The Significant-Digit Phenomenon

Theodore P. Hill

It has been frequently observed that in many tables of physical constants and
statistical data, the leading digit is not uniformly distributed among the digits
{1,2,...,9} as might be expected; rather the lower digits appear much more
frequently than the higher ones. Perhaps even more surprising, an exact distribu-
tion for this nonuniformity of the leading digits has been generally asserted. In
1881 Simon Newcomb [9] stated that “The law of probability of the occurrence of
numbers is such that the mantissae of their logarithms are equally probable,” and
concluded that

Prob (first significant digit = d) = log,o(1 +d~!), d=1,2,...,9. (1)

(For example, (1) predicts that the leading digit is 1 with probability about .301,
and at the other extreme, is 9 with probability .046.)

Although Newcomb offered no statistical evidence for (1), its rediscovery by the
physicist Benford [2] some fifty-seven years later was supported by empirical
evidence based on frequencies of significant digits from twenty different tables
including such diverse data as surface areas of 335 rivers, specific heat of thou-
sands of chemical compounds, and square-root tables. The union of his tables
comes surprisingly close to the frequencies predicted in (1), and, Newcomb’s
earlier paper having been overlooked, those frequencies came to be known as
Benford’s Law, or the First Digit Law, In fact, Benford’s data not only comes
surprisingly close, it comes suspiciously close to the predicted frequencies; Diaconis
and Freedman [5, p. 363] offer convincing evidence that Benford manipulated the
round-off errors to obtain an even better fit. But even the unmanipulated data
seems a remarkably good fit, and the “law” has become widely accepted.

CLASSICAL EXPLANATIONS. Since Benford, numerous ‘“mathematicians,
statisticians, economists, engineers, physicists and amateurs” [11, p. 521] have
attempted to explain the probabilities appearing in (1) based on a variety of
hypotheses. The classical explanations include: the usual number-theoretic (or
Cesaro) method for assigning densities to the sets in question; continuous analogs
of the Cesaro method based on integration techniques; various probabilistic
urn-schemes; demonstrations based on assumptions of continuity and scale-invari-
ance (see below); and statistical descriptive arguments. For an excellent review of
these ideas, the reader is referred to Raimi [11]. (A more recent explanation of
Schatte [12] gives Benford’s Law as a corollary to an “unproved” ([12, p. 452])
“hypothesis that after a sufficiently long computation in floating-point arithmetic,
the occurring mantissas have a nearly logarithmic distribution.”)

All of these previous explanations suffer from two substantial shortcomings.
First, the previous methods for prescribing frequencies for such sets as “first
significant digit = 1” are not unique. Such a set does not have a natural density,
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unlike the set of even numbers, say, which has density 1/2 among the integers and
density 0 among the real numbers, and in general there are many ways of assigning
a number to the set “first significant digit = d” which are consistent with natural
density. The explanations mentioned above simply single out particular summation
or integration techniques that yield the “correct” Benford frequencies.

The second shortcoming is that, terminology notwithstanding, the past fre-
quency-assigning functions leading to (1) are not probabilities, at least not in the
classical sense. The standard mathematical definition of probability is a [0, 1]-val-
ued function P on a domain of sets (called a sigma algebra) closed under
complements and countable unions, which assigns 1 to the whole set and assigns
measure X5 _; P(A4,) to the set U%_; A, if the {4,} are disjoint. But the methods
above necessarily fail to satisfy these conditions, as will, for example, any reason-
able notion of density on the natural numbers which assigns density 0 to singletons,
for then P(N) = X P({n}) = 0 # 1. (This is exactly the same reason for the
foundational difficulty in making rigorous sense of “pick an integer at random”;
e.g., see De Finetti [4] pages 86, 98-99). For the integer-based models of Benford’s
Law, this difficulty seems insurmountable, and for the above-mentioned real-
number models either a precise domain for the probability in (1) was not specified
by Newcomb et al., or when specified was simply not the appropriate collection &7.

THE PROPER PROBABILITY DOMAIN. The first step toward making rigorous
sense of the First-Digit Law (1) is to identify an appropriate domain for the
probability. A typical set in the desired collection & of subsets of R* is the set of
positive reals whose first significant digit (base 10) is 1, namely,

(D, =1} = 0 [1,2) - 10"

n=—o

This set (along with its analogs from the second, and general nth-digit laws, also
known to Newcomb and Benford) suggests the following natural domain &7 for a
general significant-digit law.

