T a finite subset of R let
¢ = ¢7: co(T) = R be the function

c(y) =inf{zeR: (y,z) € co{(x,c(x)): x e T}} forall y € co(T).

LEMMA 3.2. Let c: RY - R be convex, and let T be a finite subset of R.
Then

(i) ¢ co(T) = R is convex and piecewise affine.
(i) ¢(y) = c(y) forally € co(T).
(i) ¢(x) =c(x) forallx € T.

(iv) For each y € co(T) there exists a subset S of T and positive
numbers {1}, cg so that . A, =1, L _gxA, =y, and ¥, _C(X)A, =
¢(y), and y has a unique convex combination representation in S (that is, if
{a,), c g are nonnegative with ¥, _ s, (1, x) = (1, y), then a, = A, for all
x € 8).

~

Proof. Observe that ¢ is just the “lower” boundary of the convex
polyhedron (in R4*?) that is the convex hull of the set {(x, c(x)): x € T}.



Then (i)—(iii) follow easily since ¢ is convex, and (iv) follows by projecting
the lower face of K onto R¢ and taking S to be the set of extreme points
of the simplex of minimal dimension in R¢ (formed from the projections of
the extreme points of K) that contains y. |

LEMMA 3.3. Let P and Q be finite measures in R? with finite supports X
and Y, respectively. If P > Q, then co(X) 2 co(Y).

Proof. It is enough to show that co(X) D Y. Lety € Y, and suppose, by
way of contradiction, that y & co(X). By the basic separating hyperplane
theorem, there is a hyperplane separating y and co(X); that is, there is a
linear functional f: RY - R and an a € Rso that f(y) > a and f(u) < «
for all u € co(X). Letting ¢: RY > R be given by ¢(x) = max{f(x) —
«, 0}, observe that ¢ is convex (as the maximum of two affine functions)
and nonnegative and satisfies ¢(y) > 0and ¢(u) = 0 for all u € co(X) >
supp P. But by definition of support, Q({y}) > 0, so this implies that
J¢ dQ > 0 = [¢ dP, contradicting the assumption P > Q. |

(Compare the analog of Lemma 3.3, Theorem 3.20 in [3], which asserts
the corresponding inclusion of supports of the measures for more general
spaces, but under the assumptions of fusion of two measures of the same
mass. In addition, if P has a finite mean (barycenter), then convex
domination is equivalent to fusion; this is the basic Theorem 4.1 of [3].)

It is easy to see that fusions always preserve both mass and barycenter.
This and several other useful properties are recorded in the following
proposition.

PropPOSITION 3.4. Let P be a finite measure with support contained in a
finite set Z C RY, and let F(P) denote the set of all fusions of P with support
contained in Z. Then

O QI =1PIl forall Q € F(P).
(i) b(Q) = b(P) for all Q € F(P).
(i) F(P) is compact and convex (when viewed as a subset of R'#!).

(iv) FFP) = FAP), that is, if Q € AP) and Q is a fusion of Q
(with supp Q C Z), then Q € F(P).

) IfQ e AP), then P > Q.

Proof. Conclusions (i)—(iv) are straightforward from the definition of
fusion, and (v) is an easy consequence of Jensen’s inequality. (Alterna-
tively, (iii) (convexity only), (iv), and (v) also follow from the more general
infinite-dimensional versions in Theorem 3.11, Theorem 3.12, and Corol-
lary 3.17, respectively, in [3].) |1



For the remainder of this section, P and Q will be nonzero finite
measures with finite supports X and Y, respectively, in R¢. For ¢: RY —» R,
P[c] denotes [cdP. Let

m =min{P(x): x € X}.

The main tools in this section can be expressed in terms of a certain
easy special type of fusion, which will now be identified for ease of
exposition.

DeFINITION 3.5, P is an S-to-y P-fusion of mass transfer m < m if there
exist nonnegative numbers {A}, . s sothat ¥ .gA, =land X, c¢xA, =y
and so that

P(y) =P(y) + 7
P(x) =P(x) —imAr, forxes
ﬁ(x) = P(x) otherwise.

