

Detection of Breathing and Infant Sleep Apnea

By:
Brian Berg

Senior Project
Computer Engineering Department,

California Polytechnic State University,
San Luis Obispo

June 2011

i

Table of Contents
List of Figures .. iii

Acknowledgments... iv

Abstract ... v

I. Introduction .. 1

II. Project Definition ... 2

Background .. 2

System Requirements .. 2

III. Design ... 3

Overview... 3

Matlab Prototype ... 3

Hardware .. 3

Microphone .. 5

VHDL Filter ... 5

Software .. 6

User Interface... 6

IV. Implementation ... 7

VHDL Filter ... 7

Level Shift Circuit .. 7

Signal Input and Output ... 8

MicroBlaze .. 8

Software .. 9

User Interface... 9

V. System integration and testing .. 10

VI. Conclusion ... 11

Works Cited .. 12

ii

VII. Appendices ... 13

Appendix A: Bill of Materials .. 13

Appendix B: infant_apnea.c ... 14

Appendix C: spi.c .. 19

Appendix D: Matlab Breath detection ... 22

Appendix E: VHDL filter code ... 25

user_logic.vhd.. 25

envelopeHDL.vhd .. 31

Discrete_FIR_Filter1.vhd .. 34

Discrete_FIR_Filter.vhd .. 38

Timing_Controller.vhd .. 47

iii

List of Figures

Figure 1 Matlab breath detector - Credit Ricky Hennessy ... 3
Figure 2 Digilent ATLYS board with ports marked ... 4
Figure 3 Level shift circuit for microphone ... 4
Figure 4 Spectrogram of breathing – Credit: Dr. Pilkington ... 5
Figure 5 Envelope filtering: Green is raw signal, yellow is the resulting envelope 5
Figure 6 Software flowchart ... 6
Figure 7 MicroBlaze system diagram .. 8

file:///C:/Users/brian/Documents/My%20Dropbox/Infant%20Apnea%20Report%20-%20Brian%20Berg.docx%23_Toc295777627

iv

Acknowledgments

I would like to thank the students who worked with me on this project, David Bydalek and Ricky
Hennessy and those who worked on this project in previous years.

I would also like to thank all on those who advised and supported the project: Dr. Lily Laiho for
leading the project; Dr. John Jacobs and Aaron Stein, PE from Raytheon; Dr. Lynne Slivovsky for
being my advisor and Dr. Wayne Pilkington for offering much needed technical assistance in the last
weeks of the project.

Special thanks to Raytheon for supporting the project both in funding and with technical assistance.

v

Abstract

Sleep apnea is a condition where people pause while breathing in their sleep;
this can be of great concern for infants and premature babies. Current
monitoring systems either require physical attachment to a user or may be
unreliable. This project is meant to develop a device that can accurately detect
breathing through sound and issue appropriate warnings upon its cessation.
The device produced is meant to be a standalone device and thus was
developed as an embedded systems project on a Xilinx Spartan 6 FPGA.

1

I. Introduction

This project is a breath detection system; the particular aim of the project is to be able to
detect the breathing of an infant. By being able to detect breathing you can notice when it stops and
for how long, this is important due sleep apnea. Sleep apnea is a condition where people pause their
breathing while sleeping. This can potentially be hazardous, especially for infant and premature
babies where it is called apnea of prematurity if they are less than 37 weeks and apnea of infancy if
they are older than 37 weeks[1]. Apnea events are classified as cessation of breathing at least 20
seconds or longer. There is also a possible link between sleep apnea and sudden infant death
syndrome, though it is debated[3].

Various monitors already exist, some use attached electrical leads on the body to determine
breathing and heart beats[2], while others are vibration sensors that detect movement of the baby.
Monitors relying upon sensors attached to the body can be cumbersome and movement sensors are
not always accurate. To this end a project was set out to build something that worked better without
requiring direct contact with the body.

Breath analysis is a broad subject and is mostly beyond the simple detection of a single
breath to include characterization. Of course these systems also use advanced techniques such as
neural nets and genetic algorithms[4]. For obvious reasons such advanced systems are impractical
for compact, portable systems and thus were somewhat limited in aiding the project.

2

II. Project Definition

Background
 This project is a continuation of a project that has been ongoing in Cal Poly's BMED
department with support from Raytheon. The initial phase was to research possible methods for
breath detection, that resulted in a recommendation of audio detection and CO2 monitoring. Audio
monitoring was pursued with emphasis on an application inside a hospital. Such a noisy
environment would require special consideration and a method to use two microphones to detect
breathing and cancel out background noise by differential audio. A solution utilizing a general
purpose computer was also pursued.
 In the current iteration an embedded system audio processing implementation is desired.
The use of a single microphone with a parabolic dish to focus the sound and help eliminate was
considered when this stage project started. In this stage microphones with parabolic dishes was not
the focus but may be useful in future iterations to improve upon this work.

System Requirements
 One of the crucial points of the device is that it be accurate, with extremely little chance of
false negatives and few false positives while detecting apnea events. The device must be easy to
operate and setup. No special training should be required to use or maintain the device and setup
requirements should be minimal and unobtrusive. The device itself should be small in dimension not
requiring large spaces and have few remote connections. The device should be powered from the
wall with possible support for battery backup. To meet these needs some form of embedded system
is desired.

3

III. Design

Overview
 The overall design involves acquiring sound from a microphone, this sound is then
processed to detect breathing and a timer counts how long between breaths. When an apnea event
occurs, longer than 20 seconds without breath, an alarm is sounded.

Matlab Prototype
One of the first steps in the project’s design was a Matlab model created by Ricky Hennessy.

This served as a proof of concept and a much easier platform to debug than methods used than
hardware can easily provide. The program took in audio data from a microphone and detected the
peaks in the signal, as seen in Figure 1 below. From the Matlab code a Simulink model was derived,
the filtering portion of this code was used to produce the VHDL filter that will be discussed shortly.

Figure 1 Matlab breath detector - Credit Ricky Hennessy

Hardware
 The main hardware for the project is the ATLYS project board from Digilent, as seen in
Figure 2. This board features a Xilinx Spartan 6 LX45 FPGA, of special use to the project was the
chips DSP48A1 slices which allows for efficient implementation of digital filters. The ATLYS board
also features an AC'97 codec, National Semiconductor LM4550, which ideally would be used to
sample incoming audio. It has a USB port used to power the USB pre-amp for the microphone
system. Primary power is provided by a 20 watt AC to DC converter. The board does get warm so
ventilation needs to be provided for in the packaging.

4

Figure 2 Digilent ATLYS board with ports marked

Due to difficulties in working with the AC'97 codec a separate analog to digital converter
(ADC) was used, Digilent’s PMOD AD1. This produces a 12 bit value representing the voltage read
between 0 and 3.3 v (the voltage applied to the module). In addition the PMOD DA2 module, a 12
bit digital to analog converter (DAC), was used for testing and debugging purposes.

Both of these devices run off 0 to 3.3 v provided from the board, however sound from a
microphone has both positive and negative voltages. A level shifter was needed to shift the
microphone output to all positive voltages so it could be read by the ADC, the circuit used can be
seen in Figure 3 below. This simple circuit shifts the incoming voltage up by the reference voltage,
and provides a gain of 2 to amplify the signal. Because we have only positive supply voltage an op-
amp capable of running without a negative voltage rail was required, an LM324 was used.

This circuit also works to protect the analog converter, which cannot accept voltages outside
0 to 3.3 volts, by limiting output voltage from 0 to about 2 volts.

Figure 3 Level shift circuit for microphone

5

Microphone
Several microphones were used in the course of the project and any microphone should

work given sufficient sensitivity and relatively low signal noise, though some calibration might be
necessary. The final targeted microphone was a directional microphone from Audio Technica, the
AT803 specifically, it does require a pre-amp and the ARTcessoires USB Dual Pre was used. In
other testing a parabolic dish was used to help limit surrounding noise and may be helpful in nosier
environments or to increase distance between patient and microphone.

VHDL Filter
 A filter too complex for C to run in real time was desired but greater flexibility than a
hardware filter was desired, as a compromise a VHDL filter was used. The first stage is a band pass
filter for the 300 to 800 Hz range, as Figure 4 shows this is where there is clearly information
sufficient to detect breathing but reduces the influence of external noise.

Figure 4 Spectrogram of breathing – Credit: Dr. Pilkington

The VHDL filter also provides the envelope of the signal rather than just a filtered
waveform. This allows for simple peak detection to be done with software. The envelope of a
modulated sine wave can be seen clearly in yellow in Figure 5.

Figure 5 Envelope filtering: Green is raw signal, yellow is the resulting envelope

6

Software
 The software part of the system is to be done using
MicroBlaze. This is a microprocessor that is run on the FPGA
and programmed using the Xilinx Embedded Develpment Kit.
This is programmed using C with some slight modifications due
to a more limited environment than a general computer system.
MicroBlaze interacts with the hardware which is synthesized in
the FPGA through a memory mapped interface.
 Figure 6 provides an overview for the software of the
system. Samples are read when an interrupt occurs, set at 8 kHz,
which are processed through the VHDL filter to find the
envelope, peaks are detected and a timer is updated. When the
warning timer reaches the set limit for an apnea event an alarm is
sounded.

The ADC uses SPI which is handled by a hardware
module and controlled by a function in software. The interrupts
are based off a timer that counts from the 66 MHz main clock
cycle to provide an 8 kHz interrupt.

The filter outputs samples at a rate 500 times less than it
is given samples. This means that we only need to deal with
samples every 500th interrupt or 16 times per second. The peak
detection is observed by having an array of samples, when the
middle of that sample period is the same as the maximum of the
array then a peak has been detected. There is calibration and
averaging of these peaks to ensure that no peaks below the level
of breathing are falsely detected as breaths.

