
Test-Driven Learning: 
Intrinsic Integration of Testing into the CS/SE Curriculum 

David S. Janzen Hossein Saiedian 
University of Kansas University of Kansas 

Electrical Engineering and Computer Science Electrical Engineering and Computer Science 
Lawrence, Kansas USA Lawrence, Kansas USA 

djanzen@eecs.ku.edu saiedian@eecs.ku.edu 

ABSTRACT 
Test-driven learning (TDL) is an approach to teaching com-
puter programming that involves introducing and exploring 
new concepts through automated unit tests. TDL offers the 
potential of teaching testing for free, of improving program-
mer comprehension and ability, and of improving software 
quality both in terms of design quality and reduced defect 
density. 

This paper introduces test-driven learning as a pedagogi-
cal tool. It will provide examples of how TDL can be incor-
porated at multiple levels in computer science and software 
engineering curriculum for beginning through professional 
programmers. In addition, the relationships between TDL 
and test-driven development will be explored. 

Initial evidence indicates that TDL can improve student 
comprehension of new concepts while improving their test-
ing skills with no additional instruction time. In addition, 
by learning to construct programs in a test-driven manner, 
students are expected to be more likely to develop their 
own code with a test-driven approach, likely resulting in 
improved software designs and quality. 

Keywords 
Test-driven learning, test-driven development, extreme pro-
gramming, pedagogy, CS1 

1. INTRODUCTION 
Programmers often learn new programming concepts and 

technologies through examples. Instructors and textbooks 
use examples to present syntax and explore semantics. Tuto-
rials and software documentation regularly present examples 
to explain behaviors and proper use of particular software 
elements. Examples, however, typically focus on the use 
or the interface of the particular software element, without 
adequately addressing the behavior of the element. 

Consider the following example from the Java 1.5 API 
documentation: 

void printClassName(Object obj) 
{ 
System.out.println("The class of " + obj + 

" is " + obj.getClass().getName()); 
} 

While this is a reasonable example of how to access an ob-
ject’s class and corresponding class name, it only reveals the 
desired interface. It teaches nothing about the underlying 
behavior. To see behavior, one must compile and execute 
the code. While it is desirable to encourage students to try 
things out on their own, this can be time consuming if done 
for every possible example, plus it significantly delays the 
presentation/feedback loop. 

As an alternative, we can introduce a simple automated 
unit test that demonstrates both the interface and the ex-
pected behavior. For instance, we could replace the above 
example with the following that uses the assert keyword1: 

void testClassName1() 
{ 
ArrayList al = new ArrayList(); 
assert al.toString().equals("[]"); 
assert al.getClass().getName() 

.equals("java.util.ArrayList"); 
} 

This example shows not only the same interface informa-
tion as the original example in roughly the same amount of 
space, but it also shows the behavior by documenting the 
expected results. 

1Although assert has existed in many languages for some 
time, the assert keyword was introduced in Java with version 
1.4 and requires extra work when compiling and running: 
javac -source 1.4 ClassTest.java 
java -ea ClassTest 



A second example below demonstrates the same interface 
using an Integer. Notice how these two examples also reveal 
the toString() results for an empty ArrayList ("[]") and 
an Integer ("5"). 2 

void testClassName2() 
{ 
Integer i new Integer(5); 
assert i.toString().equals("5"); 
assert i.getClass().getName() 

.equals("java.lang.Integer"); 
} 

These examples demonstrate the basic idea of test-driven 
learning: 

• Teach by example 

• Present examples with automated tests 

• Start with tests 

Teaching by example has a double meaning in TDL. First 
TDL encourages instructors to teach by presenting exam-
ples with automated tests. Second, by holding tests in high 
regard and by writing good tests, instructors model good 
practices that contribute to a number of positive results. 
Students tend to emulate what they see modeled. So as 
testing becomes a habit formed by example and repetition, 
students may begin to see the benefits of developing software 
with tests and be motivated to write tests voluntarily. 

The third aspect of TDL suggests a test-first approach. 
TDL could be applied in either a test-first or a test-last 
manner. With a test-last approach, a concept would be 
implemented, then a test would be written to demonstrate 
the concept’s use and behavior. With a test-first approach, 
the test would be written prior to implementing a concept. 
By writing a test before implementing the item under test, 
attention is focused on the item’s interface and observable 
behavior. This is an instance of the test-driven development 
(TDD) [4] approach that will be discussed in section three. 