(In other words, P takes mass only from S and places it all on a single
point y, chosen so that the barycenter is preserved.)

The next three results form the basis for the proof of Theorem 2.3. The
first lemma establishes the existence of a fusion of P preserving inequality
of integral for a given ¢ € #; the second is a trick using this single ¢ to
find a fusion of P that is uniformly *“good” for all ¢ € #; and the
proposition builds on these to conclude the existence, for each y € Y, of a
fusion of P of strictly positive mass transfer that preserves convex domina-
tion of Q. Then the proposition is used via a minimality argument to
establish the key implication in Theorem 2.3.

LEMMA 3.6. Suppose P> Qand X NY = . Giveny € Yand c € 7,
there is a subset S of X such that y has a unique convex combination
representation in S, and such that there is an S-to-y P-fusion P; of mass
transfer m such that Pg[c] > Qlc].

Proof. Fix ye€Y, ce . Let ¢ =Cy be as in Definition 3.1. By
Lemma 3.3, y € co(X), so by Lemma 3.2(iv) there is a subset S of X such
that y has a unique convex combination representation y = ¥ _¢xA_ and

&y) = LE(x)A,. (1)

x€S



Let Pg be the S-to-y P-fusion of mass transfer m determined by {A,}, s,
that is,

Py(Y) =m, Pg(x)=P(x)—mir, forxes,
P, =P  otherwise. (2)
Since supp P U supp Q C co(X),
py[c] = P[c] = Q[¢], (3)

where the equality follows from (1) and (2), and the inequality by the
convexity of ¢ (Lemma 3.2(i)) and the hypothesis that P > Q. (Note ¢ is
not actually defined off co(X), but since ¢ is the maximum of a finite
number of affine functions on co(X), it has an immediate extension to a
convex function on all R<.)

Next observe that

Pg[c] = Pslc] = (€(y) = c(¥)) Ps(y) < (€(y) = c(¥))Q(y)
< o[c] - Qlc]. (4)
where the equality follows by the definition (2) of P, and since ¢ = ¢ on
X (Lemma 3.2(iii)); the first inequality by (2) and the definition of m, since

Pg(y) =m < Q(y); and the last inequality since ¢ > ¢ (Lemma 3.2(ii)).
Together, (3) and (4) imply Pi[c] > Olcl. |

LEMMA 3.7. Suppose P = Q and X NY = J. Given 'y € Y, there is an
X-to-y P-fusion P, of mass transfer m satisfying
Olc] — Pi[c] <2¥(P[c] — Q[c])  forallc € 7. (5)

Proof. Fix y €Y, and recall y € co(X) by Lemma 3.3. In fact, it will
even be shown that for some § C X there is an S-to-y P-fusion of mass
transfer m satisfying (5) and such that y has a unique convex combination
representation y = ¥ _ ¢xA, for some § C X. Suppose, by way of contra-
diction, that there is no such fusion. That is, for every subset S of X for
which y has a unique representation y = X _¢x A, there exists a cg € &
so that if Pg is the unique S-to-y P-fusion of mass transfer m, then

Oles] — Psles] > 2|X‘(P[Cs] = Qfcs]). (6)
Let .= {S C X: y has a unique representation y = X _xA,}, and let
S = {8 €7 Pleg] > Qles])
and
S =S €7t Ples] = Oles ]}



Note that .%; and .%, are disjoint, and since P > Q,
Plcg] = Q[eg]  forall S €.7, (7)

S0 .9 =, U.%,.
Define ¢ € # by

|X1
Cyg 2%cg

) >

s2 PlesT— Oles] 52, Oles] — Byles]”

(To see that ¢ € #, note that c¢ is the sum of positively weighted functions
cg € %, using the definition of .»#; for the first sum, and (6) and (7) for the
second.)