A record of time between breaths is kept and as this
reaches various lengths appropriate warnings are issued, with an
audible alarm in the case of an apnea event.

User Interface
 The user interface needs to be simple and self explanatory. An absolute minimum of features
are a power light to indicate that the system has power, an audible warning and a reset button to
silence the alarm once sounded. Other lights might be used such as a light indicating that the system
is working properly. Another possible feature is a series of LEDs that show how long since the last
breath that would start to flash as an apnea event is approached. A method to set the time between
breaths considered an apnea event, typically this time is 20 seconds. A volume select to change the
level of the audible warning might be another interface option.

Figure 6 Software flowchart

7

IV. Implementation

VHDL Filter
 The audio filter was developed in Simulink and exported as VHDL. This caused a number
of problems during implementation. The first of which is that on a general purpose computer
floating point numbers are perfectly reasonable when dealing with audio signals. However this is not
supported in VHDL where floating point hardware requires impractically large circuits. Because of
this an integer filter had to be created, which caused problems with overflow. Ricky sorted out the
filter problems and produced a filter that would work with 32-bit integers, which were to be
supplied by the AC'97 codec.
 However the filter was expecting to run at the same frequency it was expecting data samples,
8 kHz. The main MircoBlaze clock runs at 66.666 MHz, a step down from the 100 MHz clock signal
provided by the board, so a slower clock would need to be provided directly to the filter. The filter
also required a wrapper module so that it could work with the memory mapped IO that MicroBlaze
usually worked with.
 Luckily the Xilinx development software provides a peripheral creation tool that can easily
allow for custom coded VHDL to be attached to the MicroBlaze memory bus, these are called
pcores. The system clock divider was setup to produce an 8 MHz signal, since the lowest possible
clock speed it can produce is 1 MHz. An additional port line was added to the peripheral wrapper
and a simple clock divider was added to the VHDL filter to produce the desired 8 kHz signal.
 The extra clock line was added in the port definition for the memory bus wrapper,
user_logic.vhd, as well as in the projects .mpd file where all external ports are defined for the system
interface in the development software. The extra source VHDL files that were needed for the filter
were added in the pcore vhdl folder and entries were made into the projects .pao and .prj files.
These files definitions were added into the definition for the pcores library. Additionally the project
needed to be modified to not halt upon finding a part of the hardware running at a significant
fraction of the main system clock, our 8 kHz filter. This was achieved by selecting the project option
for timing closure failures to no longer be considered errors.
 When the AC'97 codec was dropped as an input method the precision of the incoming data
was reduced to 12 bits. The filter was redesigned to take in 16 bit numbers and outputting 32 bit
numbers that had been filtered for the desired frequency range and the envelope of the signal. The
MicroBlaze system is a big endian microcontroller and thus the 16 bits for the filter input needed to
be pulled from the top half of the incoming 32 bit register on the memory bus.
 Initially this filter did not work, the only time it appeared to work was when the aliasing of
the 8 kHz sample rate happened to create the appearance of proper envelope detection. This was
due to input being in the all positive range for a filter designed for a bipolar filter. The solution was
to subtract the known offset of the signal and feed the now bipolar signal into the filter.

Level Shift Circuit
 The level shift circuit seen previously in Figure 3 was built on a breadboard and tested with
lab equipment to ensure the desired operation. The only problem here was that an op-amp that
allowed for only a ground rail and a positive rail was required. The next stage in testing was to make
sure that the circuit could be powered from the voltages on the ATLYS board and didn’t cause any
problem with the operation of the other circuits.
 The reference voltage is supplied from the DAC PMOD, this gives us precise control over
the offset and also the software decides this voltage which can be supplied to the filter so that the
bipolar nature of the audio signal can be restored before filtering.

8

Signal Input and Output
 Initially it was desired to utilize the AC'97 audio codec on the board. The first attempt at
doing so was meant to pull an audio sample and write it back out, this worked with little effort.
However once I attempted to manipulate this sample the output signal did not change.
Unfortunately the loopback functionality is built into the AC'97 codec chip. Many attempts to
control the chip in the desired way were unsuccessful, it was decided that alternative methods of
input and output would be more efficient for time usage.
 The PMOD connector on the ATLYS board works with a variety of add-ons called
PMODs. Two of these add-ons are the PMOD AD1 and the PMOD DA2. The AD1 is a 12 bit
analog to digital conversion chip and the DA2 is a 12 bit digital to analog converter. With these
chips it was possible to sample an audio signal at the 8 kHz rate desired at 12 bits of precision.
These 12 bits are the unsigned value above ground and max out at the positive voltage rail, 3.3 volts.
Each of these chips has two channels for analog input or digital output respectively and
communicate through the SPI protocol. The SPI protocol is supported in hardware with a Xilinx
module and controlled in software through command registers.
 The DA2 module provides two output channels, however this is achieved through the use of
two separate DAC chips. Because of this the SPI connection is a bit odd, instead of having a
common data channel, clock channel and two select lines it has two data lines and a common select
channel. This requires two separate SPI modules to provide the two data channels to communicate
with it, the OR signal of the two DAC SPI channels and the AND signal of their select lines (active
low connections). Additionally because the select line is common they cannot be updated
independently and must be updated as a pair, this is non-ideal for our purposes and requires an
inelegant work around in the software. Each SPI core cannot be run at exactly the same time, the
appropriate commands are given right after each other in the hope that there is not sufficient time
differences to ruin either setting. The second channel of the DAC is used to provide the reference
voltage of the level shift circuit, the constant updating produces additional noise to this line. This
possibly adds extra interference to the audio signal that is being read into the system and some sort
of filtering may become necessary.

MicroBlaze
 Microblaze is what is called a soft core processor, unlike other micro controllers it is only
implemented in VHDL. This is provided by Xilinx as part of their development software as well as
many other hardware components. This project utilized the basic components of Microblaze, the
processor, a data, instruction and peripheral busses and a memory block for the processor. Other
peripherals included: three SPI cores used to talk to the ADC and DAC; a clock divider to create the
desired clocks; a timer to generate the 8 kHz interrupts; and several general purpose IO modules for
the LEDs, and switches on the board.

Figure 7 MicroBlaze system diagram

9

Software
 The software is responsible for regulating the hardware components of the MicroBlaze
system as well as performing some of the calculations. The code is not particularly complex, the
main source file comes in under 240 lines and there aren't many tricky shortcuts. Most of the heavy
lifting was implemented in the VHDL filter, which was the desired outcome of the project. Of
course there were problems along the way, mostly dealing with improper control of the hardware
components such as the problems with input and output modules. The software could allow for
greater characterization of the breath signal and a finer tuned peak detection system than a VHDL
approach. This would allow for greater information than simply time between breathing and a
reduction of false positives, but nothing beyond simple peak detection has yet been implemented.

User Interface
 The user interface consists of the LEDs, switches and audio codec. The LEDs provide a
visual display of the timer which will start to fill as the time approaches an apnea event. Each LED
represents and eighth of the time to apnea event and as the last 3 LEDs become lit they will start to
blink. When an apnea event occurs the LEDs will continue to flash and an alarm will sound. While
the audio codec was unhelpful in data acquisition various beeps can be sent through the line out, this
could be hooked to an external speaker for the sound alarms. Switch 8 serves to silence the alarm
and reset it, when this switch is on the LED above it is lit up to indicate that the system is in silent
mode.

10

V. System integration and testing

 The system was rather closely knit and thus integration was done over the course of
development rather than entirely at the end. An example would be the input and output, these are
related systems and can be used to verify each other. The input and output systems are also crucial
to the development and testing of the VHDL filter since signals needed to be given as input and
verified on an oscilloscope through the output device.
 Once the input and output systems were in place the VHDL filter was inserted into the
design, this also required the interrupt system to be in place to ensure the 8 kHz input. This was
when the filter was discovered to require a bipolar signal instead of the offset input as well as an 8
kHz clock instead of the main system clock of 66.666 MHz.
 The filter was tested using an AM modulated sine wave produced from a function generator.
This produced a configurable, constant, and stronger signal than audio while trouble shooting and
tuning the filter. The envelope detection could be visually verified as in Figure 5 as well as the filter
roll off around the desired range. Once the filter was working acceptably the peak detection
algorithm could be finished. Once peak detection of the envelope was working a counter was added
so that the interval between breaths could be monitored for the user interface operation and the
detection of apnea events. The LED output and switch behavior was refined and the user interface
was mostly complete.
 At the same time the audio signal was being worked on. First the microphone setup was
tested to ensure operation as it was from a previous iteration of the project, then the shifter circuit
was produced and tested. One of the more crucial stages for the audio system was ensuring that the
required USB pre-amp and shifter circuit could be powered from the board to reduce the need for
further external power sources.
 After both the detection and audio systems were working system testing could begin.
Unfortunately this was extremely late in the project and an insufficient amount of testing and
calibration was possible. The system works with audio signals but a noticeable amount of false
positives were present, this is probably a problem with the peak detection and can be fixed by
averaging the past few maximums and not allowing a maximum significantly above or below this
average. This means that once breaths are being detected the filter will become accustom to the
breathing levels and minimize false positives and negatives.
 Operation of the device requires setting up the microphone at a reasonable distance from
the patient and connecting all the hardware components together. After the system is together the
power switch can be turned on and after system initialization should begin detecting breaths. Switch
8 can be used to silence the system and the LEDs will provide information about the current
operation of the device.

