
Implications of Integrating Test-Driven Development into
CS1/CS2 Curricula

Chetan Desai
Intuit Inc.

San Diego, California USA
chetan_desai@intuit.com

David S. Janzen, John Clements
California Polytechnic State University
San Luis Obispo, California USA

{djanzen,clements}@calpoly.edu

ABSTRACT
Many academic and industry professionals have called for
more testing in computer science curricula. Test-driven de-
velopment (TDD) has been proposed as a solution to im-
prove testing in academia. This paper demonstrates how
TDD can be integrated into existing course materials with-
out reducing topic coverage. Two controlled experiments
were conducted in a CS1/CS2 course in Winter 2008. Fol-
lowing a test-driven learning approach, unit testing was in-
troduced at the beginning of the course and reinforced through
example. Results indicate that while student work loads
may increase with the incorporation of TDD, students are
able to successfully develop unit tests while learning to pro-
gram.

Keywords
Test-driven learning, test-driven development, cs1, cs2

1. INTRODUCTION
Industry typically spends 50% or more of software project

resources on testing. Despite this, students rarely learn the
value of testing in early programming courses, or indeed at
any point in the computer science curriculum [12]. The re-
sult is students that are ill-prepared for work in the software
industry. Unfortunately, proposals to add courses on test-
ing may be infeasible due to curriculum constraints at many

universities, and even if feasible, may reinforce mispercep-
tions that testing is somehow different or separate from the
rest of computing. The alternative is to incorporate testing
into existing courses, using test-driven development (TDD).

In TDD [6], students specify tests before implementing the
corresponding program fragment. This gives the students
the chance to consider the desired result of the program
fragment before plunging into the implementation details,
and guarantees that the students can validate their newly
written code immediately upon its completion.

Edwards [4] identified several concerns when adopting TDD
practices in a university environment. First, many instruc-
tors believe that introductory students are not ready for
testing until they have basic programming skills. Second,
instructors feel that they do not have enough lecture hours
to teach a new topic like software testing. Third, course
staff already has its hands full grading code correctness, so
it may not be feasible to assess test cases too.

Fortunately, our experiments suggest that by introduc-
ing testing gradually and by leveraging the students’ tests
to help simplify grading, adding TDD to an introductory
course may be less traumatic than these concerns would sug-
gest. This paper reports on a set of techniques for introduc-
ing TDD into existing course materials, and the implications
thereof.

2. TRANSFORMING CS1/CS2
It can be difficult to determine when and how to intro-

duce TDD practices into a curriculum. Most experiments
reported in the literature[9, 6, 2] introduced TDD at the
beginning of sophomore through graduate level courses. In-
troductions usually consisted of general explanations of unit
testing and TDD, documentation on a test harness (e.g.
JUnit), and examples of how to write test cases, execute
test cases, and interpret results. Introduction lengths varied
from a thirty-minute lecture[3] to a three-week topic[11].

The goal of this study is to obtain empirical evidence on
the cost and reward of integrating TDD into a first-year
programming course. What kind of curriculum changes are
required? How drastically must existing projects change?
What are the effects on the students? In order to gain ac-
ceptance from skeptical peers, we elected to minimize the
changes to the existing course, and to perform controlled
experiments to measure the results of the change in student
code quality, productivity, and test coverage.

Under the guidance of two faculty, a first year master’s
student and a senior undergraduate student modified lab
and project descriptions from a Winter 2007 non-TDD-based

course at California Polytechnic State University, San Luis
Obispo. The course, CSC102, was the second in a three-
course first-year sequence. Each course lasted ten weeks.
The first course in the sequence teaches the basics of pro-
gramming in the C language. This second course introduces
object-oriented programming in the Java language. The
team modified the lab and project descriptions to encourage
a TDD approach to development. Nearly all of the topics
and structure of the programming assignments stayed the
same (exceptions are noted below).

