
Test-Driven Learning in Early Programming Courses 

David S. Janzen 
California Polytechnic State University 

Computer Science 
San Luis Obispo, California USA 

djanzen@calpoly.edu 

Hossein Saiedian 
University of Kansas 

Electrical Engineering and Computer Science 
Lawrence, Kansas USA
saiedian@ku.edu 

ABSTRACT 
Coercing new programmers to adopt disciplined develop-
ment practices such as thorough unit testing is a challenging 
endeavor. Test-driven development (TDD) has been pro-
posed as a solution to improve both software design and 
testing. Test-driven learning (TDL) has been proposed as 
a pedagogical approach for teaching TDD without imposing 
significant additional instruction time. 

This research evaluates the effects of students using a test-
first (TDD) versus test-last approach in early programming 
courses, and considers the use of TDL on a limited basis 
in CS1 and CS2. Software testing, programmer produc-
tivity, programmer performance, and programmer opinions 
are compared between test-first and test-last programming 
groups. Results from this research indicate that a test-first 
approach can increase student testing and programmer per-
formance, but that early programmers are very reluctant to 
adopt a test-first approach, even after having positive expe-
riences using TDD. Further, this research demonstrates that 
TDL can be applied in CS1/2, but suggests that a more per-
vasive implementation of TDL may be necessary to motivate 
and establish disciplined testing practice among early pro-
grammers. 

Keywords 
Test-driven learning, test-driven development, pedagogy, CS1 

1. INTRODUCTION AND RELATED WORK 
Test-driven development (TDD) [3] is a disciplined de-

velopment approach that involves writing automated unit 
tests before writing the corresponding functional software 
units in short, rapid iterations. TDD gained popularity as 
a core practice in eXtreme Programming (XP) [2], but is 
emerging as a stand-alone practice that can be integrated 
into a variety of development processes. 

Many industry practitioners have embraced the use of 
TDD in non-trivial situations to a level “beyond the vi-
sionary phase and into the early mainstream.” [10] Interest 
among computing educators also appears to be growing. No 
less than twenty industry and academic (ten each) empiri-
cal studies involving TDD are summarized in [6, 10]. The 
empirical TDD studies in academia have predominately fo-
cused on more advanced students in software engineering, 
capstone, and graduate courses. 

Edwards [5, 4], however, proposed the use of TDD through-
out the undergraduate computing curriculum. His work fo-
cused on the use of automated grading systems as a mecha-
nism to encourage and assess TDD use while providing rapid 
student feedback. Similarly, TDD support is provided in in-
tegrated development environments such as BlueJ [11] and 
DrJava [1] that target early programmers. Wellington et 
al. developed an Eclipse plug-in [13] to simplify the writ-
ing of test cases for early programmers. Despite the grow-
ing interest and tool support for TDD, relatively little has 
been written regarding how to teach TDD, and whether a 
test-first or test-last development approach is better in early 
programming courses. 

Test-driven learning (TDL) [8] was proposed at SIGCSE’06 
as a mechanism for teaching and motivating the use of au-
tomated testing as both a design and a verification activity. 
TDL proposes to use automated unit tests in lecture, lab, 
and exercise examples. TDL may be applied at any level 
of instruction from beginning programming through profes-
sional training courses. TDL may be used to teach either a 
test-first or test-last development approach. 

We report here on experiences applying TDL on a limited 
basis in both a CS1 and CS2 course, and we compare student 
use of test-first and test-last approaches. The experiment 
design and context are presented in section 2. Results are 
presented and analyzed in sections 3 and 4, and conclusions 
are discussed in section 5. 

2. EXPERIMENT DESIGN AND CONTEXT 
This experiment was designed to examine the ability of 

beginning programmers to adopt the test-first and test-last 



development approaches, and to determine if the approach 
used affects the quality of software produced at this level. 
Test-first refers to writing automated unit tests immediately 
before new functional units are written, and test-last means 
the tests are written immediately after new functional units 
are written. This experiment was conducted with 104 stu-
dents in a CS1 course, and 36 students in a CS2 course at the 
University of Kansas during the Fall 2005 semester. None of 
the 140 students reported previous experiences with writing 
automated tests in either a test-first or test-last approach. 