Since ¢ € %, by Lemma 3.6 there is a subset S, of X such that y has a
unique convex combination representation in co(S) and so there is an
S-to-y P-fusion of mass transfer m with

Pg[c] = Q[c]. (8)
Observe that
B _ Oles] - Pso[cs] Z‘Xl(Q[Cs] - Pso[cs])
el =Falel= & B T=0le] * 2.~ oles] - Bles]
9)

Now,

Pso[cs] < P[] (10)
by Proposition 3.4(v) (with Z = X U Y), since Ps is a fusion of P, and
Pleg]l = Qleglfor S €.7,, 50 Py [cg] < Olcgl for S €.7,. This implies that

the last summation in (9) is nonnegative. By (10) each term in the first
summation in (9) is > —1.

Case 1. S, €.7,. By (9) and (6),

Ole] = Fyle]= ¥ %[[ZSS]]:})QSi[CCSS]]

which is > 0, contradicting (8).

> —1(l7] = 1) + 211,

Case 2. S, €.%,. Similarly,
Olc] - Pso[c] > — A+ 2%,

which is > 0, contradicting (8). 1



ProPoOSITION 3.8. Suppose P > Q and let X* = {x € X: P(x) > Q(x)}
and Y* ={y € Y: Q(y) > P(y)}. Given y € Y*, there exists an X*-to-y
P-fusion P of strictly positive mass transfer such that P > Q.

Proof. First assume X NY = (. Let P, be as in Lemma 3.7, so P,
satisfies (5) and Py[c] = Plc] + mc(y) — m¥E, c yc(x)A, = Plc] — ma,
forall c € #,where {A },c y are nonnegative, £ vy A, = 1, X c v XA, =y,
and a, = X, yA.c(x) — c(y) = 0, since c is convex. By (5),

ma, = P[c] = P\[c] = P[c] = Q[c] + Q[c] — Py[c]
< (2™ + 1)(P[c] = Q[c]) forallc e,

SO
Plc] - Q[c]= (2% +1) 'ma, >0 foralcez. (11

Letting P be the X-to-y P-fusion determined by the same {A,}, but mass
transfer m = (21X + 1)~'m, then

Plc] = Qle] = Ple] +ne(y) = L c(x)A, — Olc]

xeX

=P[c] - Q[c] —ma, >0 forallc ez,

where the inequality follows by (11). Now for the general case where
XNY =+, replace PbyP—(PAQ)and Qby Q—(PAQ). 1

Proof of Theorem 2.3. (i) = (iii). Suppose P > Q, and let .7 be the
collection of all fusions P of P satisfying

suppP cXUY (= supp P U sup Q) (12)

and

P> 0. (13)
Let

y = inf {maX{Q(y) —P(y)}}-
PeF \yeyY

Since X and Y are finite sets, and the set of fusions of P with support
contained in X U Y is closed (Proposition 3.4 with Z = X U Y), and since
7 is nonempty (since P €.7), v is attained. That is, there is a P € 7 such
that y = max, . ,{Q(y) — P(y)}. Without loss of generality, it may also be
assumed that [y € Y: Q(y) — P(y) = vy}| is minimal. It will now be shown
that y < 0, which establishes (iii).



Suppose, by way of contradiction, that y > 0, and fix_y €Y with
o) — P(}‘/) = v. Let X* {x e X: P(x) > Q0(x)andlet Y* = {y € Y:
o(y) > P(y)}, where X = supp P. By (13) and  Proposition 3.8 (applied to
P.¥ in place of P, y) there is an X*-to§ P-fusion P of strlctly posi-
tive mass transfer 7 with 2 > Q, such that Q(i) P(3) = y — i, and
o(y) — P(y) oy) — P(y) for all other y € y# (since such y are not in
X*, and so their weights remain unchanged by an X*- -toy fusion). But
this contradicts the minimality of P, so vy < 0.