In order to introduce testing from the beginning of the
course without burdening the students, students were given
full JUnit test suites for projects and labs early in the course.
To ease students into writing their own tests, the second
project supplied JUnit tests for a Java class similar to one
the student had to test. For example, JUnit tests were sup-
plied for a Triangle class, and the students had to write tests
for a Rectangle class. The concrete examples of test methods
in the Triangle class led the students to similar tests for the
corresponding method in the Rectangle class. Later projects
removed the “training wheels” by requiring the students to
write all tests themselves.

Also, students learned the value of reusable automatic unit
tests as projects built upon one another. In one project, stu-
dents created different shape objects such as Triangle, Rect-
angle, and Circle. In a follow-up project, students had to
extract common functionality and member data from these
classes into an abstract class called Shape. The previously
written tests did not have to change, and provided a test
suite to ensure the student did not break any functional-
ity in the process. The labs and projects are all available
online1.

3. EVALUATION
We evaluated three questions regarding the introduction

of TDD into a first year programming course.
First, can TDD be integrated into early programming

courses with minimal effort on the part of instructors?
Second, what effect does the grading of test-code have on

students’ tests? Is giving credit to tests the best way to
teach TDD? Do students write more, higher quality tests if
they get feedback through grades on tests? Barriocanal [1]
mentioned that grading tests could be counterproductive if
students write the tests as an afterthought since their grade
depends on it, and are not truly doing TDD.

Third, what effects does TDD have on quality of code and
productivity of students? Does the TDD approach affect the
amount of time spent on projects, since students have to
write test-code? By writing test-code, students might save
time in debugging. Does writing tests lead to higher quality
code with respect to the number of acceptance tests passed?

3.1 TDD Integration Cost
Two student researchers revised six of the original nine

weekly lab assignments and eight project assignments from
a previous offering of the CSC102 course. The course ma-
terials were prepared for an instructor who had taught the
CSC102 course for several years. This instructor had no ex-
perience with TDD and did not adjust his lectures to include
TDD instruction. As a result, the instructor spent minimal
time integrating TDD into this course.

1http://users.csc.calpoly.edu/˜djanzen/research/TDD08/cdesai/

One student researcher was tasked with revising the labs
to include instruction on TDD and JUnit, developing test
suites for the labs, and developing new grading scripts for
both the labs and projects. He spent a total of seventy-
two hours on these tasks. The researcher had limited prior
TDD experience and no curriculum development experience.
As might be expected, the first three labs required more
changes than the labs that came later in the course. In
fact two of the later labs required no changes at all. The
most significant changes were made to the second lab. The
original second lab introduced console input/output (I/O)
through the Scanner and System.out classes. This lab in-
volved reading input from the console, parsing it, and iden-
tifying chunks that were ints, doubles, and strings. The
new lab was proposed to preserve the parsing and type iden-
tification components while dropping the I/O aspects of the
lab. I/O is traditionally difficult to test automatically so the
researchers suggested delaying I/O to later in the course.
Upon the instructor’s insistence, the second lab eventually
combined the two approaches, requiring students to write a
testable parser and type identifier as well as an I/O driver.

The second student researcher was tasked with revising
the project descriptions to include TDD requirements, de-
veloping test suites (both student and instructor versions),
and developing grading criteria. In addition this student
planned the experiment design and gathered all associated
artifacts and metrics. This student spent a total of 126 hours
on these tasks.

The instructor reported no decrease in coverage of course
topics nor significant extra time required in lecture or lab
in order to include the TDD material. Despite his initial
skepticism, the instructor embraced TDD and voluntarily
opted to use the new TDD-based lab and project materials in
the subsequent quarter, rather than his original non-TDD-
based materials.

3.2 Effects of Grading Student Test Code (E1)
We examined three sections of the Winter 2008 CSC102

course in Experiment 1 (E1). Eighty-three students enrolled
in three sections with 24, 29, and 30 students respectively.
A single instructor taught all of the sections using the same
labs, projects and lectures as described previously.