2.1 CS1 Experiment Design 
Automated testing and test-first/test-last concepts were 

presented in week six of a sixteen week CS1 course. The 
first author presented a guest lecture after students had com-
pleted three C++ projects and covered topics such as basic 
syntax, iteration control structures, elementary functions, 
and simple data structures such as arrays. The lecture in-
troduced automated unit testing of functions using C/C++ 
assert statements. Both a test-first and a test-last appli-
cation of automated unit testing was presented. Students 
were asked to complete a pre-experiment survey and sign an 
informed consent agreement at the end of the guest lecture. 

The lecture was followed by two labs that were taught by 
graduate teaching assistants. The first lab introduced auto-
mated unit testing in the context of writing simple functions. 
The second lab reinforced automated unit testing in the con-
text of writing recursive functions, using reference parame-
ters, and function overloading. The labs applied the TDL 
approach of introducing concepts and constructs through 
the use of automated unit tests. The labs introduced the 
difference between test-first and test-last programming, and 
gave students hands-on experience with both approaches. 

After completing the two labs, students were asked to 
complete two programming projects. The projects were 
completed in C++ using a non-integrated development envi-
ronment. The first project (Project 4) required students to 
create a data structure for representing a three-dimensional 
point, then create functions that operate on such points. 
Students had not been introduced to classes so they gener-
ally used an array-based data structure and global functions 
in their solutions. 

Students with student IDs ending in an even number were 
asked to complete the first project with a test-first approach, 
and students with student IDs ending in an odd number were 
asked to complete the first project with a test-last approach. 
The test-first and test-last groups had forty and sixty-six 
students respectively. 

The second project (Project 5) required students to cre-
ate class-based data structures for representing points and 
polygons. A textual user interface was to allow users to 
specify a number of points in a polygon and the program 
was to calculate the perimeter and area of that polygon. 
Test-first/test-last assignments were switched on the second 
project so students with student IDs ending in an odd num-
ber were asked to complete the second project with a test-
first approach, and students with student IDs ending in an 
even number were asked to complete the second project with 
a test-last approach. 

At the beginning of the second project, students were pro-
vided a solution to the first project that included a full set 
of automated unit tests. The post-experiment survey was 
administered following completion of the second project. 

2.2 CS2 Experiment Design 
CS2 students were given a very brief introduction to test-

first and test-last programming on the first day of the course, 
then asked to complete the pre-experiment survey and in-
formed consent form. Students were introduced to auto-
mated unit testing using assert statements in a lab in week 
three of the sixteen week semester. The lab presented exam-
ples and required hands-on exercises with automated tests 
using classes, along with simple and recursive functions. The 
lab presented both test-first and test-last approaches. 

Students were then required to complete two program-
ming projects using either a test-first or test-last approach. 
At the request of the course professor, students were allowed 
to self-select which approach they used, but were encouraged 
to choose test-first if their student ID started with an even 
number, and test-last if their student ID started with an odd 
number. Six students elected to use the test-first approach, 
while thirty students elected to use the test-last approach. 
Although there was no statistically significant difference in 
the previous gpa or overall preparedness of the two groups, 
the student self-selection does diminish the validity of the 
CS2 experiment. The low test-first numbers also reveal early 
programmer reluctance to adopt the test-first approach. 

Each programming project was to be completed in two 
and three weeks respectively. The first project required stu-
dents to build an application that stored and manipulated 
a list of automobile drivers with traffic citations. The ap-
plication had a textual user interface that allowed the user 
to insert, delete, find, and print driver and citation informa-
tion. The public interface for the main list data structure 
class was prescribed in the project description. Students 
were expected to design at least two additional classes. 

