Spring 2017

Herbert Hoover Elementary / Charleston Complete Corridor Plan

William Riggs
California Polytechnic State University - San Luis Obispo, wriggs@usfca.edu

Kristan Anaya
knanaya@calpoly.edu

Troy Andres
laandres@calpoly.edu

Ryanne Browers
rbrowers@calpoly.edu

Dan Canella
dcanella@calpoly.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.calpoly.edu/crp_wpp

Part of the Urban, Community and Regional Planning Commons

Recommended Citation
Spring April 1, 2017.

This Article is brought to you for free and open access by the City and Regional Planning Student Work at DigitalCommons@CalPoly. It has been accepted for inclusion in City & Regional Planning Studios and Projects by an authorized administrator of DigitalCommons@CalPoly. For more information, please contact digitalcommons@calpoly.edu.
Author Info

This article is available at DigitalCommons@CalPoly: http://digitalcommons.calpoly.edu/crp_wpp/43
Spring 2017

Herbert Hoover Elementary / Charleston
Complete Corridor Plan

William Riggs
Kristan Anaya
Troy Andres
Ryanne Browers
Dan Canella

See next page for additional authors

Follow this and additional works at: http://digitalcommons.calpoly.edu/crp_wpp

Part of the Urban, Community and Regional Planning Commons
The Greatest Show on Earth

Interventions near Herbert Hoover Elementary School
Background

Herbert Hoover Elementary School

- Palo Alto, CA
- 400 students
- Charleston Road provides bicycle access
Problem

- **Accessibility issues** for bicycles and pedestrians along Charleston Road
- Vehicular **traffic congestion** during peak hours before and after school
- **Hot lava** is not known to be permitted in intersections under the Manual on Uniform Traffic Control Devices (MUTCD)
Purpose

- Improve accessibility for bicycles and pedestrians along Charleston Road
- Improve vehicular flows to mitigate vehicular traffic congestion during peak hours
- Provide safety features to prevent pedestrian-vehicle conflicts
- Suggest alternatives to hot lava in intersections
Proposed Interventions

1. Pedestrian Refuge Island + Crosswalk
2. Reverse direction of school service road
3. Minor improvements on Charleston Road
4. Narrow exit of school service road to one lane
1. Pedestrian Refuge Island + Crosswalk

- **Installation of pedestrian refuge island**
  - Provides pedestrians and cyclists with space for sanctuary within vehicular traffic
  - **Shortens crossing distance** for pedestrians and bicyclists
  - Adds physical buffer between opposite vehicular flows

- **Installation of mid-block crosswalk**
  - Provides pedestrians and cyclists with direct access to Herbert Hoover Elementary School
  - Use of crosswalk gives right of way for those exiting the service road
1. Pedestrian Refuge Island + Crosswalk
2. Reverse Direction of School Service Road

- Moves vehicular delay off main roadway and onto service road
- Converging movements are safer
  - No more weaving movements
  - Fewer conflicting left turns
2. Reverse Direction of School Service Road

Before

- Short weaving movements are dangerous, and also cause driver anxiety and delay
- Short converging movements cause driver anxiety and delay
- Charleston Road

Delay/Congestion

Movements
2. Reverse Direction of School Service Road

**After**

- Delay from turning movements, but at least off the main roadway. Also, delay slows traffic around school, improving safety.
- Drivers have more lead time and less number of movements to keep track of at convergence.
- No weaving.
3. Improvements on Charleston Road

- **Moving bus stop farther northeast**
  - Provides space for bulb-out directly northeast of exit driveway of school service road
  - Allows bus to avoid waiting for gap in through traffic on Charleston Road and exiting vehicles from school
3. Minor Improvements on Charleston Road

**Before**

- Bus driver experiences anxiety and delay as s/he must search for a gap in traffic on both Charleston Road and exit of school service road.

- Sight distance for vehicular drivers on Charleston Road is blocked by the bus, and therefore cannot see vehicles exiting school.
3. Minor I

s on Charleston Road

**After**

Bus driver only has to search for gap in traffic on Charleston Road.