Definition. &7 is the smallest collection of subsets of the positive reals which
contains all sets of the form US__Ja,b) 10", and which is closed under
complements and countable unions.

The following properties of & are easy to check:

every non-empty set in & is infinite, with accumulation points at 0 and at + ;
& is closed under scalar multiplication, i.e, a > 0 and S € /= aS €
& is self-similar, in the sense that if S € & and k € Z then 10*S = §.

For each i = 1,2,..., let D;: R*— {0,1,...,9} be the ith significant-digit func-
tion, for example, D,(7) = 3, D,(m) = 1 = D,(107). It may easily be shown [8]
that

D7 Y({d}) € & foralliandd,

and in fact, &7 is the smallest such collection (closed under complements and
countable unions) for which this is true. (In measure-theoretic terms, & is the
sigma-algebra generated by D,, D,,...) This shows that & is precisely the
correct domain for a general significant-digit probability law.
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THE GENERAL SIGNIFICANT-DIGIT LAW

General Significant-Digit Law [8]. For all k €N, all d, €{1,2,...,9} and all
d,€{0,1,2,...,9, j=2,....k

é d;- 10'<-") : 2)

P( 6 {D; = di}) = l0810[1 +

Observe that this joint significant-digit law (2) includes the First-Digit Law (1) as a
special case, as well as the other marginal significant-digit laws.

Example.

1
) = .0014.

A perhaps surprising corollary of (2) is that
the significant digits are dependent

and not independent as one might expect. For example, from (2) it follows that the
(unconditional) probability that the second digit is 2 is = .109, but the (condi-
tional) probability the second digit is 2, given that the first digit is 1, is = .115.
Similarly, the hundredth significant-digit is also dependent on the first few signifi-
cant digits, although the dependency decreases as distance between the digits
increases. It also follows easily from (2) that the distribution of the ith significant
digit approaches the uniform distribution (where each digit {0, 1, . . ., 9} occurs with
frequency ;%) exponentially fast as { — .
What simple hypotheses lead to the General Significant-Digit Law (2)?

SCALE AND BASE-INVARIANCE. One set of hypotheses which has been popular
in the past is the notion of scale-invariance, which corresponds to the following
idea. If the first digits obey some fixed universal distributional law, then this law
should be independent of the units chosen (e.g., English or metric systems).
However, as Knuth pointed out (cf. Raimi [11]), there is no scale-invariant probabil-
ity measure on the Borel subsets of R*, since then the measure of the set (0, 1) must
be the same as the measure of every interval (0, b), which by countable additivity
must be 0.

The problem is simply that the Borel sets (the smallest sigma-algebra containing
all open intervals) are not the appropriate domain for the significant-digit proba-
bility law; using &7 instead resolves this problem.

On &7, it is easily shown [8] (since the orbit of every point under irrational
rotation on the circle is asymptotically uniformly distributed) that if P is scale-
invariant, i.e., if P(bS) = P(S) for all b > 0 and all S € &7, then P satisfies (2).
That is, on the correct domain 7,

scale-invariance implies Benford’s Law.

One possible drawback to the scale-invariance hypothesis is the special role
played by the constant 1. In most tables of physical constants, the constant 1 simply
does not appear, since the underlying law (say, in f = ma) does not necessitate
definition of a constant (as opposed to e = mC?). If a “complete” table of physical
constants included the constant 1, perhaps that special constant would occur with
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strictly positive frequency. But this would preclude scale-invariance, since then
0 < P({1}) = P{2}) = ..., contradicting the additivity of a probability.

As an alternative hypothesis, suppose that any universal significant-digit law
were base-invariant; i.e., carried over to bases other than 10. (As pointed out in
[11], all the classical arguments supporting (1) and (2) carry over mutatis mutandis
to other bases such as 2, or 7 or 100.)

To motivate a formal definition of base-invariance, consider the set of positive
numbers S with first significant digit (base 10) less than 5. Using the decimal
notation D, as above, and letting D{!°” denote the first significant digit base 100,
it is easily seen that

§={1<D, <5} ={1 <D{ <5} U {10 < D{® < 50},

which says that graphically (as a subset of [1, b)), the same set S is

L \ \
: - K it b=10
1 be b

and is
L Y L \ \
Y ' ! / if b = 100,

1 ba/2 b1/2 b(1+a)/2 b

(where a = log,,5). Hence if a probability P on & is “base-invariant,” the
measures of these two S-representing subsets of [1, 5) should be the same, i.c.,

P([1,b%) = P([1, %)) + P([b*2, b0 +?)),

and similarly for higher power bases b”. This suggests the following definition.