The second project extended and modified the first project. 
The prescribed class was to be modified internally to use a 
pointer-based linked list instead of an array-based list. The 
application was to allow multiple lists, and the class interface 
was modified slightly. Exceptions and some recursive func-
tions were also added to the requirements. At the beginning 
of the second project, students were provided with a solu-
tion to the first project that included a full set of automated 
unit tests. A post-experiment survey was administered after 
the completion of the second project. 

3. CS1 EXPERIMENT RESULTS 
This section reports and discusses the testing, produc-

tivity, and subjective/evaluative results of the experiment 
in the CS1 course. Whenever statistical significance is dis-
cussed, a two-sample t-test was used with significance achieved 
at p<.05. 

3.1 Test Results 
CS1 students wrote automated unit tests as assert state-

ments in a separate function as described in [8]. The number 
of assert statements written were counted and ratios were 
calculated for asserts per line-of-code and asserts per mod-
ule (module=class if classes were used, or entire program if 
no classes were used). The assert counts were deemed to be 
a practical estimation of testing effort. 

Table 1 reports the testing results for the CS1 projects. 
The test-first students wrote 52% more asserts in the first 
project. In the second project, the test-last programmers 
wrote 39% more asserts. Recall that the students were 
asked to switch test-first/test-last approaches between the 



#Asserts/ #Asserts/ 
Metric #Asserts LOC Module 

Project 4 
p-value 0.1109 0.2555 0.0870 
Significant? No No No 
Higher Method TF TF TF 
TF Mean 5.85 0.03 5.85 
Std Dev 6.68 0.03 6.68 
TL Mean 3.85 0.02 3.72 
Std Dev 5.28 0.03 5.06 
%difference 52% 35% 57% 

Project 5 
p-value 0.1094 0.2489 0.1271 
Significant? No No No 
Higher Method TL TL TL 
TF Mean 1.89 0.01 0.63 
Std Dev 2.94 0.02 0.98 
TL Mean 3.10 0.02 1.01 
Std Dev 4.18 0.02 1.38 
%difference -39% -28% -38% 

Table 1: CS1 Test Metrics 

two projects. This data indicates that the same program-
mers wrote more tests in both projects regardless of the 
approach they used. Because there were no statistically 
significant differences in the academic background and pro-
gramming experience of the two groups, one must question 
whether the first approach used somehow influenced the 
number of asserts written. Did this group write more as-
serts because they started out using the test-first approach? 
Did this approach somehow form a habit or appreciation 
for writing tests that persisted even when using a test-last 
approach? This explanation seems plausible given that stud-
ies with more mature developers [14, 7] indicated that test-
first programmers consistently write more tests than test-
last programmers. 

3.2 Productivity Results 
This section discusses the volume of code produced, and 

the amount of time students reported they spent on the 
projects. The test-first programmers on the first project 
reported spending 10% more time producing solutions that 
were 7% more lines of code than the test-last programmers. 
In the second project, the test-first programmers reported 
spending 11% more time producing solutions that were 11% 
smaller than the test-last solutions. The test lines of code 
are included in the total lines of code comparisons here. 

Not surprisingly, it appears that the solution size corre-
sponds to the number of tests written. Although none of the 
productivity differences were statistically significant, the de-
velopment time data seems to indicate that beginning test-
first programmers take slightly more time completing their 
solutions than the test-last programmers. However, it is 
interesting to note that the programmers who used the test-
first approach in the first project, actually wrote more tests 
(and more code) in less time in the second project. 