11

VI. Conclusion

 I believe this project was rather successful, it was a difficult process and development was
quite a bit slower than desired but the final product is rather close to the designed system. It could
probably require a bit more fit and finish but the system is at least workable. An incoming signal is
filtered for the desired range an envelope is created, peaks are detected and a timer is kept.
 Mainly the problem is in that there has been no testing on sound from actual infants and
that might require a change in the VHDL filter and audio setups. There is also a noticeable presence
of false positives which is unacceptable for a final device. This is probably due to a lack of testing
and calibration and could be remedied with more testing. The peak detection currently has a
minimum level for peaks and this could be raised to reduce false positives but could also introduce a
number of false positives and would vary depending upon audio input parameters. A maximum level
could also be added to reduce the impact of sudden noises not currently being filtered out.
Averaging a number of past maximums to rule out infrequent behavior would also be helpful.
 The project could be simplified in two ways, first the proper usage of the AC'97 codec for
data acquisition. This removes the need for the shifter circuit as well as some of the workarounds in
the filter. If this cannot be done then a cheaper board, without the audio codec, is recommended.
Initially size of the design on the FPGA was a concern, but as implemented is not a current issue.
The speed of the system is also not a great concern in the current implementation which works at 8
kHz and doesn't require a great deal of computation. Of course if further analysis of the breathing is
desired then these might become relevant concerns, though that would also require an overhaul of
the filtering system or secondary processing of the initial samples.

12

Works Cited

[1] "Infant Sleep Apnea." Internet: http://www.stanford.edu/~dement/infantapnea.html, March 24,

1999 [April 12, 2011]

[2] "Healthdyne 970 Smart Apnea Monitor." Internet:

http://www.dremed.com/irsrental/product_info.php/cPath/412_413/products_id/9336, April
12, 2011 [April 12, 2011]

[3] "Apnea, Sudden Infant Death Syndrome, and Home Monitoring" Internet:

http://pediatrics.aappublications.org/content/111/4/914.full, April 1, 2003 [June 12, 2011]

[4] Sandra Reichert et al. "Analysis of Respiratory Sounds: State of the Art" Internet:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990233/, May 16, 2008 [June 12, 2011]

13

VII. Appendices

Appendix A: Bill of Materials

Digilent ATLYS development board
 20 watt AC to DC power supply
 micro USB programming cable
Digilent PMOD AD1 12 bit analog to digital converter
Digilent PMOD DA2 12 bit digital to analog converter
Audio Technica AT803
 XLR microphone cable
ARTcessoires USB Dual Pre - USB pre-amp
 USB B cable for power
Level Shift Circuit
 LM324 Op-Amp
 2 47 kΩ resistor
 2 100 kΩ resistor

14

Appendix B: infant_apnea.c
/* Infant Sleep Apnea project
 * Author: Brian Berg
 *
 * This program takes in sound, filters it, detects it's peaks for breathing and
 * provides appropriate alarms when no peak is detected within a certain timeframe
 */

 /* libraries we need */
#include <stdio.h>
#include "xparameters.h"
#include "xgpio.h"
#include "xio.h"

/* perpherial defines to make addressing easier to read */
#define LEDS_OUT XPAR_LEDS_8BITS_BASEADDR
#define SWITCHES_IN XPAR_DIP_SWITCHES_8BITS_BASEADDR
#define DAC0_BASE XPAR_SPI_DAC0_BASEADDR
#define DAC1_BASE XPAR_SPI_DAC1_BASEADDR
#define ADC_BASE XPAR_SPI_ADC_BASEADDR
// filter connections
#define FILTER XPAR_CUSTOM_SOUND_FILTER_0_BASEADDR
#define FILTER_IN FILTER
#define FILTER_OUT FILTER + 0x4
#define FILTER_REF FILTER + 0x8

// our 66,666,700Hz system clock
#define SYS_CLK_SPEED XPAR_TIMER_CLOCK_FREQ_HZ
#define TIMER_BASE XPAR_TIMER_BASEADDR

#define TARGET_FREQ 8000 //target rate for sampling
#define REDUCTION 500 //how many times we are down sampling
#define SAMPLES_PER_SEC 16 // TARGET_FREQ/REDUCTION (8K/500)=16
#define SAMPLE_TIME 10 // when in count we pull a sample from the filter
#define SAMPLE_WINDOW 16 // How many samples our window
#define APNEA_TIME 320 // SAMPLES_PER_SEC * 20 seconds
#define MIN_MAX_LEVEL 0xFFFFF //avoid false positives

/* define where each switch is in the 8 bit value */
#define SWITCH1 1
#define SWITCH2 2
#define SWITCH3 4
#define SWITCH4 8
#define SWITCH5 16
#define SWITCH6 32
#define SWITCH7 64
#define SWITCH8 128

/* Shifter reference voltage for offset of audio signal */
#define SHIFTER_REF 1250

15

/* function prototypes */
void isr() __attribute__ ((interrupt_handler));
void set_timer();
void frequency_check();
void dac_out(int value);
void breath_detect();
int find_max(int *array, int size);

int main(){
 /* setup phase, get everything set */
 // set LEDS to output mode
 XIo_Out32(LEDS_OUT + 0x04 , 0x00);
 // show something on the LEDS so we know we got this far
 XIo_Out32(LEDS_OUT, 0xFF);

 //set out shifter reference voltage and tell the filter what it is
 spi_out(DAC0_BASE, SHIFTER_REF);
 XIo_Out32(FILTER_REF, SHIFTER_REF);

 set_timer(); //get the interrupt timer ready
 XIo_Out32(LEDS_OUT, 0x0F); //new LED stage

 /* program starts now! */
 microblaze_enable_interrupts();
}

/* used to verify what frequency our interrupts are working at
 * will output a 50% duty cycle square wave between 0 and 3.3v
 * at half the frequency of the interrupts */
void frequency_check(){
 static int freq_check = 0, freq_check2 = 0;

 dac_out(freq_check);
 if(freq_check){
 freq_check = 0;
 freq_check2 = 0xFFF;
 }
 else{
 freq_check = 0xFFF;
 freq_check2 = 0;
 }
}

/* any time we update the main output channel we also need to send data
 * to the channel handling the shifter circuit reference voltage due to the
 * construction of the DAC
 * This is a handy abstraction */
void dac_out(int value){
 spi_out2(DAC0_BASE, value, DAC1_BASE, SHIFTER_REF);
}

/* load our timer with the appropriate count */

16

void set_timer(){
 //load timer's load register, subtract two from count for reload
 XIo_Out32(TIMER_BASE + 4, (SYS_CLK_SPEED/TARGET_FREQ) - 2);
 //copy load reg to timer reg
 XIo_Out32(TIMER_BASE, 0x20);
 /* config timer to count down, auto reload,
 * enable ints, gen mode, and enable timer*/
 XIo_Out32(TIMER_BASE, 0XD2);
}

/* main calculation function */
void breath_detect(){
 int sample, spi_sent, switches, filter_out, shift, leds;
 static int count = 0, breath_count = 0, blink;
 static int sample_spot = SAMPLE_WINDOW, mid_spot = (SAMPLE_WINDOW/2)-1;
 static int samples[SAMPLE_WINDOW];

 sample = spi_in(ADC_BASE); //obtain audio sample
 switches = XIo_In32(SWITCHES_IN);
 spi_sent = 0; //reset SPI lock, or if set to 1 disable SPI output from this function

 //allows to check for proper input
 if((switches & SWITCH1) && !spi_sent){
 dac_out(sample);
 spi_sent = 1;
 }

 //hand the sample to the filter
 XIo_Out32(FILTER_IN, sample);

 //the filter downsamples, so count till it's good to go
 count = (count+1)%REDUCTION;

 if(count == SAMPLE_TIME){
 filter_out = XIo_In32(FILTER_OUT);

 //see what the output of the filter is
 if((switches & SWITCH2) && !spi_sent){
 shift = switches >> 2;
 dac_out(filter_out>>shift);
 spi_sent = 1;
 }

 //record the sample
 sample_spot = (sample_spot+1)%SAMPLE_WINDOW;
 mid_spot = (mid_spot+1)%SAMPLE_WINDOW;

 samples[sample_spot] = filter_out;

 //peak detect
 if(peak_detect(samples, SAMPLE_WINDOW, mid_spot)){
 breath_count = 0;

17

 if(!spi_sent){
 dac_out(0xFFF); //shows us when
 }
 }
 else{
 //no breath, add to count but don't need to go over APNEA_TIME
 if(breath_count < APNEA_TIME){
 breath_count++;
 }
 if(!spi_sent){
 dac_out(0);
 }
 }

 /* this displays a nice count on the display
 * no binary count up just a light up one LED after the other */
 shift = 8 - breath_count/(APNEA_TIME/8);
 leds = 0xFF>>shift;
 /* once we're above a certain point start to flash the LEDs */
 if(leds & 0x20){
 if(blink){
 blink = 0;
 }
 else{
 leds = 0;
 blink = 1;
 }
 }

 if((switches & SWITCH8)){
 //this is the reset/disable switch
 breath_count = 0;
 leds = 0x80; //let the person know it's disabled
 }
 XIo_Out32(LEDS_OUT, leds); //output whatever has been decided
 }

}

/* detect a peak in the given window */
int peak_detect(int *samples, int size, int mid_spot){
 int max;

 max = find_max(samples, size);

 if(max < MIN_MAX_LEVEL){
 return 0;
 }

 if(samples[mid_spot] == max){
 return 1;
 }

18

 return 0;
}

/* find the maximum of the array */
int find_max(int *array, int size){
 int i, max = 0; //not looking for negative maximums

 for(i = 0; i < size; i++){
 if(array[i] > max){
 max = array[i];
 }
 }
 return max;
}

/* this function happens each time an interrupt from the timer occurs
 * which should be at a frequency of TARGET_FREQ */
void isr(){
 int state;
 int sample;

 breath_detect();

 /* clear interrupt, needs to happen for this loop to work*/
 //grab the timer state
 state = XIo_In32(XPAR_TIMER_BASEADDR);
 //put it back, thereby resetting the interrupt
 XIo_Out32(XPAR_TIMER_BASEADDR, state);
}