Two sections of the course, totalling 59 students, were
randomly chosen as the experimental group. This group’s
tests were graded for 10% of their assignment grade, and the
students were told of this. We call this group the “graded
tests group” (GT). The other section of the course (24 stu-
dents) was the control group. Their grades did not depend
on their test cases, and they were also told of this. We call
this group the “ungraded tests group” (UT).

Experiment 1 sought to discover the effects of grading stu-
dents on their test code versus not awarding points to test
code. We considered three dependent variables: productiv-
ity, quality, and comprehension of the course material.

3.2.1 Productivity
Table 1 displays the average number of hours that stu-

dents worked on the given project. A two-tailed t-test is used
to check for statistical significance using a p-value of 0.05.
For the first project, both groups were given full JUnit test
suites to introduce them to the syntax and semantics of JU-
nit. Therefore, productivity was nearly identical on the first
project as expected, since neither group wrote tests. For the

Proj. Avg Hrs Worked p-val Sig?
UT GT (p <0.05)

1 4.18 4.93 0.240 No
2 8.97 12.2 0.023 Yes
3 7.69 10.62 0.060 No
4 9.49 12.99 0.041 Yes
5 11.75 16.33 0.130 No
6 7.35 9.90 0.158 No
7 10.39 12.10 0.384 No
8 6.27 7.80 0.090 No

Table 1: Experiment 1 Productivity

Figure 1: Experiment 1 Work-Load Differences

second and fourth projects, the GT group spent significantly
longer on the projects. In general, the GT group spent more
time on all remaining projects than the UT group, but the
results were not statistically significant. The third project
built upon the second project, so tests could be reused from
project two to three. This could explain why time differ-
ences were not as extreme for project three. Project four
was the beginning of another series project, so tests were
reused in projects five and six, which could explain insignif-
icant differences for these two projects. For projects 7 and
8, students had to write all of the tests on their own and
while the GT group spent more time on the projects, it was
not significantly more. Project 8 was optional, but most
students completed it for extra credit. The trend shows a
steep learning curve for when students first have to write
tests (projects 2 and 4). However, when students had to
write all the tests on their own in projects 7 and 8, the time
it took them was not significantly longer.

Figure 1 compares the fraction of extra time taken by the
GT group in each project to the fraction of methods whose
test cases were not provided by the teacher. For the very
first project, when neither group had to write tests, we see
the GT group taking 18% longer than the UT group. This
suggests that the GT group has a predisposition to spend
more time on projects for unknown reasons. Nonetheless,
the graph shows an initial increase in time worked by the
GT group as writing tests was required of them. However,
by the end of the course, the trend suggests that the GT
group got the hang of writing tests and was not spending all
that much longer on the projects, even as more and more
tests were required of them.

Proj. Avg % Tests Passed p-val Sig?
UT GT (p <0.05)

1 97.31% 98.43% 0.518 No
2 94.14% 97.86% 0.296 No
3 97.38% 97.06% 0.749 No
4 98.23% 98.38% 0.910 No
5 97.70% 97.13% 0.752 No
6 97.42% 96.05% 0.340 No
7 94.62% 92.91% 0.606 No

Table 2: Experiment 1 JUnit Tests Passed

Figure 2: Experiment 1: Line Coverage Comparison

3.2.2 Quality
The quality of the projects was determined using the num-

ber of passed JUnit tests, the subjective score assigned by
the instructor, and code coverage. We ran the student’s
source code against an instructor’s suite of JUnit tests to
determine the number of passed JUnit tests. Table 2 sum-
marizes the percent of JUnit tests passed. Students were not
provided a fixed API for project 8 so test data is excluded
for that project. We ran students’ tests on the instructor’s
source code to compute code coverage.