3.3 Subjective and Evaluative Results 
This section presents results on student project grades. 

Table 2 reports results from an analysis of the grades as-
signed to the two CS1 projects. Mean and standard devi-

TF TF TL TL 
Project p-value Mean SDev Mean SDev %diff 

4 0.8516 95.26 5.72 95.05 5.30 0% 
5 0.6645 87.77 13.91 89.04 14.72 -1% 

Table 2: CS1 Project Evaluations 

Quality Changes Reuse 

p-value 0.0459 0.0242 0.0233 
Significant? Yes Yes Yes 
Higher Method TF TF TF 
TF Mean 3.98 3.90 3.69 
Std Dev 1.25 1.24 1.34 
TL Mean 3.25 3.06 2.88 
Std Dev 1.74 1.76 1.64 
%difference 22% 27% 28% 

Table 3: CS1 Programmer Opinions on Project 5 

ations are given, and p-values<.05 would indicate statisti-
cal significance. Graduate teaching assistants assigned the 
scores based on a rubric provided by the professor. Compo-
nent scores such as for correctness, style, and error checking 
were not tracked. The data indicates virtually no differences 
between the test-first and test-last groups. 

3.4 Programmer Perceptions 
This section describes the results from the pre and post 

experiment surveys. Table 3 reports the statistically sig-
nificant differences on project 5. The test-first program-
mers indicated that they were more confident that the code 
they wrote was correct (Quality), they were more confident 
that they could make changes to their code without break-
ing things (Changes), and they were more confident that 
they could reuse their code in a future project (Reuse). The 
differences on project 4 were not statistically significant. 

Figure 1 illustrates student responses in the post experi-
ment survey from the following questions: 

• which approach they would choose in the future (Choice) 

• which approach was the best for the project(s) they 
completed (BestApproach) 

• which approach would cause them to more thoroughly 
test a program (ThoroughTesting) 

• which approach produces a correct solution in less time 
(Correct) 

• which approach produces code that is simpler, more 
reusable, and more maintainable (Simpler) 

• which approach produces code with fewer defects (Few-
erDefects) 

Despite higher opinions in other categories and what may 
have been positive experiences with the test-first approach, 
only 10% of the CS1 programmers indicated that they would 
choose to use the test-first approach. 

3.5 Longitudinal Results 
Twenty-eight students completed a longitudinal survey in 

late Spring 2006, about four months after participating in 



CS1 Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h

ar
ac

te
ri

st
ic

% Choosing

Test-First Test-Last

Figure 1: CS1 Programmer Opinions 

#Asserts/ #Asserts/ 
Metric #Asserts LOC Module 

p-value 0.02456 0.0059 0.0263 
Significant? Yes Yes Yes 
Higher Method TF TF TF 
TF Mean 34.00 0.06 4.72 
Std Dev 43.14 0.06 6.15 
TL Mean 11.61 0.02 1.58 
Std Dev 17.80 0.03 2.48 
%difference 193% 168% 200% 

Table 4: CS2 Test Metrics 

the original experiment. Ten of the twenty-eight (36%) re-
ported using the test-first approach on a project where they 
had a choice. Twenty-one reported voluntarily using the 
test-last approach on a subsequent project. Only two stu-
dents (7%) indicated that they would choose to use the test-
first approach on future projects given the option. The data 
in this section has demonstrated that beginning program-
mers are clearly uneasy about adopting the test-first ap-
proach. 

4. CS2 EXPERIMENT RESULTS 
This section reports and discusses the testing, productiv-

ity, and subjective/evaluative results of the experiment in 
the CS2 course. 

4.1 Test Results 
Similar to the CS1 experiment, students wrote automated 

unit tests as assert statements in a separate function. Ta-
ble 4 reports the aggregate testing results for the CS2 projects. 
Number of asserts per method and number of asserts per 
class were also calculated because the CS2 projects all in-
volved solutions with classes. Individual results from each 
project are not reported to save space. These additional 
metrics and project comparisons resulted in similar statisti-
cally significant differences. 

4.2 Productivity Results 
The test-first programmers reported spending 13% less 

time producing solutions that were 12% larger in lines of 
code than the test-last programmers on all of the CS2 projects. 