19

Appendix C: spi.c
/* Code to talk to the Xilinx SPI core
 * Created for CPE 329 Spring 2010
 * Modified for Senior Project Spring 2011 - Brian Berg
 *
 * Brian Berg and Andrew Carrillo
 *
 * Created with reference to code from Dr. John Oliver
 */

#include "xparameters.h"
#include "xio.h"

#define SPICR 0x60
#define SPISR 0x64
#define SPIDTR 0x68
#define SPIDRR 0x6C
#define SPISSR 0x70
#define IPISR 0x20

#define INHIBIT_DISABLE 0x194
#define INHIBIT_ENABLE 0x196
#define UNINHIBIT_ENABLE 0x096

int spi_in(int base_address){
 int upper_byte, low_byte;

 //set SPI mode, inhibit master, disable SPI
 XIo_Out32(base_address + SPICR, INHIBIT_DISABLE);
 //Write junk to clear the DTR
 XIo_Out8(base_address + SPIDTR, 0xF); //upper byte first
 XIo_Out32(base_address + SPISSR, 0xFFF); //Turn on ADC
 //set SPI mode, inhibit master, enable SPI
 XIo_Out32(base_address + SPICR, INHIBIT_ENABLE);
 XIo_Out32(base_address + SPISSR, 0); //Enable the ADC
 //Unihibit but leave enabled
 XIo_Out32(base_address + SPICR, UNINHIBIT_ENABLE);
 //Wait till transfer done
 while ((XIo_In32(base_address + SPISR) & 0x4) == 0);

 XIo_Out32(base_address + SPICR, INHIBIT_ENABLE); //inhibit master
 //Get upper byte from ADC
 upper_byte = (XIo_In32(base_address + SPIDRR) & 0x000000FF);
 //write dummy data to
 XIo_Out8(base_address + SPIDTR, 0xF); //lower byte now
 XIo_Out32(base_address + SPICR, UNINHIBIT_ENABLE); //uninhibit master
 //wait till transfer is done
 while ((XIo_In32(base_address + SPISR) & 0x4) == 0);
 XIo_Out32(base_address + SPICR, INHIBIT_ENABLE); //inhibit master
 //Get lower byte from ADC
 low_byte = (XIo_In32(base_address + SPIDRR) & 0x000000FF);
 XIo_Out32(base_address + SPISSR, 0xFFF); //turn off the ADC

20

 //Set mode, inhibit Master, disable SPI
 XIo_Out32(base_address + SPICR, INHIBIT_DISABLE);

 return (upper_byte << 8) | low_byte;
}

/* this is rather inelegant, but becuase the DA2 has shared clock and select lines
 * both channels are changed even if it's not meant to be. So we write to both channels at the same time
 */
void spi_out2(int base, int value, int base2, int value2){
 int first_byte, second_byte, DTR_empty;
 int first_byte2, second_byte2;

 value = value & 0x0FFF; //make sure its in range
 first_byte = value >> 8; //get the high order byte
 second_byte = (value & 0xFF); //get the low order byte
 value2 = value2 & 0x0FFF;
 first_byte2 = value2 >>8;
 second_byte2 = (value2 & 0xFF);

 //set SPI mode, inhibit master, disable SPI
 XIo_Out32(base + SPICR, INHIBIT_DISABLE);
 XIo_Out32(base2 + SPICR, INHIBIT_DISABLE);
 //write MSByte to SPIDTR
 XIo_Out8(base + SPIDTR, first_byte);
 XIo_Out8(base2 + SPIDTR, first_byte2);
 //negate SS-bar (write 1s to SPISSR)
 XIo_Out32(base + SPISSR, 0xFFF);
 XIo_Out32(base2 + SPISSR, 0xFFF);
 //enable SPI
 XIo_Out32(base + SPICR, INHIBIT_ENABLE);
 XIo_Out32(base2 + SPICR, INHIBIT_ENABLE);
 //assert SS-bar (write 0s to SPISSR)
 XIo_Out32(base + SPISSR, 0);
 XIo_Out32(base2 + SPISSR, 0);
 //un-inhibit master
 XIo_Out32(base + SPICR, UNINHIBIT_ENABLE);
 XIo_Out32(base2 + SPICR, UNINHIBIT_ENABLE);
 //wait for DTR-empty flag to be asserted
 while ((XIo_In32(base + SPISR) & 0x04) == 0);
 //inhibit master
 XIo_Out32(base + SPICR, INHIBIT_ENABLE);
 XIo_Out32(base2 + SPICR, INHIBIT_ENABLE);
 //clear DTR-empty flag
 XIo_Out32(base + IPISR, 0xFF);
 XIo_Out32(base2 + IPISR, 0xFF);
 //write LSByte to SPIDTR
 XIo_Out8(base + SPIDTR, second_byte);
 XIo_Out8(base2 + SPIDTR, second_byte2);
 //un-inhibit master
 XIo_Out32(base + SPICR, UNINHIBIT_ENABLE);
 XIo_Out32(base2 + SPICR, UNINHIBIT_ENABLE);

21

 //wait for DTR-empty flag to be asserted
 while ((XIo_In32(base + SPISR) & 0x04) == 0);
 //inhibit master
 XIo_Out32(base + SPICR, INHIBIT_ENABLE);
 XIo_Out32(base2 + SPICR, INHIBIT_ENABLE);
 //clear DTR-empty flag
 XIo_Out32(base + IPISR, 0xFF);
 XIo_Out32(base2 + IPISR, 0xFF);
 DTR_empty = 0;
 //negate SS-bar (write 1s to SPISSR)
 XIo_Out32(base + SPISSR, 0xFFF);
 XIo_Out32(base2 + SPISSR, 0xFFF);
 //inhibit master, disable SPI
 XIo_Out32(base + SPICR, INHIBIT_DISABLE);
 XIo_Out32(base2 + SPICR, INHIBIT_DISABLE);
}

void spi_out(int base, int value){
 int first_byte, second_byte, DTR_empty;

 value = value & 0x0FFF; //make sure its in range
 first_byte = value >> 8; //get the high order byte
 second_byte = (value & 0xFF); //get the low order byte

 //set SPI mode, inhibit master, disable SPI
 XIo_Out32(base + SPICR, INHIBIT_DISABLE);
 //write MSByte to SPIDTR
 XIo_Out8(base + SPIDTR, first_byte);
 //negate SS-bar (write 1s to SPISSR)
 XIo_Out32(base + SPISSR, 0xFFF);
 XIo_Out32(base + SPICR, INHIBIT_ENABLE); //enable SPI
 //assert SS-bar (write 0s to SPISSR)
 XIo_Out32(base + SPISSR, 0);
 XIo_Out32(base + SPICR, UNINHIBIT_ENABLE); //un-inhibit master
 //wait for DTR-empty flag to be asserted
 while ((XIo_In32(base + SPISR) & 0x04) == 0);
 XIo_Out32(base + SPICR, INHIBIT_ENABLE); //inhibit master
 //clear DTR-empty flag
 XIo_Out32(base + IPISR, 0xFF);
 XIo_Out8(base + SPIDTR, second_byte); //write LSByte to SPIDTR
 XIo_Out32(base + SPICR, UNINHIBIT_ENABLE); //un-inhibit master
 //wait for DTR-empty flag to be asserted
 while ((XIo_In32(base + SPISR) & 0x04) == 0);
 XIo_Out32(base + SPICR, INHIBIT_ENABLE); //inhibit master
 XIo_Out32(base + IPISR, 0xFF); //clear DTR-empty flag
 DTR_empty = 0;
 XIo_Out32(base + SPISSR, 0xFFF); //negate SS-bar (write 1s to SPISSR)
 //inhibit master, disable SPI
 XIo_Out32(base + SPICR, INHIBIT_DISABLE);
}

22

Appendix D: Matlab Breath detection

RealTimeBreathDetect.m - Ricky Hennessy
% BreathDetect.m

% Ricky Hennessy

% 1/6/2010

close all, clear all

%% Variables

low_stop = 300;

high_stop = 1000;

WindowEnvelope = 0.1; % Length of envelope averaging filter window

(seconds)

MaximaWindow = 2.4; % Length of window to find local maxima

(seconds)

DownSamp = 200; % Frequency to downsampe envelope to (Hz)

Threshold = 0.2; % Percentage of mean maxima value that a

breath must be above

Fs = 8000; % Sampling Frequency

nbits = 8; % Bits of Precision When Sampling

WindowTime = 5; % Length of recorded time processed in each

batch (seconds)

%% Initialize

BreathCountTotal = 0;

y = audiorecorder(Fs,nbits,1);

meanbreath = 0;

%% Create Bandpass Filter

F=[(low_stop-100) low_stop high_stop (high_stop+100)]; % band limits

A=[0 1 0]; % band type: 0='stop', 1='pass'

dev=[0.0001 10^(0.1/20)-1 0.0001]; % ripple/attenuation spec

[M,Wn,beta,typ]= kaiserord(F,A,dev,Fs); % window parameters

b = fir1(M,Wn,typ,kaiser(M+1,beta),'noscale'); % filter design

%% Initialize

loopcount = 0;

EXIT = 1;

BreathTotal = [];

%% Initial Recoding

signal = zeros(1,Fs*WindowTime);

record(y)

while EXIT == 1

 %% Counter

 loopcount = loopcount + 1;

 %% Filter Signal

 signal_f = fftfilt(b,signal);

23

 %% Find Envelope

 signal_h = hilbert(signal_f); % Hilbert Transform

 envelope = sqrt(signal_h.*conj(signal_h));

 envelope_f =

filter(ones(1,round(Fs*WindowEnvelope))/round(Fs*.1),1,envelope);

 envelope_fDS = downsample(envelope_f,round(Fs*(1/DownSamp)));

 %% Find Local Maxima

 windowsize = DownSamp * MaximaWindow / 4;