Definition. [8] P is base-invariant on o7 if

n—1
P([1,10°]) = ¥ P[10%",10%+®#) foralln € Nandall a € (0, 1).
k=0

Letting P; be the logarithmic probability defined in (2) and P, be the degenerate
probability which assigns mass 1 to the constant 1 (or formally, to the set
U5~ _{10"} in o&7), it now follows [8] using a slightly deeper result from ergodic
theory concerning invariant measures on the circle, that

P is base-invariant < P =qP,+ (1 —q)P, forsomeq € [0,1].
Corollaries are:
the logarithmic distribution (2) is the unique continuous base-invariant distribution

and

scale-invariance implies base-invariance.

(Observe that base-invariance does not imply scale-invariance, since P, is base but
not scale-invariant.) Thus, if there is a universal significant-digit law and it is
base-invariant, then the special constant 1 occurs with possibly positive probability
q, and otherwise (with probability 1 — g) the digits satisfy the logarithmic distribu-
tion (2).

1995] THE SIGNIFICANT-DIGIT PHENOMENON 325



APPLICATIONS

Computer design and analysis of roundoff errors. Hamming [6] has given applica-
tions of Benford’s Law to the problem of placing the decimal (binary) point in the
number system of a computer in order to minimize the number of normalization
shifts after the computation of a product, to the problem of estimation of the
representation error of numbers in base 2 and base 16, and to the problem of
roundoff error propagation. Schatte [12] similarly concludes that the choice of a
binary-power base b = 2" can be guided by the hypothesis of logarithmic distribu-
tion (cf. Benford’s Law) of mantissa errors; for example, he argues that base
b = 23 is optimal with respect to storage use.

Statistical Tests for “Naturalness.” Varian [13] has proposed using Benford’s Law
as a test of “reasonableness” for data, by checking forecasts of a mathematical
model as to goodness of fit to Benford’s Law. He used this idea to check specific
models for economic production and for forecasts of acres of land in various use,
and Becker [1] used Benford’s Law to check lists of failure rates to detect
systematic errors. The underlying idea in these applications is that if “real life
data” obeys Benford’s Law, then so should good mathematical models.

Making Money in Numbers Games. In the Massachusetts Numbers Game [cf. 3],
players first bet on a four-digit number of their choice, next a single four-digit
number is generated randomly by an umpire, and then all players with the winning
number share the (tax-reduced) pot equally. In such a situation it is obviously
advantageous to identify numbers which few people choose, since all numbers are
equally likely to be winners and the expected payoff for an unpopular number is
thus higher than that for a number which many people have chosen. Now if
people choose numbers from their experience, and if the numbers in their
experience obey Benford’s Law, then it makes sense to pick numbers inversely to
Benford’s Law, i.e., numbers starting with 9 or 8. Of Chernoff’s [3] 33 statistically-
obtained numbers in his “first system” (numbers with predicted normalized
payoffs exceeding 1.0) for playing the Massachussets Numbers Game, 16 had first
significant digit 8 or 9, and only 1 has first significant digit 1 or 2. (Additional
evidence that numbers “randomly” generated by people tend to start with low
digits is found in Hill [7].) Since Chernoff also concluded that the public learns
quickly, this suggests using inverse-Benford as an initial strategy when a new
numbers game is initiated, and then quitting play soon thereafter.

Outfoxing the Internal Revenue Service. In his Ph.D. thesis, Nigrini [10] has sug-
gested that the IRS use Benford’s Law as a test for detecting fraud, such as
falsification of data by a taxpayer at the time of filing his return. Nigrini’s
hypothesis is that true data gives a rough approximation to Benford’s Law, whereas
a Benford-ignorant cheater tends to concoct numbers according to some other
distribution, say uniform via a standard random number generator, or more likely,
a subconscious personal favorite generated mentally. Nigrini proposes that the IRS
simply check for goodness-of-fit against Benford, and then audit the worst fits.
This suggests that a “creative” and Benford-wise taxpayer should modify or
generate his fabricated data according to a Benford-like distribution.
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“...in the current state of analysis we
may regard the discussion [of past mathe-
matics] as tasteless, for they concern for-
gotten methods, which have given way to
other more simple and more general.
However, such discussions may yet retain
some interest for those who like to follow
step by step the progress of analysis, and
to see how simple and genereal methods
are born from particular questions and
complicated and indirect procedures.”

—J. L. Lagrange
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