TF TF TL TL 
Metric p-value Mean SDev Mean SDev %diff 

Project 1 
Score 0.0938 88.83 8.95 79.47 21.01 12% 
Correct 0.4730 40.50 8.38 37.23 15.30 9% 
Style 0.0259 28.33 2.34 24.67 6.63 15% 
I/O 0.0246 10.00 0.00 8.63 3.16 16% 
Robust 0.0136 10.00 0.00 9.00 2.08 11% 

Project 2 
Score 0.0435 90.17 15.45 72.83 21.60 24% 
Correct 0.0110 43.50 9.46 28.80 16.60 51% 
Style 0.9037 28.33 2.34 28.47 2.61 0% 
I/O 0.4592 8.33 4.08 6.90 4.20 21% 
Robust 0.0434 10.00 0.00 8.67 3.46 15% 

Table 5: CS2 Project Evaluations 

Recall that the lines of code includes test lines of code and 
the previous section revealed that the test-first programmers 
wrote significantly more tests than the test-last program-
mers. The differences are not statistically significant. 

4.3 Subjective and Evaluative Results 
Table 5 reports results from an analysis of the grades as-

signed to the CS2 projects. Again, mean and standard de-
viations are given, and p-values<.05 indicate statistical sig-
nificance. Graduate teaching assistants assigned the scores 
based on a mutually agreed upon rubric. The total score 
(Score) is presented along with component scores that ac-
count for proper working of the software (Correct), good 
internal design and programming style (Style), adherence to 
requirements in input/output (I/O), and robust detection 
and handling of error conditions (Robust). 

The data indicates that the test-first projects were deemed 
superior to the test-last projects in several categories. Sev-
eral of these differences are significant at p<.05. 

4.4 Programmer Perceptions 
Figure 2 illustrates programmer opinions from the post 

experiment survey. This chart coincides with the CS1 re-
sults and indicates that beginning programmers prefer the 
test-last approach. There were no statistically significant 
differences in programmer confidence between the students 
who used the test-first and test-last approaches. 

4.5 Longitudinal Results 
A longitudinal survey was administered in late Spring 

2006 for the Fall 2005 CS2 experiment. Twelve students 
completed the survey. Fifty percent reported using a test-
first approach on at least one subsequent project, and sev-
enty percent reported using a test-last approach when given 
the choice. Three of the twelve (25%) indicated that they 
would choose the test-first approach if given the option on 
future projects. 

5. CONCLUSIONS AND FUTURE WORK 
This research compared the effects and acceptance of test-

first and test-last approaches in early programming courses. 
We are unable to make broad conclusions due to the lack of 
randomized groups and small number of test-first program-
mers in the CS2 experiment. We have several confounding 
factors in the CS1 experiment including solutions with auto-



CS2 Programmer Opinions

0% 20% 40% 60% 80% 100%

FewerDefects

Simpler

Correctness

ThoroughTesting

BestApproach

Choice

C
h
a
ra
c
te
ri
s
ti
c

% Choosing

Test-First Test-Last

Figure 2: CS2 Programmer Opinions 

mated tests following the first project, and the introduction 
of objects in the second project. All these decisions were 
deemed necessary for preserving the pedagogical integrity 
of the courses. However, we can compare our results with 
studies conducted with more mature programmers in order 
to determine some trends and future directions. 

Similar to findings with more mature programmers, test-
first programmers in CS2 wrote significantly more auto-
mated unit tests. In the CS1 experiment, programmers who 
first used a test-first approach wrote more tests on average, 
even when they later switched to a test-last approach. The 
authors observed a similar phenomenon in an experiment 
with professional programmers. This result causes one to 
question whether using test-first first causes some sort of 
residual effect. 

Test-first programmers in CS2 scored higher on most com-
ponent and overall project grades than their test-last coun-
terparts. Plus they accomplished this with less effort (time). 
We encourage further studies with fully randomized samples 
to determine if this can be expected in general, or was the 
result of other factors. 

Programmer opinions gathered at the beginning and end 
of this experiment indicate a strong reluctance on the part 
of early programmers to adopt a test-first approach. This 
result was noted in [9], and contrasts with experiments [7] 
with more mature developers using the Java Programming 
Language. It is possible that the use of the C++ language 
with a rudimentary assert mechanism for automated tests is 
partly to blame. 