To receive credit for each project, a student had to pass all
the tests in an acceptance test suite provided one day before
the due date. It is therefore no surprise that the average
number of JUnit tests passed was above 92% for all projects
and around 98% for most projects. Using a two-tailed t-test
with a p-value threshold of 0.05, we detected no significant
difference in the number of unit tests passed by the GT
and UT groups. Similarly, the instructor’s subjective grades
did not differ significantly between the two groups. Based
on the instructor’s policy of providing acceptance tests and
requiring 100% pass rates in order to get any project credit,
the use or non-use of TDD had no effect on project grades.

We measured the quality of student-written tests using
code coverage. This measure is computed by dividing the
number of lines of code evaluated at least once during eval-
uation of the test suite by the total number of lines in the
code.

Figure 2 plots line coverage percentages for the groups
compared to line coverage of the given tests. Line coverage
is a common form of code-coverage that reports the lines
of source code executed during the tests as a percentage of
total lines of source code. For the first four projects, it looks

Proj. Avg % Tests Passed p-val Sig?
CT TF (p <0.05)

1 99.08% 98.44% 0.566 No
2 95.95% 96.94% 0.448 No
3 94.81% 97.15% 0.004 Yes
4 94.73% 98.34% 0.00012 Yes
5 86.69% 97.22% 0.013 Yes
6 90.00% 96.31% 0.00004 Yes
7 96.15% 93.27% 0.193 No

Table 3: Experiment 2 JUnit Tests Passed

as if all the students kept up great coverage percentages as
the coverage of the given tests diminished. Project five had
a significant drop in test quality. Concepts of exceptions and
file-based streams were introduced in this project; each con-
cept requiring more complex tests. Towards the end of the
course, the quality of the UT group’s tests dropped signifi-
cantly lower than the GT group, possibly because they were
not required to do any tests and thus put it off. In projects
five through seven, the differences between the code cover-
age measures of the two groups are statistically significant
(proj. 5 p = 0.005, proj. 6 p = 0.0004, proj. 7 p = 0.009).

The instructor graded tests based on method coverage, so
as long as they achieved 100% method coverage, they re-
ceived full marks. Nonetheless, 60% line coverage is not bad
for introductory students. Grading based on line coverage
might ensure higher quality tests.

3.2.3 Comprehension
To measure comprehension of course material, we com-

pared the exam scores of the GT and UT groups. Using a
t-test with a p-value of 0.05, we detected no significant dif-
ference between the exam scores of the GT and UT groups.

3.3 Effects of TDD/JUnit Exposure (E2)
The second experiment, labeled E2, compares the quality

of students’ projects in the course taught in Winter 2008
to the projects completed by students who took the course
exactly one year earlier. Unlike the students in Winter 2008,
students in Winter 2007 were not exposed to TDD or JUnit.
The 2007 group is called the classical-test (CT) group, and
the 2008 group is denoted the test-first group (TF).

3.3.1 Quality
We determined the quality of the projects using the num-

ber of passed JUnit tests and the student’s overall project
grade. Because the project requirements and policies were
the same in both years (outside of the JUnit requirements),
the student’s source code was run against an instructor’s
suite of JUnit tests.

Table 3 summarizes the percent of JUnit tests passed.
Because a student was required to pass all provided accep-
tance tests in order to receive a nonzero correctness score,
the number of passed unit tests was again high. However,
the TF group passed a significantly higher number of tests
than the CT group for projects 3, 4, 5, and 6. The CT
group did have slightly higher percentages of tests passed
on projects 1 and 7, but the differences were very small.

From this experiment we are able to note the importance
of exposure to unit testing through JUnit. For the majority
of projects, the TF group passed significantly more unit tests

than the CT group a year earlier.

4. THREATS TO VALIDITY
Our experiments contained both internal and external threats

to validity. The internal threats are specific to the experi-
ments, but the external threats are shared.

In experiment 1, students self-selected the sections that
they were in, though they had no advance knowledge of the
experiment. It is therefore possible that some of the class
sections might have been biased by external factors. For
instance, 42.3% of the students in the UT group reported
having a GPA over 3.0, where the GT group had 56.9%.