(ii) = (i). Trivial, since ¢ > 0 for all ¢ € Z.
(iv) = (ii). Since P is a fusion of P, P > P by Proposition 3.4(v)
with Z =X U Y U {v}.
_ (i) = (). P is the fusion of P obtained by fusing all of the mass in
P — Q. By Proposition 3.4(iv) (with Z = X U Y U {0} again), P is a fusion
of P, since it is a fusion of a fusion of P. |I

4. EXTENSIONS TO GENERAL MEASURES AND
INFINITE-DIMENSIONAL SPACES

The purpose of this section is to show how the basic finitistic (finite
atoms, finite dimensions) result of Theorem 2.3 can be used to give simple
proofs of analogous results in infinite-dimensional settings with general
measures. Throughout this section, P and Q are finite Borel measures on
V, where 1 is a separable Banach space or a compact convex subset of a
locally convex topological vector space. Restriction to such spaces is only
to ensure that barycenters exist; see [3] for details, as well as for the
inclusion of continuous in the next definition.

DEFINITION 4.1. P convexly dominates Q (written P > Q) if (¢ dP >
J¢ dQ for all nonnegative continuous convex functions ¢: V' — R for
which both integrals exist.

Remarks. Note that P> Q = [dP > [dQ, so ||P|l = ||Qll. Also note
that this definition agrees with Definition 3.15 in [3] (where nonnegative
was not required) in case P and Q are probability measures, as is seen by
the following argument: since [ dP = [dQ, nonnegative convex domination
implies [¢ dP > [¢ dQ for all continuous convex functions that are
bounded below. Then letting ¢, = max{¢, —t},

/¢dP= tlmf@sz tlmf@dQ: /¢dQ.

The more general definition of fusion (Definition 2.1 above) for nonfinitis-
tic probability measures and infinite-dimensional spaces given in [3] carries



over easily to arbitrary positive finite measures. Intuitively, a fusion is
simply the weak limit of measures formed from a base measure by
repeatedly collapsing parts of the mass of measurable sets to their respec-
tive barycenters (see [3] for details).

The next theorem is the extension of Theorem 2.3 to general measures
on infinite-dimensional spaces. For the identical-mass (probability mea-
sure) special case in infinite-dimensions, this gives a simple new proof of
the main conclusions in Theorem 4.1 of [3] and of classical results in [2]
and [9].

THEOREM 4.2.  Suppose P and Q are finite Borel measures on V', where V
is a separable Banach space or compact metrizable convex subset of a locally
convex topological vector space. If P has finite first moment (barycenter), then
P convexly dominates Q if and only if there is a fusion P of P with P > Q.

The proof will be facilitated by several preliminary definitions and
lemmas.

DeriniTION 4.3. Let V' be a separable Banach space or a convex
compact metrizable subset of a Ictvs. In the case where V' is a separable
Banach space, assume that P has a finite first moment, that is, [||x|| dP(x)
< = (in the case where V' is a convex compact metrizable subset of a Ictvs,
P will always be said to have a finite first moment). If A is a Borel set in
V' and P(A) > 0, then b = b(A, P), the P-barycenter of A, is defined
to be the unique element of the closed convex hull of A satisfying
f(b) = (J,fdP)/P(A) for all continuous linear functionals f on I (see [3],
p. 422).

DerINITION 4.4, A measure is finitistic iff it is purely atomic with
finitely many atoms.

DeriniTION 4.5. Let V' be a separable Banach space or a convex
compact metrizable subset of a Ictvs. If (¢;;) is an n X k row-stochastic
matrix with nonnegative entries and A4,,i = 1, ..., n, is a Borel partition of
V with ¢,; = 0 if b(A;, P) does not exist, then the finitistic measure

t;;P(A;)8(a;), wherea; = itijP(Ai)b(Ai,P) itijP(Ai)

L Y

j=1i=1 i=1 i=1

=

is called a finitistic matrix simple fusion of P, written fus((A4,); (z;)); P).