In addition, it seems likely that a pervasive TDL approach 
may be necessary to improve adoption motivation. It is 
very likely that students need to see examples using auto-
mated unit testing modeled throughout an early program-
ming course. Perhaps ideally, such an approach might be 
combined with automated grading systems [5, 12] to enforce 
high test coverage and attribute grade value to testing ac-
tivities. 

The authors intend to complete additional studies apply-
ing TDL with Java and JUnit throughout an early program-
ming course. We encourage replicated studies in similar and 
diverse environments. Resources from this experiment, in-
cluding some lecture slides and lab materials are available 
at http://www.simexusa.com/tdl/. 

6. REFERENCES 
[1] E. Allen, R. Cartwright, and B. Stoler. Drjava: a 

lightweight pedagogic environment for java. In 
SIGCSE ’02: Proceedings of the 33rd SIGCSE 
technical symposium on Computer science education, 
pages 137–141, New York, NY, USA, 2002. ACM 
Press. 

[2] K. Beck. Extreme Programming Explained. 
Addison-Wesley Longman, Inc., 2000. 

[3] K. Beck. Test Driven Development: By Example. 
Addison-Wesley, 2003. 

[4] S. Edwards. Rethinking computer science education 
from a test-first perspective. In Proceedings of the 18th 
Annual ACM SIGPLAN Conference on 
Object-oriented Programming, Systems, Languages, 
and Applications: Educators’ Symposium, pages 
148–155, 2003. 

[5] S. H. Edwards. Using software testing to move 
students from trial-and-error to reflection-in-action. In 
SIGCSE ’04: Proceedings of the 35th SIGCSE 
technical symposium on Computer science education, 
pages 26–30, New York, NY, USA, 2004. ACM Press. 

[6] D. Janzen and H. Saiedian. Test-driven development: 
concepts, taxonomy and future directions. IEEE 
Computer, 38(9):43–50, Sept 2005. 

[7] D. Janzen and H. Saiedian. On the influence of 
test-driven development on software design. In 
Nineteenth Conference on Software Engineering 
Education & Training, pages 141–148. IEEE-CS, 2006. 

[8] D. Janzen and H. Saiedian. Test-driven learning: 
Intrinsic integration of testing into the cs/se 
curriculum. In Proceedings of the 37th SIGCSE 
Technical Symposium on Computer Science Education, 
pages 254–258. ACM Press, 2006. 

[9] D. Janzen and H. Saiedian. A leveled examination of 
test-driven development acceptance. In ICSE ’07: 
Proceedings of the 29th International Conference on 
Software Engineering, pages 719–722, Washington, 
DC, USA, 2007. IEEE Computer Society. 

[10] R. Jeffries and G. Melnik. Tdd the art of fearless 
programming. IEEE Software, 24(3):24–30, 2007. 

[11] M. Kolling and J. Rosenberg. Guidelines for teaching 
object orientation with java. In Proceedings of the 6th 
Annual Conference on Innovation and Technology in 
Computer Science Education, pages 33–36. ACM 
Press, 2001. 

[12] J. Spacco, D. Hovemeyer, W. Pugh, J. Hollingsworth, 
N. Padua-Perez, and F. Emad. Experiences with 
marmoset: Designing and using an advanced 
submission and testing system for programming 
courses. In ITiCSE ’06: Proceedings of the 11th 
annual conference on Innovation and technology in 
computer science education. ACM Press, 2006. 

[13] C. Wellington, T. Briggs, and C. D. Girard. 
Experiences using automated tests and test driven 
development in computer science i. In Agile 2007, 
pages 106–112, Washington, DC, USA, 2007. IEEE 
Computer Society. 

[14] L. Williams, M. Maximillien, and M. Vouk. A 
structured experiment of test-driven development. 
Information and Software Technology, 46(5):337–342, 
2003. 

– 