 BreathCount = 0;

 Breath = [];

 for ix = 1:length(envelope_fDS) - windowsize

 maxima = max(envelope_fDS(ix:ix+windowsize));

 if loopcount < 2 % Ignore first 2 loops

 elseif loopcount < 100 % Use next 100 loops to get breath

threshold

 if maxima == envelope_fDS(ix+windowsize/2)

 BreathCount = BreathCount + 1;

 Breath(BreathCount) = ix + windowsize/2;

 end

 else % Begin using and updating threshold

 if (maxima == envelope_fDS(ix+windowsize/2)) && maxima >

(Threshold * meanbreath)

 BreathCount = BreathCount + 1;

 Breath(BreathCount) = ix + windowsize/2;

 end

 end

 end

 BreathTotal = cat(2,BreathTotal,envelope_fDS(Breath));

 meanbreath = mean(BreathTotal);

 if isempty(Breath) && loopcount > 100 == 1

 for i = 1:10

 beep

 pause(.1)

 end

 EXIT = 0;

 end

 %% Keep Recording

 stop(y)

 signal_new = getaudiodata(y,'double');

 record(y)

 signal(1:end-length(signal_new)) =

signal(1+length(signal_new):end);

 signal(end-length(signal_new)+1:end) = signal_new;

 clear signal_new

 %% Plot

 figure(1)

 subplot(2,1,1)

 signalplot = signal;

 time1 = (0:length(signalplot)-1) / (Fs/4);

24

 refresh

 plot(time1,signalplot)

 title('Raw Signal')

 xlabel('Time (seconds)')

 ylabel('Intensity')

 subplot(2,1,2)

 envelopeplot = envelope_fDS;

 time = (0:length(envelopeplot)-1) / (DownSamp/4);

 plot(time,envelopeplot)

 hold on

plot(Breath/(DownSamp/4),envelope_fDS(Breath),'rx','MarkerSize',16,'li

newidth',4)

 title('Envelope of Breath Signal w/ Breath Markers')

 xlabel('time (sec)')

 ylabel('Arbitrary Units')

 hold off

end

25

Appendix E: VHDL filter code

user_logic.vhd
--
-- user_logic.vhd - entity/architecture pair
--
--
-- ***
-- ** Copyright (c) 1995-2010 Xilinx, Inc. All rights reserved. **
-- ** **
-- ** Xilinx, Inc. **
-- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" **
-- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND **
-- ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, **
-- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, **
-- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION **
-- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, **
-- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **
-- ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY **
-- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **
-- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **
-- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **
-- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **
-- ** FOR A PARTICULAR PURPOSE. **
-- ** **
-- ***
--
--
-- Filename: user_logic.vhd
-- Version: 1.00.a
-- Description: User logic.
-- Date: Wed Mar 09 23:46:09 2011 (by Create and Import Peripheral Wizard)
-- VHDL Standard: VHDL'93
--
-- Naming Conventions:
-- active low signals: "*_n"
-- clock signals: "clk", "clk_div#", "clk_#x"
-- reset signals: "rst", "rst_n"
-- generics: "C_*"
-- user defined types: "*_TYPE"
-- state machine next state: "*_ns"
-- state machine current state: "*_cs"
-- combinatorial signals: "*_com"
-- pipelined or register delay signals: "*_d#"
-- counter signals: "*cnt*"
-- clock enable signals: "*_ce"
-- internal version of output port: "*_i"
-- device pins: "*_pin"
-- ports: "- Names begin with Uppercase"
-- processes: "*_PROCESS"

26

-- component instantiations: "<ENTITY_>I_<#|FUNC>"
--

-- DO NOT EDIT BELOW THIS LINE --------------------
library ieee;
USE IEEE.numeric_std.ALL;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;

-- DO NOT EDIT ABOVE THIS LINE --------------------

--USER libraries added here

--
-- Entity section
--
-- Definition of Generics:
-- C_SLV_DWIDTH -- Slave interface data bus width
-- C_NUM_REG -- Number of software accessible registers
--
-- Definition of Ports:
-- Bus2IP_Clk -- Bus to IP clock
-- Bus2IP_Reset -- Bus to IP reset
-- Bus2IP_Data -- Bus to IP data bus
-- Bus2IP_BE -- Bus to IP byte enables
-- Bus2IP_RdCE -- Bus to IP read chip enable
-- Bus2IP_WrCE -- Bus to IP write chip enable
-- IP2Bus_Data -- IP to Bus data bus
-- IP2Bus_RdAck -- IP to Bus read transfer acknowledgement
-- IP2Bus_WrAck -- IP to Bus write transfer acknowledgement
-- IP2Bus_Error -- IP to Bus error response
--

entity user_logic is
 generic
 (
 -- ADD USER GENERICS BELOW THIS LINE ---------------
 --USER generics added here
 -- ADD USER GENERICS ABOVE THIS LINE ---------------

 -- DO NOT EDIT BELOW THIS LINE ---------------------
 -- Bus protocol parameters, do not add to or delete
 C_SLV_DWIDTH : integer := 32;
 C_NUM_REG : integer := 3
 -- DO NOT EDIT ABOVE THIS LINE ---------------------
);
 port
 (

27

 -- ADD USER PORTS BELOW THIS LINE ------------------
 F_CLK : in std_logic;
 -- ADD USER PORTS ABOVE THIS LINE ------------------

 -- DO NOT EDIT BELOW THIS LINE ---------------------
 -- Bus protocol ports, do not add to or delete
 Bus2IP_Clk : in std_logic;
 Bus2IP_Reset : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to C_SLV_DWIDTH-1);
 Bus2IP_BE : in std_logic_vector(0 to C_SLV_DWIDTH/8-1);
 Bus2IP_RdCE : in std_logic_vector(0 to C_NUM_REG-1);
 Bus2IP_WrCE : in std_logic_vector(0 to C_NUM_REG-1);
 IP2Bus_Data : out std_logic_vector(0 to C_SLV_DWIDTH-1);
 IP2Bus_RdAck : out std_logic;
 IP2Bus_WrAck : out std_logic;
 IP2Bus_Error : out std_logic
 -- DO NOT EDIT ABOVE THIS LINE ---------------------
);

 attribute SIGIS : string;
 attribute SIGIS of Bus2IP_Clk : signal is "CLK";
 attribute SIGIS of Bus2IP_Reset : signal is "RST";

end entity user_logic;

--
-- Architecture section
--

architecture IMP of user_logic is

 --USER signal declarations added here, as needed for user logic
 --***
 --***
 COMPONENT envelopeHDL
 PORT(clk : IN std_logic;
 reset : IN std_logic;
 clk_enable : IN std_logic;
 In1 : IN std_logic_vector(15 DOWNTO 0); -- int16
 ce_out : OUT std_logic;
 Out1 : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En19
);
 END COMPONENT;

 --***
 --***
 FOR ALL : envelopeHDL
 USE ENTITY work.envelopeHDL(rtl);

 SIGNAL Out_Filter : std_logic_vector(31 downto 0);
 SIGNAL Filter_Signed : std_logic_vector(15 downto 0);
 SIGNAL In_Filter : std_logic_vector(15 downto 0);

28

 SIGNAL Test_In : std_logic_vector(31 downto 0);

 -- SIGNALS FROM CLOCK DIVIDER
 SIGNAL div_count : IEEE.numeric_std.unsigned(8 DOWNTO 0);
 SIGNAL slow_clock : std_logic;
 --END USER SIGNALS
 --***
 --***

 --
 -- Signals for user logic slave model s/w accessible register example
 --
 signal slv_reg0 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg1 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg2 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg_write_sel : std_logic_vector(0 to 2);
 signal slv_reg_read_sel : std_logic_vector(0 to 2);
 signal slv_ip2bus_data : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_read_ack : std_logic;
 signal slv_write_ack : std_logic;

begin

 --USER logic implementation added here
 --***
 --***
 u_Envelope_HDL : envelopeHDL
 PORT MAP(clk => slow_clock,
 reset => Bus2IP_Reset,
 clk_enable => '1',
 In1 => Filter_Signed,
 Out1 => Out_Filter
);

 In_filter <= slv_reg0 (16 to 31);
 Filter_Signed <= In_filter - slv_reg2(16 to 31);

 Test_In(15 downto 0) <= In_Filter;

 --***
 --***
 -- CLOCK DIVIDER 8MHz -> 8KHz
 clk_div : PROCESS(F_CLK)
 BEGIN
 IF Bus2IP_Reset = '1' THEN
 div_count <= to_unsigned(1, 9);
 ELSIF F_CLK'event AND F_CLK = '1' THEN
 IF div_count = to_unsigned(499, 9) THEN
 div_count <= to_unsigned(0, 9);
 slow_clock <= not slow_clock;
 ELSE

29

 div_count <= div_count + 1;
 END IF;
 END IF;
 END PROCESS clk_div;

 --End User implementation
 --***
 --***

 --
 -- Example code to read/write user logic slave model s/w accessible registers
 --
 -- Note:
 -- The example code presented here is to show you one way of reading/writing
 -- software accessible registers implemented in the user logic slave model.
 -- Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond
 -- to one software accessible register by the top level template. For example,
 -- if you have four 32 bit software accessible registers in the user logic,
 -- you are basically operating on the following memory mapped registers:
 --
 -- Bus2IP_WrCE/Bus2IP_RdCE Memory Mapped Register
 -- "1000" C_BASEADDR + 0x0
 -- "0100" C_BASEADDR + 0x4
 -- "0010" C_BASEADDR + 0x8
 -- "0001" C_BASEADDR + 0xC
 --
 --
 slv_reg_write_sel <= Bus2IP_WrCE(0 to 2);
 slv_reg_read_sel <= Bus2IP_RdCE(0 to 2);
 slv_write_ack <= Bus2IP_WrCE(0) or Bus2IP_WrCE(1) or Bus2IP_WrCE(2);
 slv_read_ack <= Bus2IP_RdCE(0) or Bus2IP_RdCE(1) or Bus2IP_RdCE(2);