Sight distance for vehicular drivers on Charleston Road is blocked by the bus, but at least not for exiting vehicles of school service road.
3. Minor Improvements on Charleston Road

- Installation of drop-off lane along Charleston Road
  - Provides vehicles with additional pick-up and drop-off access to school
  - Keeps higher-speed through-traffic away from sidewalk where the innocent children are
3. Minor Improvements on Charleston Road

- Installation of bulb-out
  - Shortens the distance that pedestrian and bicycle cross-traffic has to traverse
  - Reduces the number of lanes of vehicles that exiting vehicular traffic from the school has to find gap in
  - Slows vehicular traffic due to narrower traveled way
3. Minor Improvements on Charleston Road

- MEDIAN ISLAND
- CHARLESTON ROAD
- BULB OUT
- DROP OFF ZONE
4. Narrow exit of school service road

- Narrowing exit driveway of Herbert Hoover Elementary school to one lane
  - Reduces crossing distance for pedestrians and cyclists crossing driveway
  - Causes congestion on school service road, which slows down vehicular traffic and enhances safety for the innocent children
  - Reduces the number of lanes of exiting vehicles that through-traffic on Charleston Road must keep track of
4. Narrow school service road

**Before**

Persons attempting to cross school service road must navigate through two lanes of traffic that have vehicles that are frequently merging and often moving at different speeds.

Drivers must deal with two lanes of turning traffic, which can be distracting and potentially dangerous.
4. Narrow school service road

**After**

- Slows down vehicular traffic and increases safety for schoolchildren and staff.
- Reduces crossing distance for pedestrians and cyclists.
- Reduces the number of lanes of exiting vehicles that through-traffic must keep track of.

Delay/Congestion Movements
Conclusions

- Improve accessibility for bicycles and pedestrians along Charleston Road ✅
- Improve vehicular flows to mitigate vehicular traffic congestion during peak hours ✅
- Provide safety features to prevent pedestrian-vehicle conflicts ✅
- Suggest alternatives to hot lava in intersections ✅

Mission Accomplished!
Thanks!

Seitu Col
Daniel Ha
Noah Stri
Justin Won
Herbert Hoover Elementary School:
E. Charleston Road Complete Street

... 

Study by Torina, Ian, Rob & Bryan
Existing Problem

- High volumes at drop-off times
- Conflict points at entrances
- No cohesive bike circulation
- Accommodations for active transportation are lacking
- Cars don’t slow for school zone signs and striping

2014 Average Daily Traffic on Charleston was 12,371 vehicles (Comprehensive Plan Update)

Possible Solution

Make the street different, unusual, unexpected

- Raise and change texture of the street
- Provide minimum travel way for vehicles
- Give active transportation modes more space and protection
- Extend the school to include the street
- Encourage through traffic onto other routes
Proposed Improvements

- Main Thoroughfare
- Intersection 1
- Intersection 2
- Bike Intersection
MAIN THOROUGHFARE Cross Section

(expanded bike and ped facilities)
INTERSECTION IMPROVEMENTS

Book-end each end of the "School Zone" with traffic signal and roundabout as entry treatment.
Bike Light Intersection

Place a different textured and/or raised crosswalk with a timed bike light
Increase bicycle parking to encourage Active Transportation to reduce automobile demand on the existing site circulation

Children arriving at primary school in S’Hertogenbosch NL
Increase carpooling programs and incentives to encourage group rides.

Smart Transportation to reduce automobile demand on the existing site circulation.
Extra Pro: Property Values!

Property value in the surrounding area will likely increase due to the positive aesthetic seen through infrastructure improvements.
Palo Alto Bike Boulevard
Stanford Bike Lane
Palo Alto Bike Promotion
Nearby SF Protected Bike Lane
Citations


Herbert Hoover Elementary Complete Corridor Site

Melanie Conti, Matthew Fluhmann, Kristen Anaya, and Caitlin Milich
About the Site

Location: Charleston Rd. and Waverly St.

Located on busy arterial street (Charleston Rd.)

Suburban homes, park, Stevenson House within immediate vicinity
Existing Traffic Conditions

Traffic currently flows in a clockwise pattern around the school.

School traffic turns off of Charleston Rd. onto Waverly St. (2 lanes).