DerINITION 4.6. The finitistic measure Tf_,r,8(z,) is said to be an
eperturbation of TI_,q;8(y) if dist(y, z) <e and ¢(1 —e) <7, <
gl +eforj=1,... k



LEMMA 4.7. Let V be a separable Banach space or a convex compact
metrizable subset of a Ictvs. Let P convexly dominate Q, where P is a finite
positive Borel measure with a finite first moment, and Q is a finitistic positive
measure Z;‘: 19;6(y;) Then for all € >0, there is a finitistic matrix simple
fusion of P that is an e-perturbation of a measure majorizing Q.

Proof.  Part 1. First assume V' is a D-dimensional Euclidean space, and
that the diameter of the support of P is finite.

Let e > 0. Cover supp P with finitely many simplices {S;}; with ver-
tices {v;};_, such that diam(S;) < e and P(4S;) = 0 Vj, and the S, have
nonoverlapping interiors. Let s; be the P-barycenter of S, erte s;
Y, a0, where a; = 0 unless v; is an extreme point of §;, and Y 1,

a; > 0. Let m; =P(S)), let p, =X a;m; and let P*—lela(vl)=

J

Z Z a;m;8(v,), Whlch is finitistic. Thus P*([R{D) =L,p; = L;m; = PR").

i~j i
Let c: [RD — R be a nonnegative convex function. For each j, let a; be

the affine function such that a,(v,) = c(v,) for each vertex v; of S;. Then
aj(x) >c(x)Vx € S;, s0

fch < fch < jZLjaj dpP = ?mjaj(sj) (because a; is affine)
- Ema|Lau) = £ Emae(s)

= Zpic(ui) = fch*.

Thus by Theorem 2.3, there is a fusion Q of P* that majorizes Q, so there
exists a row-stochastic n X k matrix {ti]-} such that

n

k
~_ /; ( Zti/pi)é(b/),

where b, = ¥;t, . p;v;/2;t; ,p; and 0 > 0. Let u,=X,aut;,j=1...,m,
/=1,..., k. Note that {uﬂ} is also row-stochastic:

Zuj/ Z Z ]1 l/ Za]l =1
/

Consider the fusion of P:

5-% ( S uym, )a(a»

/=1



where

Yiu;,ms;
a,= —T————
Yiu;,m;

(This is a fusion of P since the measure ij'é(sj) is a fusion of P.)
Now since ¥;a;m; = p;,

a,m;
Zams Z( ]p])sj=pivi*,

j i

where d(v;, v¥) < €, since v is a convex combination of {s 3} with d(s;, v,)

irYi jr i

< € (recall that a;; =0 unless d(s;,v;) < €). Note also that ¥, U m; =

Z}.Ziaﬁti/mj = Y;t;,p;- Note also that

by Zuj/'mja(sj) =X X Zajiti/mjé(sj) =) 2Pk,
i’ VA i/

where uf is a convex combination of (s;) with d(s;, v;) < e. Thus

k

5_ ) ( ZE/P;)S("/)

/=1 \i=
where

4 - Ll at,m;s; _ Xiti, pivf
/_ - .
ijiajiti/mj Yt D

Note that d(a,,b,) < e. Thus 5 is an e-perturbation of O, and Part 1 is
proved.

Part 2. V is D-dimensional (but P is not required to live on a set of
finite diameter). Let @ > 0 and let A > 1 be such that [y, ,llxll dP(x) <
a/k and llyll<A, j=1,...,k Let B={x: [lxll <A. Let {e;, i=
1,...,2P} be the vertices of a mlnlmal D cube containing B, so lle,[l = AVD
for each i. Let P, =Plp + (a/)t)Z 18(2¢,). This is close to P if « is
small and lives on a set of finite diameter.