2. TDL OBJECTIVES 
Teaching software design and testing skills can be particu-

larly challenging. Undergraduate curriculums and industry 
training programs often relegate design and testing topics 
to separate, more advanced courses, leaving students per-
haps to think that design and testing are either hard, less 
important, or optional. 

This paper introduces TDL as a mechanism for teaching 
and motivating the use of testing as both a design and a ver-
ification activity, by way of example. TDL can be employed 
starting in the earliest programming courses and continuing 
through advanced courses, even those for professional devel-
opers. The lead author has integrated TDL into CS1 and a 
four-day C++ course for experienced professional program-
mers. Further, TDL can be applied in educational resources 
from textbooks to software documentation. 

Test-driven learning has the following objectives: 

• Teach testing for free 

• Teach automated testing frameworks simply 
2If the toString() information is deemed distracting, this 
first assert could simply be left out of the example. 

• Encourage the use of test-driven development 

• Improve student comprehension and programming abil-
ities 

• Improve software quality both in terms of design and 
defect density 

Some have suggested that if objects are the goal, then we 
should start by teaching objects as early as the first day of 
the first class [2]. TDL takes a similar approach. If writ-
ing good tests is the goal, then start by teaching with tests. 
If it is always a good idea to write tests, then write tests 
throughout the curriculum. If quality software design is the 
goal, then start by focusing on habits that lead to good de-
signs. Test-first thinking focuses on an object’s interface, 
rather than its implementation. Test-first thinking encour-
ages smaller, more cohesive and more loosely coupled mod-
ules [4], all characteristics of good design. 

Examples with tests take roughly the same effort to present 
as examples with input/output statements or explanations. 
As a result, TDL adds no extra strain on a course schedule, 
while having the benefit of introducing testing and good 
testing practices. In other words TDL enables one to teach 
testing for free. It is possible that the instructor will expend 
extra effort moving to a test-driven approach, but once mas-
tered, the instructor may find the new approach simpler and 
more reusable because the examples contain the answers. 

By introducing the use of testing frameworks gradually in 
courses, students will gain familiarity with them. As will be 
seen in sections four and five, tests can use simple mecha-
nisms such as assert statements, or they can utilize power-
ful frameworks that scale and enjoy widespread professional 
support. Depending on the language and environment, in-
structors may introduce testing frameworks early or gradu-
ally. 

When students observe both the interface and behavior 
in an example with tests, they are likely to understand a 
concept more quickly than if they only see the interface in a 
traditional example. Further, if students get into the habit 
of thinking about and writing tests, they are expected to 
become better programmers. 

3. RELATED WORK 
Test-driven learning is not a radical new approach to teach-

ing computer programming. It is a subtle, but potentially 
powerful way to improve teaching, both in terms of efficiency 
and quality of student learning, while accomplishing several 
important goals. 

TDL builds on the ideas in Meyer’s work on Design by 
Contract [12]. Automated unit tests instantiate the asser-
tions of invariants and pre- and post-conditions. While con-
tracts provide important and rigorous information, they fail 
to communicate and implement the use of an interface in the 
efficient manner of automated unit tests. Contracts have 
been suggested as an important complement to TDD [9]. 
The same could be said regarding TDL and contracts. 

TDL is expected to encourage adoption of TDD. Although 
its name implies that TDD is a testing mechanism, TDD is 
as much or more about analysis and design as it is about 
testing, and the combination of emphasis on all three stands 
to improve software quality. Early research reports mixed 
results [10] regarding quality and productivity improvements 
from TDD particularly on small software projects, however 

= 



recent research [7] suggests that a test-first approach in-
creases the number of tests written and improves produc-
tivity, increasing the likelihood of higher quality software 
with similar or lower effort. 

TDL was inspired by the Explanation Test [4] and Learn-
ing Test [4] testing patterns proposed by Kent Beck, Jim 
Newkirk, and Laurent Bossavit. These patterns were sug-
gested as mechanisms to coerce professional programmers to 
adopt test-driven development. 

The Explanation Test pattern encourages developers to 
ask for and provide explanations in terms of tests. The pat-
tern even suggests that rather than explaining a sequence 
diagram, the explanation could be provided by “a test case 
that contains all of the externally visible objects and mes-
sages in the diagram.” [4] 

The Learning Test pattern suggests that the best way to 
learn about a new facility in an externally produced package 
of software is by writing tests. If you want to use a new 
method, class, or API, first write tests to learn how it works 
and ensure it works as you expect. 