Bottlenecks form past drop off area (lane merge) and at exit onto Charleston Rd.
Existing Conditions Overview
Issues in Image

Corner 1

Corner 2

Corner 3

Corner 4
New Conditions Overview
Existing Condition

CORNER 1:

The street narrows to one-lane causing a back-up

People have to bypass this intersection to get to the school entrance so it makes it harder for the people existing to turn out onto Charleston
New Condition

CORNER 1:

This intersection now becomes the entrance into the school

This lesson the traffic moving through the intersection past the school
Existing Condition

CORNER 2:
The is the current entrance to the school’s drop-off area
New Condition

CORNER 2:

This intersection now becomes the exit from the school loading area. Rather than people merging down to one lane to leave, this plan uses a two lane road as an exit. People can also wait to make a left turn from the left lane without causing a back-up
Existing Condition

CORNER 3:

Cars turn right to enter the loading zone or continue straight.
New Condition

CORNER 3:

In this version, turning the corner to the exit, the road remains two lanes to keep traffic flowing.
Existing Condition

CORNER 4:

A lot of traffic backs-up at this intersection where the loading lane and the normal lane merge into one.
New Condition

CORNER 4:

In this version one lane separates into two. The only slow moving traffic then occurs in the loading lane.
Ways to distinguish the loading/unloading lane
Bike Crossing for Charleston
Pedestrian Treatments

Textured crossings

Signalized pedestrian crossings via increased signage and crossing guard at peak hours

Bulb-outs at the entrance and exits aim at Increasing pedestrian safety
Implementation

Inform potentially affected residents and groups (parents, Stevenson House workers, etc.) of changes

Collaborate with them to improve project

Change signage, road markings to reflect new circulation pattern and enforce proper drop-off etiquette

Implement bulb-out to enhance new entrance into school loop (similar to proposed bulb out at Charleston Rd. and Waverly St.)

Connect existing bike lane on Waverly St. with bike
Charleston-Arastradero Corridor Plan

Jesse Carpentier, Dylan Coleman, Kyle Finger, & Eric Martinez
Existing Conditions

- Right hand turn lane to enter Hoover
- Right hand turn lane into Hoover Entry Drive
- Entry Drive, Kinder Drop Off
- Kinder Drop off with three crossing guards
- JLS Parking lot on Hoover: parents wait for cars to clear drop off
- Right turn from Entry Drive to Drop Off Lanes
- Two lanes at Drop Off Area
- Merge from 2 Drop Off Lanes to single lane Exit Drive
- Backup on Exit Drive
- Difficult right turn from Exit Dive to Charleston Drive
Existing Conditions

Intersection #1

Intersection #2
JLS Parking Lot
Lane Merge

Intersection #3

Intersection #4
School Exit
Backup Exit Dr.
Proposed Corridor Design

Site Plan

Charleston Street
Proposed Corridor Design

Intersection #1

- Crosswalk and Traffic lights
- Protected left turns for automobiles and cyclists
- Left turn yield to oncoming traffic (e.g. south-bound on Santa Rosa x Monterey)

Source: FHWA
Proposed Corridor Design

- Two-way bike lane to maintain flow and safety of cyclists
- Right lane is exclusively drop-off zone during peak hours
  (comparable to an airport loading zone)
- Raised crosswalk
Proposed Corridor Design

**Intersection #2**

- Signal lights and crosswalk to maintain flow of vehicular traffic and pedestrian safety
- Both lanes become forced right-turn turn lanes
- Cyclists must yield to pedestrians crossing bike path
Proposed Corridor Design

Segment B

- Right lane is exclusively drop-off zone during peak hours
- Raised crosswalk
- Repaint 75% of the parking spaces as compact-only to compensate for parking spaces removed in Segment C
Proposed Corridor Design

Intersection #3

- Stop sign and raised crosswalk to protect pedestrians
- Both lanes become forced right-turn turn lane
Proposed Corridor Design  

*Segment C*

- Replace parking spaces with traffic lane*
- Two lanes of vehicular traffic instead of one to reduce congestion in segment C
- Loading zone continues

(remember, like an airport)

*Other parking lot will be repainted with both compact-only and large vehicle spaces to provide at least half of the removed parking spaces
Proposed Corridor Design

Intersection #4

- Traffic lights
- Crosswalks
- Protected left turn for vehicles exiting the school
Behavioral Strategies

- Education
- Enforcement
- Pedestrians
- Cyclists
- Drivers
- Time to adjust

City of Cuyahoga Falls