It shall be shown that P, convexly dominates Q. For any nonnegative
convex function ¢ on V, there are affine functions a;, j = 1,..., k, such
that a,(y;) = c(y;) and a,(x) < c(x) for all x. Let g(x) = max{a;", j =

., k}. Then g is convex and g <c and [gdQ = [cdQ. So [cdP, >
JgdP,, and [gdP > [gdQ = [cdQ. Thus it is enough to show that [gdP,
> [gdP, and since P and P, agree on B, it is enough to show that
[.58dP, > [_pgdP. Thus it suffices to show that [_gza* dP, >



kf.gza* dP for every affine function a such that a(x) > 0 for some x in
B, because then

k k
| madafj=1,... kydP, = (1/k) L [ af dP,= ¥ [ a dP
~B j=1 ~B j=1 ~B

> fNBmax{a/*,j=l,...,k}dP

(note that for any finite sequence s; of nonnegative numbers, (1/k)2§‘:1sj
<max(s;, j=1,....k} < Xf_,s). Let a(x) =/(x) + b, where / is lin-
ear. Choose m such that a(e,,) = max{a(e,),i = 1,...,2P}, andlet e =¢,,.
Note that a(e) > 0, since B is a subset of the convex hull of the {e,;}, and
a(x) > 0 somewhere in B by assumption. Note that /(e) = max{/(e,),
i=1,...,2P} also, and /(e) = 0 also, since —e is also a vertex of the
D-cube and either Z(e) or /(—e) would have to be > 0. Now for any x
not 0in 1, Z(x) =/ ((Ax/llxIDUlxll /M) < (llxll/A) 7 (e), since Ax/llx|lis in
B, which is a subset of the convex hull of the {¢;}. Let A =~ B N {x:
a(x) > 0}. Thus [_za"(x)dP(x) = [,(/(x) + b)dP(x) </(e)[(lx|l/
AN dP(x) + bP(A) </(e)a/(Ak) + bP(A).

Case 1. b > 0. Note [_llxlldP(x) < a/k, so P(~ B) < a/(Ak). So
/(e)a/(Ak) + bP(A) < (/(e) + b)a/(Ak) < (£ (2e) + b)a/(Ak) (since
/(e) > 0) =aRe)a/(Ak) < (1/k)[_za* dP,.

Case 2. b < 0. Z(e)a/(Ak) + bP(A) </(e)a/(Ak) < (/(e) +
a(e))a/ (Ak) (since ale) = 0) = (/(e) +Z(e) + b)a/(Ak) = aRe)a/
(Ak) < (1/k)[. ga™ dP,. Thus in either case

f~Ba+ dP < (1/k)f~Ba+ dp,.

It has now been proved that P, convexly dominates P, hence Q.

Since P, lives on a set of finite diameter, Part 1 of the proof yields a
Borel partition A4;, i = 1,...,n, of VV, and row-stochastic ¢,;, i = 1,...,n,
j=1,..., k,such that fus(A( ); ¢( , ); P,) is an a-perturbation of a finitis-
tic measure majorizing Q. Let

b; = itijP(Ai)b(AilP) itijP(Ai)'

i=1 i=1



and
d; = ‘gtijpa(Ai)b(Ai’Pa) AizltijP(Ai)'

Now

< i(Pu(Ai N ~B) + P(A; N ~B))

<P/(~B)+P(~B)<a(2P+1)

> ;P (A4;) — ZtijP(Ai)
i=1 i=1

(since A assumed > 1). Also,

itij(Pa(Ai)b(Ai'Pa) _P(Ai)b(Ai’P))H
i=1

.étij(/;l,QNBde“(x) — '/;1.0 ~Bde(x))H

< [ Ilidr.(x) + [ lxlldP(x)

ZD

< (a/A) Y IRell + a/k < a2”2/D + a/k.
i=1

Since ¢; > 0 and D and k are fixed, and since Xj_,t;,P,(A4,) > q;(1 — a),

ij* a
it is clear that by taking o sufficiently small, dist(b,, d.) < € — «, since the

AR
numerators and denominators in the expressions for b; and d; can be
made arbitrarily close. Thus fus(A( );¢( , ); P) is an e-perturbation of a

measure majorizing Q.

Part 3. Finally, allow V' to be a separable Banach space (the convex
compact metrizable subset of a Ictvs case is similar but even simpler,
because the measure already would live on a compact set; that case is left
to the reader).