 -- implement slave model software accessible register(s)
 SLAVE_REG_WRITE_PROC : process(Bus2IP_CLK) is
 begin

 if Bus2IP_CLK'event and Bus2IP_CLK = '1' then
 if Bus2IP_Reset = '1' then
 slv_reg0 <= (others => '0');
 slv_reg1 <= (others => '0');
 slv_reg2 <= (others => '0');
 else
 case slv_reg_write_sel is
 when "100" =>
 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
 if (Bus2IP_BE(byte_index) = '1') then
 slv_reg0(byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7);
 end if;
 end loop;
 when "010" =>
 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
 if (Bus2IP_BE(byte_index) = '1') then

30

 slv_reg1(byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7);
 end if;
 end loop;
 when "001" =>
 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
 if (Bus2IP_BE(byte_index) = '1') then
 slv_reg2(byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7);
 end if;
 end loop;
 when others => null;
 end case;
 end if;
 end if;

 end process SLAVE_REG_WRITE_PROC;

 -- implement slave model software accessible register(s) read mux
 SLAVE_REG_READ_PROC : process(slv_reg_read_sel, slv_reg0, slv_reg1, slv_reg2, Out_Filter) is
 begin

 case slv_reg_read_sel is
 --when "100" => slv_ip2bus_data <= slv_reg0;
 when "100" => slv_ip2bus_data <= Test_In;
 when "010" => slv_ip2bus_data <= Out_Filter;
 when "001" => slv_ip2bus_data <= slv_reg2;
 when others => slv_ip2bus_data <= (others => '0');
 end case;

 end process SLAVE_REG_READ_PROC;

 --
 -- Example code to drive IP to Bus signals
 --
 IP2Bus_Data <= slv_ip2bus_data when slv_read_ack = '1' else
 (others => '0');

 IP2Bus_WrAck <= slv_write_ack;
 IP2Bus_RdAck <= slv_read_ack;
 IP2Bus_Error <= '0';

end IMP;

31

envelopeHDL.vhd
-- ---
-- File Name: C:\Users\Ricky\Desktop\Apnea\Simulink\HDL\envelopeHDL.vhd
-- Created: 2011-06-05 16:35:16
--
-- Generated by MATLAB 7.10 and Simulink HDL Coder 1.7
-- ---

-- ---
-- Module: envelopeHDL
-- Source Path: envelopeHDL
-- Hierarchy Level: 0
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY envelopeHDL IS
 PORT(clk : IN std_logic;
 reset : IN std_logic;
 clk_enable : IN std_logic;
 In1 : IN std_logic_vector(15 DOWNTO 0); -- int16
 ce_out : OUT std_logic;
 Out1 : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En19
);
END envelopeHDL;

ARCHITECTURE rtl OF envelopeHDL IS

 -- Component Declarations
 COMPONENT Timing_Controller
 PORT(clk : IN std_logic;
 reset : IN std_logic;
 clk_enable : IN std_logic;
 enb : OUT std_logic;
 enb_1_500_0 : OUT std_logic;
 enb_1_500_1 : OUT std_logic
);
 END COMPONENT;

 COMPONENT Discrete_FIR_Filter1
 PORT(clk : IN std_logic;
 enb : IN std_logic;
 reset : IN std_logic;
 Discrete_FIR_Filter1_in : IN std_logic_vector(15 DOWNTO 0); -- int16
 Discrete_FIR_Filter1_out : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En17
);
 END COMPONENT;

 COMPONENT Discrete_FIR_Filter
 PORT(clk : IN std_logic;
 enb_1_500_0 : IN std_logic;

32

 reset : IN std_logic;
 Discrete_FIR_Filter_in : IN std_logic_vector(15 DOWNTO 0); -- int16
 Discrete_FIR_Filter_out : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En19
);
 END COMPONENT;

 -- Component Configuration Statements
 FOR ALL : Timing_Controller
 USE ENTITY work.Timing_Controller(rtl);

 FOR ALL : Discrete_FIR_Filter1
 USE ENTITY work.Discrete_FIR_Filter1(rtl);

 FOR ALL : Discrete_FIR_Filter
 USE ENTITY work.Discrete_FIR_Filter(rtl);

 -- Signals
 SIGNAL enb_1_500_0 : std_logic;
 SIGNAL enb : std_logic;
 SIGNAL enb_1_500_1 : std_logic;
 SIGNAL Discrete_FIR_Filter1_out1 : std_logic_vector(31 DOWNTO 0); -- ufix32
 SIGNAL Discrete_FIR_Filter1_out1_signed : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL Downsample_bypass_reg : signed(31 DOWNTO 0); -- sfix32
 SIGNAL Downsample_out1 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL Abs_y : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL Abs_cast : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL Abs_cast_1 : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL Abs_out1 : signed(15 DOWNTO 0); -- int16
 SIGNAL Abs_out1_1 : std_logic_vector(15 DOWNTO 0); -- ufix16
 SIGNAL Discrete_FIR_Filter_out1 : std_logic_vector(31 DOWNTO 0); -- ufix32

BEGIN
 u_Timing_Controller : Timing_Controller
 PORT MAP(clk => clk,
 reset => reset,
 clk_enable => clk_enable,
 enb => enb,
 enb_1_500_0 => enb_1_500_0,
 enb_1_500_1 => enb_1_500_1
);

 u_Discrete_FIR_Filter1 : Discrete_FIR_Filter1
 PORT MAP(clk => clk,
 enb => enb,
 reset => reset,
 Discrete_FIR_Filter1_in => In1, -- int16
 Discrete_FIR_Filter1_out => Discrete_FIR_Filter1_out1 -- sfix32_En17
);

 u_Discrete_FIR_Filter : Discrete_FIR_Filter
 PORT MAP(clk => clk,
 enb_1_500_0 => enb_1_500_0,

33

 reset => reset,
 Discrete_FIR_Filter_in => Abs_out1_1, -- int16
 Discrete_FIR_Filter_out => Discrete_FIR_Filter_out1 -- sfix32_En19
);

 Discrete_FIR_Filter1_out1_signed <= signed(Discrete_FIR_Filter1_out1);

 -- Downsample: Downsample by 500, Sample offset 0
 -- Downsample bypass register
 Downsample_bypass_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 Downsample_bypass_reg <= to_signed(0, 32);
 ELSIF clk'EVENT AND clk = '1' THEN
 IF enb_1_500_1 = '1' THEN
 Downsample_bypass_reg <= Discrete_FIR_Filter1_out1_signed;
 END IF;
 END IF;
 END PROCESS Downsample_bypass_process;

 Downsample_out1 <= Discrete_FIR_Filter1_out1_signed WHEN enb_1_500_1 = '1' ELSE
 Downsample_bypass_reg;

 Abs_cast <= resize(Downsample_out1, 33);
 Abs_cast_1 <= - (Abs_cast);

 Abs_y <= Abs_cast_1(31 DOWNTO 0) WHEN Downsample_out1 < 0 ELSE
 Downsample_out1;
 Abs_out1 <= resize(Abs_y(31 DOWNTO 17), 16);

 Abs_out1_1 <= std_logic_vector(Abs_out1);

 Out1 <= Discrete_FIR_Filter_out1;

 ce_out <= enb_1_500_1;

END rtl;

34

Discrete_FIR_Filter1.vhd
-- --
-- File Name: C:\Users\Ricky\Desktop\Apnea\Simulink\HDL\Discrete_FIR_Filter1
-- Created: 2011-06-05 16:35:12
-- Generated by MATLAB 7.10 and Simulink HDL Coder 1.7
-- --
--
-- --
-- Module: Discrete_FIR_Filter1
-- Source Path: envelopeHDL/Discrete FIR Filter1
-- --
--
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
ENTITY Discrete_FIR_Filter1 IS
 PORT(clk : IN std_logic;
 enb : IN std_logic;
 reset : IN std_logic;
 Discrete_FIR_Filter1_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16
 Discrete_FIR_Filter1_out : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En17
);

END Discrete_FIR_Filter1;

--
--Module Architecture: Discrete_FIR_Filter1
--
ARCHITECTURE rtl OF Discrete_FIR_Filter1 IS
 -- Local Functions
 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed(15 DOWNTO 0); -- sfix16
 -- Constants
 CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(1856, 16); -- sfix16_En17
 CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(3960, 16); -- sfix16_En17
 CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(9506, 16); -- sfix16_En17
 CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(16448, 16); -- sfix16_En17
 CONSTANT coeff5 : signed(15 DOWNTO 0) := to_signed(22113, 16); -- sfix16_En17
 CONSTANT coeff6 : signed(15 DOWNTO 0) := to_signed(24286, 16); -- sfix16_En17

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO 9); -- sfix16
 SIGNAL Discrete_FIR_Filter1_in_regtype : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum1 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_1 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum2 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_2 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_3 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_1 : signed(16 DOWNTO 0); -- sfix17

35

 SIGNAL tapsum_mcand_1 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum3 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_4 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_5 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_2 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_2 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum4 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_6 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_7 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_3 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_3 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum5 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_8 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_9 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_4 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_4 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL product6 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL product5 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL product4 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL product3 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL product2 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL product1_cast : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL product1 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL sum1 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_10 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_11 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_temp_5 : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL sum2 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_12 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_13 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_temp_6 : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL sum3 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_14 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_15 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_temp_7 : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL sum4 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_16 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_17 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_temp_8 : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL sum5 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_18 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_cast_19 : signed(31 DOWNTO 0); -- sfix32_En17
 SIGNAL add_temp_9 : signed(32 DOWNTO 0); -- sfix33_En17
 SIGNAL output_typeconvert : signed(31 DOWNTO 0); -- sfix32_En17