Experiment 2 considers the hypothesis that adding testing
to the course could affect the students’ performance on the
projects. However, the addition of the skeletal test suites
could have altered the difficulty of the projects.

There are a set of external threats common to the two
experiments; most significantly, this instructor decided to
release the acceptance test suite to the students a day before
the assignment was due. Also, this study concerns a set of
students coming out of a quarter-long course in C, taught by
an instructor without prior experience in teaching the use of
TDD. Results in other scenarios will naturally differ, though
we see the experiment conditions as being moderately biased
against the relative success of the test-based learning, and we
would expect others’ results to be–if anything–more positive
than ours.

5. RELATED WORK
This work is believed to be the first to demonstrate that

TDD can be integrated into a first-year programming course
without reducing topic coverage, reducing student code qual-
ity, or severely increasing student effort. The test-driven
learning (TDL) [7] pedagogical approach that was applied
takes a reinforced learning approach in which TDD is not
taught as a separate topic, but is incorporated into tradi-
tional computing topics and reinforced through subsequent
examples. The efficacy of TDL in CS1 and CS2 courses was
demonstrated previously[8], finding that test-first program-
mers wrote more tests and scored higher on project grades
than their test-last counterparts when taught in a TDL fash-
ion. However, these original CS1/CS2 experiments covered
only short time periods (two or three weeks), involved com-
pletely new course materials, and the author was also the
instructor, and therefore potentially biased.

A reinforced learning approach such as TDL could be key
to successfully introducing TDD. In cases where students
were just briefly introduced to testing at the start of the
semester, TDD was not preferred[10] and only 10% of the
students wrote test cases[1].

Numerous TDD-based controlled experiments have been
reported and surveyed[9, 6, 2]. However, nearly all of the
controlled experiments looked at sophomore- to graduate-
level classes, not CS1 or CS2 courses which present unique
challenges. As Keefe et al. note[10], students starting to
learn what programming is and how it works find it tough
to find purpose in the code, so testing it is difficult.

Erdogmus [5] compared a TDD group to an iterative test-
last group. The controlled experiment was conducted on 24
junior-level students programming a bowling score-keeper.
He found that the test-first students wrote more tests on
average, and tended to be more productive. Furthermore,

the quality of programs seemed to increase linearly with the
number of tests written, independent of the development
strategy used.

Yenduri and Perkins [13] compared a TDD group of 9 stu-
dents with a traditional incremental development group of
also 9 students. The students were senior undergraduates
and were trained in both approaches. The authors mea-
sured the number of test cases written, faults found, and
hours spent on the project. The TDD group yielded better
results in both quality (34.8% fewer defects) and productiv-
ity (25.4% faster). However, the authors report that these
results need to be validated by larger projects with a larger
sample size.

Edwards [4] conducted an experiment in a junior-level
course with 118 students at Virginia Tech University. In this
course, TDD practices were introduced briefly at the start
of the semester, but then used in the classroom through-
out the entire experiment to model behavior. This course
also used an automated grading system named Web-CAT
(http://web-cat.cs.vt.edu/) to provide students with feed-
back on correctness and quality of both source- and test
code. Half of these students used TDD and submitted pro-
grams via Web-CAT during the course in Spring 2003. The
other half did not use TDD and used output-based correct-
ness for feedback on their programs in Spring 2001. Edwards
found that the TDD group’s programs contained 45% fewer
defects and those students felt more confidence in the cor-
rectness of their code and when making changes to their
code than the non-TDD control group students.

6. CONCLUSIONS AND ADVICE
Test-driven learning was applied to a first-year course

to demonstrate that traditional course materials could be
adapted to incorporate TDD with minimal impact. By ex-
posing testing through example and slowly requiring stu-
dents to write a greater percentage of the tests per project,
we were able to prepare the students to write tests com-
pletely on their own. We were able to reuse existing ma-
terials and have students develop them in a TDD approach
without increasing the work load of students. Outside of the
one-time setup cost, instructor effort is also not increased
with TDL, and may in fact decrease thanks to the opportu-
nity of automated grading.