TDL expands significantly on the Explanation and Learn-
ing Test ideas both in its approach and its audience. Novice 
programmers will be presented with unit tests as exam-
ples to demonstrate how programming concepts are imple-
mented. Further, programmers will be taught to utilize au-
tomated unit tests to explore new concepts. 

While the idea of using automated tests as a primary 
teaching mechanism is believed to be a new idea, the ap-
proach of requiring students to write tests in lab and project 
exercises has a number of predecessors. Barriocanal [3] doc-
umented an experiment in which students were asked to 
develop automated unit tests in programming assignments. 
Christensen [5] proposes that software testing should be in-
corporated into all programming assignments in a course, 
but reports only on experiences in an upper-level course. 
Patterson [13] presents mechanisms incorporated into the 
BlueJ [11] environment to support automated unit testing 
in introductory programming courses. 

Edwards [6] has suggested an approach to motivate stu-
dents to apply TDD that incorporates testing into project 
grades, and he provides an example of an automated grad-
ing system that provides useful feedback. TDL pushes au-
tomated testing even earlier, to the very beginning in fact. 

4. TDL IN INTRODUCTORY COURSES 
Test-driven learning can be applied from the very first day 

of the very first programming course. Textbooks often begin 
with a typical “Hello, World!” example or the declaration 
of a variable, some computation and an output statement. 
The following is a possible first program in C++: 

#include <iostream> 
using namespace std; 

int main() 
{ 
int age; 
cout << "What is your age in years?" << endl; 
cin >> age; 
cout << "You are at least 

<< age * 12 
<< months old!" << endl; 

} 

This approach requires the immediate explanation of the 
language’s input/output facilities. While this is a reasonable 
first step, a TDL approach to the same first program might 
be the following: 

#include <cassert> 

int main() 
{ 
int age 18; 
int ageInMonths; 
ageInMonths age * 12; 
assert(ageInMonths 216); 

} 

Notice how use of the assert() macro from the stan-
dard C library is used, rather than a full-featured testing 
framework. Many languages contain a standard mechanism 
for executing assertions. Assertions require very little ex-
planation and provide all the semantics needed for imple-
menting simple tests. The assert approach minimizes the 
barriers to introducing unit testing, although it does bring 
some disadvantages. For instance, if there are multiple as-
sert statements and one fails, no further tests are executed. 
Also, there is no support for independent tests or test suites. 
However, because the programs at this level are so small, 
the simplicity of assert statements seems to be a reasonable 
choice. 

As a later example, a student learning to write for loops 
in C++ might be presented with the following program: 

#include <iostream> 
#include <cassert> 
using namespace std; 

int sum(int min, int max); 

int main() 
{ 
assert(sum(3,7)==25); 
cout << "No errors encountered" << endl; 

} 

// This function sums the integers 
// from min to max inclusive. 
// Pre: min < max 
// Post: return-value min + (min+1) + ... 
// + (max-1) + max 
int sum(int min, int max) 
{ 
int sum 0; 
for(int i=min;i<=max;i++) 
{ 
sum += i; 

} 
return sum; 

} 

In a lab setting, the student might then be asked to write 
additional unit tests to understand the concept. For in-
stance, they might add the following assert statements: 

assert(sum(-2,2) 0); 
assert(sum(-4,-2) -9); 

= 

= 
== 

= 

= 

" 

" == 
== 



Later they might be asked to write unit tests for a new, 
unwritten function. In doing so, they will have to design the 
function signature and perhaps implement a function stub. 
This makes them think about what they are going to do 
before they actually do it. 

Once the programmer ventures beyond the lab into larger 
projects, tests can be separated into a run tests() function 
and tests can be partially isolated from each other by placing 
them in independent scopes as in the following example: 

#include <cassert> 

class Exams 
{ 
public: 
Exams(); 
int getMin(); 
void addExam(int); 

private: 
int scores[50]; 
int numScores; 

}; 

void run_tests(); 

int main() 
{ 
run_tests(); 

} 

void run_tests() 
{ 
{ //test 1 Minimum of empty list is 0 
Exams exam1; 
assert(exam1.getMin() 0); 

} //test 1 

{ //test 2 
Exams exam1; 
exam1.addExam(90); 
assert(exam1.getMin() 90); 

} //test 2 
} 

TDL should not compete with other approaches in intro-
ductory courses. Rather TDL should complement and in-
tegrate well with various programming-first [1] approaches 
such as imperative-first, objects-first, functional-first, and 
event-driven programming among others. 