Let o > 0. Choose K, a compact subset of 1, such that P(~ K) < «
and

f~K||x|| dP(x) < a,

and y; isin K for j = 1,..., k. (This can be done since P has a finite first
moment). Every Banach space is isometric to a subspace of one with the
1-approximation property ([7, p. 37]), so it may be assumed that V' has this



property. This means there exists 7 a finite rank (that is, finite-dimen-
sional range) linear operator on V" such that dist(x, 7x) < « forall x in K
and norm(T) = 1. Let P; be the measure defined on range(7) by P;(A4)
= P(T~*(A)), and similarly for O, (note that Q, = X}_,¢;6(Ty))). Since T
is linear, ¢ composed with T is convex for any convex function ¢ on the
range of T, so P, also convexly dominates Q. So there exists » and an
n X k row-stochastic matrix (z;,) of nonnegative elements and a Borel
partition B;, i =1,...,n, of range(7), such that fus((B,); (¢;,); Pr) is an
a-perturbation of a measure majorizing Q,. Let A, =T (B, i=
1,...,n. Then P(A,) = P;(B,). Let

a; = ZtijP(Ai)b(Ail P) ZtijP(Ai)'
i—1 i-1
and
b; = ZtijPT(Bi)b(Bi’PT) ZtijPT(Bi)'
i=1 i=1

Now

”PT(Bi)b(Bi'PT) _P(Ai)b(Ai’P)” Z“j;;ydPT(y) - /A.de(x)

i

=H]A_(Tx —x) dP(x)

(using change-of-variable formula [ydP;(y) = [TxdP(x)). But since
dist(x, Tx) < a for x in K and norm(7) = 1, this is < aP(A4;, N K) +
2[4~ kllxll dP(x). Thus

dist(a;, b;) < 2": t;aP(A;) + 2/;1 K||x|| dP(x) Xn:tijP(Ai))
i=1 in~ i=1
<a+2f |xldP(x)/q(1 - a) < a+2a/q(l - a)
~K

Now dist(y;, 7y,) < a, since y; is in K by definition. Thus dist(y;, a;) <
diSt(yj,Tyj) + diSt(Ty]-, bj) + diSt(bj, aj) <atata + Za/qj(l - ),
which is < e for sufficiently small «. |

In the non-Banach space case, where there is no norm, I still embeds in

a space with the approximation property ([3, p. 437]), meaning that on any
compact set the identity can be uniformly approximated by a continuous



linear operator of finite rank, without any global statement about the
behavior of T off the compact set (analogous to the condition norm(7") = 1
that was used in the Banach space case). Since in this case P already lives
on a compact set, no such condition is needed, and the proof is even
easier.

LEmMMA 4.8. Let V, P, and Q be as in Lemma 4.7. Then there is a fusion
of P that majorizes Q.

Proof. By Lemma 4.7, for each n there is fusion P, of P that is a
(1 /n)-perturbation of a finitistic measure majorizing Q. The set of fusions
of P is tight ([3, p. 435]), so some subsequence of (P,) converges weakly, to
a measure that obviously majorizes Q, and is a fusion of P, since the set of
fusions of P is weakly closed. |

Proof of Theorem 4.2. It is elementary that Q is the weak limit of a
sequence Q, of finitistic measures such that Q (hence P) convexly
dominates Q, (just take a partition into subsets of diameter < 1/n for a
compact set on which all but (1/n) of the mass of Q lives, and collapse
each set in the partition to its barycenter). Each Q, is majorized by a
fusion of P,, by Lemma 4.8. Some subsequence of (P,) converges to a
fusion P* of P since the set of fusions of P is tight, and this measure
obviously majorizes Q (proof: for any bounded, continuous, nonnegative
function f, [fdP* = lim [fdP, > lim [fdQ, = lim [fdQ; note that P* ma-
jorizes Q iff [fdP* > [fdQ for all bounded continuous nonnegative func-
tions f, and recall that P, converges weakly to P* iff lim [fdP, = [fdP*
for all bounded continuous f). 1
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