BEGIN

 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO 9) <= (OTHERS => (OTHERS => '0'));

36

 ELSIF clk'event AND clk = '1' THEN
 IF enb = '1' THEN
 delay_pipeline(0) <= signed(Discrete_FIR_Filter1_in);
 delay_pipeline(1 TO 9) <= delay_pipeline(0 TO 8);
 END IF;
 END IF;
 END PROCESS Delay_Pipeline_process;

 Discrete_FIR_Filter1_in_regtype <= signed(Discrete_FIR_Filter1_in);

 add_cast <= Discrete_FIR_Filter1_in_regtype;
 add_cast_1 <= delay_pipeline(9);
 add_temp <= resize(add_cast, 17) + resize(add_cast_1, 17);
 tapsum1 <= add_temp(15 DOWNTO 0);

 tapsum_mcand <= tapsum1;

 add_cast_2 <= delay_pipeline(0);
 add_cast_3 <= delay_pipeline(8);
 add_temp_1 <= resize(add_cast_2, 17) + resize(add_cast_3, 17);
 tapsum2 <= add_temp_1(15 DOWNTO 0);

 tapsum_mcand_1 <= tapsum2;

 add_cast_4 <= delay_pipeline(1);
 add_cast_5 <= delay_pipeline(7);
 add_temp_2 <= resize(add_cast_4, 17) + resize(add_cast_5, 17);
 tapsum3 <= add_temp_2(15 DOWNTO 0);

 tapsum_mcand_2 <= tapsum3;

 add_cast_6 <= delay_pipeline(2);
 add_cast_7 <= delay_pipeline(6);
 add_temp_3 <= resize(add_cast_6, 17) + resize(add_cast_7, 17);
 tapsum4 <= add_temp_3(15 DOWNTO 0);

 tapsum_mcand_3 <= tapsum4;

 add_cast_8 <= delay_pipeline(3);
 add_cast_9 <= delay_pipeline(5);
 add_temp_4 <= resize(add_cast_8, 17) + resize(add_cast_9, 17);
 tapsum5 <= add_temp_4(15 DOWNTO 0);

 tapsum_mcand_4 <= tapsum5;

 product6 <= delay_pipeline(4) * coeff6;

 product5 <= tapsum_mcand_4 * coeff5;

 product4 <= tapsum_mcand_3 * coeff4;

 product3 <= tapsum_mcand_2 * coeff3;

37

 product2 <= tapsum_mcand_1 * coeff2;

 product1_cast <= product1;

 product1 <= tapsum_mcand * coeff1;

 add_cast_10 <= product1_cast;
 add_cast_11 <= product2;
 add_temp_5 <= resize(add_cast_10, 33) + resize(add_cast_11, 33);
 sum1 <= add_temp_5(31 DOWNTO 0);

 add_cast_12 <= sum1;
 add_cast_13 <= product3;
 add_temp_6 <= resize(add_cast_12, 33) + resize(add_cast_13, 33);
 sum2 <= add_temp_6(31 DOWNTO 0);

 add_cast_14 <= sum2;
 add_cast_15 <= product4;
 add_temp_7 <= resize(add_cast_14, 33) + resize(add_cast_15, 33);
 sum3 <= add_temp_7(31 DOWNTO 0);

 add_cast_16 <= sum3;
 add_cast_17 <= product5;
 add_temp_8 <= resize(add_cast_16, 33) + resize(add_cast_17, 33);
 sum4 <= add_temp_8(31 DOWNTO 0);

 add_cast_18 <= sum4;
 add_cast_19 <= product6;
 add_temp_9 <= resize(add_cast_18, 33) + resize(add_cast_19, 33);
 sum5 <= add_temp_9(31 DOWNTO 0);

 output_typeconvert <= sum5;

 -- Assignment Statements
 Discrete_FIR_Filter1_out <= std_logic_vector(output_typeconvert);
END rtl;

38

Discrete_FIR_Filter.vhd
-- --
-- File Name: C:\Users\Ricky\Desktop\Apnea\Simulink\HDL\Discrete_FIR_Filter
-- Created: 2011-06-05 16:35:14
-- Generated by MATLAB 7.10 and Simulink HDL Coder 1.7
-- --
--
-- --
-- Module: Discrete_FIR_Filter
-- Source Path: envelopeHDL/Discrete FIR Filter
-- --
--
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.ALL;
ENTITY Discrete_FIR_Filter IS
 PORT(clk : IN std_logic;
 enb_1_500_0 : IN std_logic;
 reset : IN std_logic;
 Discrete_FIR_Filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16
 Discrete_FIR_Filter_out : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En19
);

END Discrete_FIR_Filter;

--
--Module Architecture: Discrete_FIR_Filter
--
ARCHITECTURE rtl OF Discrete_FIR_Filter IS
 -- Local Functions
 -- Type Definitions
 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed(15 DOWNTO 0); -- sfix16
 -- Constants
 CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff5 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff6 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff7 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff8 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff9 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff10 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff11 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff12 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff13 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff14 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19
 CONSTANT coeff15 : signed(15 DOWNTO 0) := to_signed(17476, 16); -- sfix16_En19

 -- Signals
 SIGNAL delay_pipeline : delay_pipeline_type(0 TO 28); -- sfix16
 SIGNAL Discrete_FIR_Filter_in_regtype : signed(15 DOWNTO 0); -- sfix16

39

 SIGNAL tapsum1 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_1 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum2 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_2 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_3 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_1 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_1 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum3 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_4 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_5 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_2 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_2 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum4 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_6 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_7 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_3 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_3 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum5 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_8 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_9 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_4 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_4 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum6 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_10 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_11 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_5 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_5 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum7 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_12 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_13 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_6 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_6 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum8 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_14 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_15 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_7 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_7 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum9 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_16 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_17 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_8 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_8 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum10 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_18 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_19 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_9 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_9 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum11 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_20 : signed(15 DOWNTO 0); -- sfix16

40

 SIGNAL add_cast_21 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_10 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_10 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum12 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_22 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_23 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_11 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_11 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum13 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_24 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_25 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_12 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_12 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum14 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_26 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_27 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_13 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_13 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL tapsum15 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_28 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_cast_29 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL add_temp_14 : signed(16 DOWNTO 0); -- sfix17
 SIGNAL tapsum_mcand_14 : signed(15 DOWNTO 0); -- sfix16
 SIGNAL product15 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product14 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product13 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product12 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product11 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product10 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product9 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product8 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product7 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product6 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product5 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product4 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product3 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product2 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product1_cast : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL product1 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL sum1 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_30 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_31 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_15 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum2 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_32 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_33 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_16 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum3 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_34 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_35 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_17 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum4 : signed(31 DOWNTO 0); -- sfix32_En19

41

 SIGNAL add_cast_36 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_37 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_18 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum5 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_38 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_39 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_19 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum6 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_40 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_41 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_20 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum7 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_42 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_43 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_21 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum8 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_44 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_45 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_22 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum9 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_46 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_47 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_23 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum10 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_48 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_49 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_24 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum11 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_50 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_51 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_25 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum12 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_52 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_53 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_26 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum13 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_54 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_55 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_27 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL sum14 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_56 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_cast_57 : signed(31 DOWNTO 0); -- sfix32_En19
 SIGNAL add_temp_28 : signed(32 DOWNTO 0); -- sfix33_En19
 SIGNAL output_typeconvert : signed(31 DOWNTO 0); -- sfix32_En19

BEGIN

 -- Block Statements
 Delay_Pipeline_process : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 delay_pipeline(0 TO 28) <= (OTHERS => (OTHERS => '0'));

42

 ELSIF clk'event AND clk = '1' THEN
 IF enb_1_500_0 = '1' THEN
 delay_pipeline(0) <= signed(Discrete_FIR_Filter_in);
 delay_pipeline(1 TO 28) <= delay_pipeline(0 TO 27);
 END IF;
 END IF;
 END PROCESS Delay_Pipeline_process;

 Discrete_FIR_Filter_in_regtype <= signed(Discrete_FIR_Filter_in);

 add_cast <= Discrete_FIR_Filter_in_regtype;
 add_cast_1 <= delay_pipeline(28);
 add_temp <= resize(add_cast, 17) + resize(add_cast_1, 17);
 tapsum1 <= add_temp(15 DOWNTO 0);

 tapsum_mcand <= tapsum1;

 add_cast_2 <= delay_pipeline(0);
 add_cast_3 <= delay_pipeline(27);
 add_temp_1 <= resize(add_cast_2, 17) + resize(add_cast_3, 17);
 tapsum2 <= add_temp_1(15 DOWNTO 0);

 tapsum_mcand_1 <= tapsum2;

 add_cast_4 <= delay_pipeline(1);
 add_cast_5 <= delay_pipeline(26);
 add_temp_2 <= resize(add_cast_4, 17) + resize(add_cast_5, 17);
 tapsum3 <= add_temp_2(15 DOWNTO 0);

 tapsum_mcand_2 <= tapsum3;

 add_cast_6 <= delay_pipeline(2);
 add_cast_7 <= delay_pipeline(25);
 add_temp_3 <= resize(add_cast_6, 17) + resize(add_cast_7, 17);
 tapsum4 <= add_temp_3(15 DOWNTO 0);

 tapsum_mcand_3 <= tapsum4;

 add_cast_8 <= delay_pipeline(3);
 add_cast_9 <= delay_pipeline(24);
 add_temp_4 <= resize(add_cast_8, 17) + resize(add_cast_9, 17);
 tapsum5 <= add_temp_4(15 DOWNTO 0);

 tapsum_mcand_4 <= tapsum5;

 add_cast_10 <= delay_pipeline(4);
 add_cast_11 <= delay_pipeline(23);
 add_temp_5 <= resize(add_cast_10, 17) + resize(add_cast_11, 17);
 tapsum6 <= add_temp_5(15 DOWNTO 0);

 tapsum_mcand_5 <= tapsum6;