5. TDL IN LATER COURSES 
TDL is applicable at all levels of learning. Advanced stu-

dents and even professional programmers in training courses 
can benefit from the use of tests in explanations. 

As students gain maturity, they will need more sophis-
ticated testing frameworks. Fortunately a wonderful set of 
testing frameworks that go by the name xUnit have emerged 
following the lead of JUnit [8]. The frameworks generally 
support independent execution of tests (i.e. execution or 
failure of one test has no effect on other tests), test fixtures 
(common test set up and tear down), and mechanisms to 
organize large numbers of tests into test suites. 

The final example below demonstrates the use of TDL 
when exploring Java’s DefaultMutableTreeNode class. Such 

an example might surface when first introducing tree struc-
tures in a data structures course, or perhaps when a pro-
grammer is learning to construct trees for use with Java’s 
JTree class. Notice the use of the breadthFirstEnumeration() 
method and how the assert statements demonstrate not just 
the interface to an enumeration, but also the behavior of a 
breadth first search. A complementary test could be writ-
ten to explore and explain depth first searches. In addition, 
notice that this example utilizes the JUnit framework. 

import javax.swing.tree.DefaultMutableTreeNode; 

import junit.framework.TestCase; 

public class TreeExploreTest extends TestCase { 
public void testNodeCreation() { 
DefaultMutableTreeNode node1 

new DefaultMutableTreeNode("Node1"); 
DefaultMutableTreeNode node2 

new DefaultMutableTreeNode("Node2"); 
DefaultMutableTreeNode node3 

new DefaultMutableTreeNode("Node3"); 
DefaultMutableTreeNode node4 

new DefaultMutableTreeNode("Node4"); 
node1.add(node2); 
node2.add(node3); 
node1.add(node4); 
Enumeration e node1.breadthFirstEnumeration(); 
assertEquals(e.nextElement(),node1); 
assertEquals(e.nextElement(),node2); 
assertEquals(e.nextElement(),node4); 
assertEquals(e.nextElement(),node3); 

} 
} 

6. ASSESSMENT AND PERCEPTIONS 
A short experiment was conducted in two CS1 sections at 

the University of Kansas in Spring 2005. The two sections 
were taught by the same instructor using a popular C++ 
textbook. The experiment was conducted in three fifty-
minute lectures and one fifty-minute lab that covered the 
introduction of classes and arrays. While both sections had 
been introduced previously to the assert() macro, during 
this experiment the first section was instructed using TDL 
and the second section was presented examples in a tra-
ditional manner using standard output with the instructor 
explaining the expected results. 

At the end of the experiment, all students were given the 
same short quiz. The quiz covered concepts and syntax from 
the experiment topics. In order to make the two sections 
homogeneous, two outliers (36 and 48 out of 100 on the first 
exam prior to the TDL experiment) were removed from the 
sample, leaving all students with first exam scores above 
73. The results given in Table 1 indicate that the TDL 
students scored about ten percent higher on the quiz than 
the non-TDL students. While a larger study is needed before 
drawing any conclusions, the results indicate that TDL can 
be integrated without negative consequences and support 
further investigation into potential benefits. 

To gauge programmer perceptions of Test-First and Test-
Last programming, a survey was conducted at the beginning 
of a range of courses at the University of Kansas including 
CS2, an undergraduate software engineering course, and a 

= 

= 

= 

= 

= 

== 

== 



Students Exam 1 Quiz 1 
100 total 10 total 

TDL 13 86.15 7.84 
Non-TDL 14 86.71 7.14 

Table 1: TDL vs. Non-TDL Mean Scores 

graduate software engineering course. Additionally, the sur-
vey was conducted at the end of a four-day training course 
for professional software developers in a large corporation 
after exposure to TDL. Students were briefly introduced to 
the differences between Test-First and Test-Last program-
ming, then asked their opinions of the two approaches and 
asked which approach they would use given the choice. Re-
sults are summarized by course in Table 2 and by years of 
programming experience in Table 3. The Test-First (TF) 
and Test-Last (TL) opinions were recorded on a five-point 
scale with 0 being the most negative and 4 the most positive. 