Awarding points for test code did not significantly change
quality of source-code, time spent on projects, attitudes to-
wards testing, or overall comprehension of material. It did
however give students incentives to write higher-quality code
as measured through code-coverage. Also, for the scale of
projects in introductory-level programming courses, TDD
did not affect the quality of projects turned in by students
as measured by project grades and number of passed JUnit
tests.

The authors believe that simply rewriting course materials
to incorporate TDD, while effective, is not the ideal situa-
tion. Rather, some re-ordering and re-emphasis of topics
is recommended. For instance, we believe that TDD-based
courses should delay and de-emphasize instruction on in-
put/output. Many interesting projects can be assigned with
tests and perhaps instructor-provided user interfaces that
avoid the details and challenges of input/output.

Using TDD addresses both testing and design skills of be-
ginning programmers. Incorporating testing from the very
start of a student’s programming experience is fundamen-

tally important to teach analytical and comprehension skills
needed in software testing. If curricula can get students
‘test-infected’ from the beginning, we believe they are likely
to realize that testing is an integral part of programming,
benefitting them throughout their academic and professional
careers.

7. ACKNOWLEDGEMENTS
Special thanks to Lockheed Martin for their generous sup-

port of this research.

8. REFERENCES
[1] E. Barriocanal, M. Urban, I. Cuevas, and P. Perez. An

Experience in Integrating Automated Unit Testing
Practices in an Introductory Programming Course.
ACM SIGCSE Bulletin, 34(4):125–128, December
2002.

[2] C. Desai, D. Janzen, and K. Savage. A survey of
evidence for test-driven development in academia.
ACM SIGCSE Bulletin, 40(2):97–101, 2008.

[3] S. Edwards. Using Test-Driven Development in the
Classroom: Providing Students with Automatic,
Concrete Feedback on Performance. In Proc. Int’l
Conf. on Education and Information Systems:
Technologies and Applications (EISTA), August 2003.

[4] S. Edwards. Using Software Testing to Move Students
from Trial-and-Error to Reflection-in-Action. ACM
SIGCSE Bulletin, 36(1):26–30, March 2004.

[5] H. Erdogmus, M. Morisio, and M. Torchiano. On the
Effectiveness of the Test-First Approach to
Programming. IEE Trans. Software Eng.,
31(3):226–237, March 2005.

[6] D. Janzen and H. Saiedian. Test-Driven Development:
Concepts, Taxonomy, and Future Direction. IEEE
Computer, 38(9):43–50, September 2005.

[7] D. Janzen and H. Saiedian. Test-Driven Learning:
Intrinsic Integration of Testing into the CS/SE
Curriculum. In Proc. 37th Technical Symposium on
Computer Science Education (SIGCSE), pages
254–258. ACM, 2006.

[8] D. Janzen and H. Saiedian. Test-Driven Learning in
Early Programming Courses. In Proc. 38th Technical
Symposium on Computer Science Education
(SIGCSE). ACM, 2008.

[9] R. Jeffries and G. Melnik. TDD: The Art of Fearless
Programming. IEEE Software, 24(3):24–30, May-June
2007.

[10] K. Keefe, J. Sheard, and M. Dick. Adopting XP
Practices for Teaching Object Oriented Programming.
In Proc. 8th Australian Conf. Computing Education,
volume 52, pages 91–100, 2006.

[11] M. Müller and W. Tichy. Case Study: Extreme
Programming in a University Environment. In Proc.
23th Int’l Conf. on Software Eng. (ICSE), pages
537–544, May 2001.

[12] T. Shepard, M. Lamb, and D. Kelly. More Testing
Should be Taught. Commun. ACM, 44(6):103–108,
2001.

[13] S. Yenduri and L. Perkins. Impact of Using
Test-Driven Development: A Case Study. Software
Engineering Research and Practice, pages 126–129,
2006.