43

 add_cast_12 <= delay_pipeline(5);
 add_cast_13 <= delay_pipeline(22);
 add_temp_6 <= resize(add_cast_12, 17) + resize(add_cast_13, 17);
 tapsum7 <= add_temp_6(15 DOWNTO 0);

 tapsum_mcand_6 <= tapsum7;

 add_cast_14 <= delay_pipeline(6);
 add_cast_15 <= delay_pipeline(21);
 add_temp_7 <= resize(add_cast_14, 17) + resize(add_cast_15, 17);
 tapsum8 <= add_temp_7(15 DOWNTO 0);

 tapsum_mcand_7 <= tapsum8;

 add_cast_16 <= delay_pipeline(7);
 add_cast_17 <= delay_pipeline(20);
 add_temp_8 <= resize(add_cast_16, 17) + resize(add_cast_17, 17);
 tapsum9 <= add_temp_8(15 DOWNTO 0);

 tapsum_mcand_8 <= tapsum9;

 add_cast_18 <= delay_pipeline(8);
 add_cast_19 <= delay_pipeline(19);
 add_temp_9 <= resize(add_cast_18, 17) + resize(add_cast_19, 17);
 tapsum10 <= add_temp_9(15 DOWNTO 0);

 tapsum_mcand_9 <= tapsum10;

 add_cast_20 <= delay_pipeline(9);
 add_cast_21 <= delay_pipeline(18);
 add_temp_10 <= resize(add_cast_20, 17) + resize(add_cast_21, 17);
 tapsum11 <= add_temp_10(15 DOWNTO 0);

 tapsum_mcand_10 <= tapsum11;

 add_cast_22 <= delay_pipeline(10);
 add_cast_23 <= delay_pipeline(17);
 add_temp_11 <= resize(add_cast_22, 17) + resize(add_cast_23, 17);
 tapsum12 <= add_temp_11(15 DOWNTO 0);

 tapsum_mcand_11 <= tapsum12;

 add_cast_24 <= delay_pipeline(11);
 add_cast_25 <= delay_pipeline(16);
 add_temp_12 <= resize(add_cast_24, 17) + resize(add_cast_25, 17);
 tapsum13 <= add_temp_12(15 DOWNTO 0);

 tapsum_mcand_12 <= tapsum13;

 add_cast_26 <= delay_pipeline(12);
 add_cast_27 <= delay_pipeline(15);
 add_temp_13 <= resize(add_cast_26, 17) + resize(add_cast_27, 17);

44

 tapsum14 <= add_temp_13(15 DOWNTO 0);

 tapsum_mcand_13 <= tapsum14;

 add_cast_28 <= delay_pipeline(13);
 add_cast_29 <= delay_pipeline(14);
 add_temp_14 <= resize(add_cast_28, 17) + resize(add_cast_29, 17);
 tapsum15 <= add_temp_14(15 DOWNTO 0);

 tapsum_mcand_14 <= tapsum15;

 product15 <= tapsum_mcand_14 * coeff15;

 product14 <= tapsum_mcand_13 * coeff14;

 product13 <= tapsum_mcand_12 * coeff13;

 product12 <= tapsum_mcand_11 * coeff12;

 product11 <= tapsum_mcand_10 * coeff11;

 product10 <= tapsum_mcand_9 * coeff10;

 product9 <= tapsum_mcand_8 * coeff9;

 product8 <= tapsum_mcand_7 * coeff8;

 product7 <= tapsum_mcand_6 * coeff7;

 product6 <= tapsum_mcand_5 * coeff6;

 product5 <= tapsum_mcand_4 * coeff5;

 product4 <= tapsum_mcand_3 * coeff4;

 product3 <= tapsum_mcand_2 * coeff3;

 product2 <= tapsum_mcand_1 * coeff2;

 product1_cast <= product1;

 product1 <= tapsum_mcand * coeff1;

 add_cast_30 <= product1_cast;
 add_cast_31 <= product2;
 add_temp_15 <= resize(add_cast_30, 33) + resize(add_cast_31, 33);
 sum1 <= add_temp_15(31 DOWNTO 0);

 add_cast_32 <= sum1;
 add_cast_33 <= product3;
 add_temp_16 <= resize(add_cast_32, 33) + resize(add_cast_33, 33);
 sum2 <= add_temp_16(31 DOWNTO 0);

45

 add_cast_34 <= sum2;
 add_cast_35 <= product4;
 add_temp_17 <= resize(add_cast_34, 33) + resize(add_cast_35, 33);
 sum3 <= add_temp_17(31 DOWNTO 0);

 add_cast_36 <= sum3;
 add_cast_37 <= product5;
 add_temp_18 <= resize(add_cast_36, 33) + resize(add_cast_37, 33);
 sum4 <= add_temp_18(31 DOWNTO 0);

 add_cast_38 <= sum4;
 add_cast_39 <= product6;
 add_temp_19 <= resize(add_cast_38, 33) + resize(add_cast_39, 33);
 sum5 <= add_temp_19(31 DOWNTO 0);

 add_cast_40 <= sum5;
 add_cast_41 <= product7;
 add_temp_20 <= resize(add_cast_40, 33) + resize(add_cast_41, 33);
 sum6 <= add_temp_20(31 DOWNTO 0);

 add_cast_42 <= sum6;
 add_cast_43 <= product8;
 add_temp_21 <= resize(add_cast_42, 33) + resize(add_cast_43, 33);
 sum7 <= add_temp_21(31 DOWNTO 0);

 add_cast_44 <= sum7;
 add_cast_45 <= product9;
 add_temp_22 <= resize(add_cast_44, 33) + resize(add_cast_45, 33);
 sum8 <= add_temp_22(31 DOWNTO 0);

 add_cast_46 <= sum8;
 add_cast_47 <= product10;
 add_temp_23 <= resize(add_cast_46, 33) + resize(add_cast_47, 33);
 sum9 <= add_temp_23(31 DOWNTO 0);

 add_cast_48 <= sum9;
 add_cast_49 <= product11;
 add_temp_24 <= resize(add_cast_48, 33) + resize(add_cast_49, 33);
 sum10 <= add_temp_24(31 DOWNTO 0);

 add_cast_50 <= sum10;
 add_cast_51 <= product12;
 add_temp_25 <= resize(add_cast_50, 33) + resize(add_cast_51, 33);
 sum11 <= add_temp_25(31 DOWNTO 0);

 add_cast_52 <= sum11;
 add_cast_53 <= product13;
 add_temp_26 <= resize(add_cast_52, 33) + resize(add_cast_53, 33);
 sum12 <= add_temp_26(31 DOWNTO 0);

 add_cast_54 <= sum12;

46

 add_cast_55 <= product14;
 add_temp_27 <= resize(add_cast_54, 33) + resize(add_cast_55, 33);
 sum13 <= add_temp_27(31 DOWNTO 0);

 add_cast_56 <= sum13;
 add_cast_57 <= product15;
 add_temp_28 <= resize(add_cast_56, 33) + resize(add_cast_57, 33);
 sum14 <= add_temp_28(31 DOWNTO 0);

 output_typeconvert <= sum14;

 -- Assignment Statements
 Discrete_FIR_Filter_out <= std_logic_vector(output_typeconvert);
END rtl;

47

Timing_Controller.vhd
-- ---
-- File Name: C:\Users\Ricky\Desktop\Apnea\Simulink\HDL\Timing_Controller.vhd
-- Created: 2011-06-05 16:35:12
--
-- Generated by MATLAB 7.10 and Simulink HDL Coder 1.7
-- ---

-- ---
-- Module: Timing_Controller
-- Source Path: Timing Controller
-- Hierarchy Level: 1
-- ---
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY Timing_Controller IS
 PORT(clk : IN std_logic;
 reset : IN std_logic;
 clk_enable : IN std_logic;
 enb : OUT std_logic;
 enb_1_500_0 : OUT std_logic;
 enb_1_500_1 : OUT std_logic
);
END Timing_Controller;

ARCHITECTURE rtl OF Timing_Controller IS

 -- Signals
 SIGNAL count500 : unsigned(8 DOWNTO 0); -- ufix9
 SIGNAL phase_all : std_logic;
 SIGNAL phase_0 : std_logic;
 SIGNAL phase_0_tmp : std_logic;
 SIGNAL phase_1 : std_logic;
 SIGNAL phase_1_tmp : std_logic;

BEGIN
 Counter500 : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 count500 <= to_unsigned(1, 9);
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 IF count500 = to_unsigned(499, 9) THEN
 count500 <= to_unsigned(0, 9);
 ELSE
 count500 <= count500 + 1;
 END IF;
 END IF;
 END IF;
 END PROCESS Counter500;

48

 phase_all <= '1' WHEN clk_enable = '1' ELSE '0';

 temp_process1 : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 phase_0 <= '0';
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 phase_0 <= phase_0_tmp;
 END IF;
 END IF;
 END PROCESS temp_process1;

 phase_0_tmp <= '1' WHEN count500 = to_unsigned(499, 9) AND clk_enable = '1' ELSE '0';

 temp_process2 : PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 phase_1 <= '1';
 ELSIF clk'event AND clk = '1' THEN
 IF clk_enable = '1' THEN
 phase_1 <= phase_1_tmp;
 END IF;
 END IF;
 END PROCESS temp_process2;

 phase_1_tmp <= '1' WHEN count500 = to_unsigned(0, 9) AND clk_enable = '1' ELSE '0';

 enb <= phase_all AND clk_enable;

 enb_1_500_0 <= phase_0 AND clk_enable;

 enb_1_500_1 <= phase_1 AND clk_enable;

END rtl;