As the data shows, while the groups all had similar opin-
ions of the Test-First and Test-Last approaches, the more 
experienced programmers were much less likely to choose a 
Test-First approach. Comments recorded on the surveys in-
dicated that the predominant reason was a tendency to stick 
with what you know (Test-Last). Perhaps it is no surprise 
that younger students are more open to trying new ideas, 
but this points to the fact that early introduction of good 
ideas and practices may minimize resistance. 

No. of Avg. TF Avg. TL Choose 
Course Students Opinion Opinion TF 

CS2 28 2.71 2.75 54% 
SE 10 2.63 3.70 50% 
SE(grad) 12 2.91 2.83 67% 
Industry 14 2.85 3.14 29% 

Table 2: TDD Survey Responses by Course 

Exp. No. of Avg. TF Avg. TL Choose 
(Yrs) Students Opinion Opinion TF 

<=10 55 2.75 3.00 55% 
>10 10 2.75 3.00 22% 

Table 3: TDD Survey Responses by Experience 

7. CONCLUSIONS 
This paper has proposed a novel method of teaching com-

puter programming by example using automated unit tests. 
Examples of using this approach in a range of courses have 
been provided, and the approach has been initially assessed. 
Connections between this approach and test-driven develop-
ment were also explored. 

This research has shown that less experienced students 
are more open to adopting a Test-First approach, and that 
students who were taught for a short time with the TDL 
approach had slightly better comprehension with no addi-
tional cost in terms of instruction time or student effort. 
In addition, the benefits of modeling testing techniques and 
introducing automated unit testing frameworks have been 
noted. 

Additional empirical research and experience is needed to 
confirm the positive benefits of TDL without negative side-
effects, but the approach appears to have merit. It seems 
reasonable that textbooks, lab books, and on-line references 
could be developed with the TDL approach. Some materials 
are already available at http://www.simexusa.com/tdl/. 

8. REFERENCES 
[1] Computing curricula 2001. Journal on Educational 

Resources in Computing, 1(3es):1, 2001. 
[2] S. K. Andrianoff and D. B. Levine. Role playing in an 

object-oriented world. In SIGCSE ’02: Proceedings of 
the 33rd SIGCSE Technical Symposium on Computer 
Science Education, pages 121–125. ACM Press, 2002. 

[3] E. Barriocanal, M. Urb’an, I. Cuevas, and P. P’erez. 
An experience in integrating automated unit testing 
practices in an introductory programming course. 
ACM SIGCSE Bulletin, 34(4):125–128, December 
2002. 

[4] K. Beck. Test Driven Development: By Example. 
Addison-Wesley, 2003. 

[5] H. B. Christensen. Systematic testing should not be a 
topic in the computer science curriculum! In 
Proceedings of the 8th Annual Conference on 
Innovation and Technology in Computer Science 
Education, pages 7–10. ACM Press, 2003. 

[6] S. Edwards. Rethinking computer science education 
from a test-first perspective. In Proceedings of the 18th 
Annual ACM SIGPLAN Conference on 
Object-oriented Programming, Systems, Languages, 
and Applications: Educators’ Symposium, pages 
148–155, 2003. 

[7] H. Erdogmus. On the effectiveness of test-first 
approach to programming. IEEE Transactions on 
Software Engineering, 31(1):1–12, January 2005. 

[8] E. Gamma and K. Beck. http://www.junit.org. 
[9] H. Heinecke and C. Noack. Integrating Extreme 

Programming and Contracts. Addison-Wesley 
Professional, 2002. 

[10] D. Janzen and H. Saiedian. Test-driven development: 
concepts, taxonomy and future directions. IEEE 
Computer, 38(9):43–50, Sept 2005. 

[11] M. Kölling and J. Rosenberg. Guidelines for teaching 
object orientation with java. In Proceedings of the 6th 
Annual Conference on Innovation and Technology in 
Computer Science Education, pages 33–36. ACM 
Press, 2001. 

[12] B. Meyer. Applying “Design by Contract”. IEEE 
Computer, 25(10):40–51, 1992. 

[13] A. Patterson, M. Kölling, and J. Rosenberg. 
Introducing unit testing with BlueJ. In Proceedings of 
the 8th Annual Conference on Innovation and 
Technology in Computer Science Education, pages 
11–15. ACM Press, 2003. 




