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ABSTRACT. A derivation of Benford's Law or the First-Digit Phenomenon is 
given assuming only base-invariance of the underlying law. The only base- 
invariant distributions are shown to be convex combinations of two extremal 
probabilities, one corresponding to point mass and the other a log-Lebesgue 
measure. The main tools in the proof are identification of an appropriate man- 
tissa a-algebra on the positive reals, and results for invariant measures on the 
circle. 

1. INTRODUCTION 

In 1881 Simon Newcomb observed, "That the ten digits do not occur with 
equal frequency must be evident to any one making use of logarithmic tables, 
and noticing how much faster the first pages wear out than the last ones. The first 
significant digit is oftener 1 than any other digit, and the frequency diminishes 
up to 9." He went on to conclude that the "law of frequency" of significant 
digits (base 10) satisfies 

(1) Prob(first significant digit = d) = loglo(1 + d-1), d = 1, ...9 

and 
9 

(2) Prob(second significant digit = d) = E loglo(l + (10k + d)'), 
k=1 

d=O, 1, 2, ... ,9, 

although he supplied neither a precise domain or meaning to this probability, a 
formal argument, nor numerical data. 

Some fifty-seven years later Benford [1] popularized (and perhaps rediscov- 
ered) (1) and (2), and gave substantial empirical evidence for them based on 
frequencies of significant digits from twenty different tables including surface 
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areas of 335 rivers, specific heats and molecular weights of thousands of chem- 
ical compounds, street addresses of the first 342 persons listed in American 
Men of Science, and entries from a mathematical handbook. The union of his 
tables came surprisingly close to the predicted frequencies in (1), and those fre- 
quencies came to be known as Benford's Law. Since Benford's article, many 
explanations and "proofs" of (1) have been offered; Raimi [9] has an excellent 
review of the literature. 

The arguments supporting Benford's Law have generally followed three lines 
of reasoning, namely, discrete density and summability methods, continuous 
density and summability methods, and scale-invariance hypotheses. In the first 
of these (e.g., [2, 5]), the underlying data set is assumed to be the natural num- 
bers, and various ad hoc summability techniques are proposed which assign the 
density appearing in (1) to the set of positive integers Fd with first significant 
digit = d. But the set Fd does not have a natural density, that is, 

liE d nf {1, ... , n} does not exist, 
n--+o)o n 

and extensions of density to sets like Fd, and which coincide with natural den- 
sity on sets which have natural density, are by no means unique. Most of the 
arguments for (1) along these lines simply sought to justify certain summation 
methods which give rise to the "correct" Benford frequency. Moreover, they 
have two other shortcomings: they completely ignore continuous data, whereas 
Benford's tables included, for example, irrational entries such as those from 
square-root tables; and they are necessarily only finitely additive, since the un- 
derlying set is countable and the density of each singleton is 0. 

This density/summability idea has been extended in essentially the same way 
(cf. [9]) to the continuous setting by various integration schemes which yield 
densities of the sets of positive real numbers with leading significant digit = d . 
But again, such extensions exist in profusion and are also necessarily only finitely 
additive. 

The third main approach assumes that any reasonable first digit law- should 
be scale-invariant. That is, if the underlying data is multiplied by a nonzero 
constant (e.g., conversion from English to metric units), the rescaled data should 
satisfy exactly the same law. The scale-invariant hypothesis has been used in 
both the discrete (e.g., [2]) and continuous (e.g., [7]) settings, but again with the 
shortcomings of nonuniqueness and finite-additivity (e.g., via Banach measures 
as in [9]). Worse yet, in the continuous model, it is easy to see that there is no 
scale-invariant (countably-additive) Borel probability measure on the positive 
reals [9]. 

Thus all the previous arguments der-iving Benford's Law suffer from both 
nonuniqueness and lack of countably additivity; Raimi [8] concludes that "the 
answer remains obscure". 

The above lines of reasoning, however, all do share one important property: 
each carries over mutatis mutandis ([9, p. 536]) to bases other than decimal 
(see (3) below). The main purpose of this article is to provide a new formula- 
tion of the first-digit problem set on the natural assumption of base-invariance 
(Definition 3.1 below), and to prove that there is a unique countably-additive 
nonatomic base-invariant probability measure on the positive reals. This prob- 
ability satisfies Benford's law (1) as well as the corresponding nth digit laws for 
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all n and all integer bases. The main key idea, in addition to the notion of 
base-invariance, is the definition (Definition 2.1) of the appropriate measura- 
bility structure; with these the proofs are not difficult and follow from known 
results concerning invariant measures on the circle. 

2. THE MANTISSA FUNCTION AND SIGMA ALGEBRA 

The first step toward making rigorous sense of the significant digit laws (1) 
and (2) is to identify an appropriate a-algebra domain for the probability mea- 
sure. As will be seen here, a natural candidate is a sub-c-algebra of the Borels 
on the positive reals which corresponds to modular arithmetic in the exponent. 

Throughout this article, R+ will denote the positive real numbers (0, xc), Z 
the integers, N the natural numbers, 3 the Borel c-algebra on R+, and 3(A) 
the Borel subsets of A; 1b signifies union of disjoint sets; and for a subset E 
of R and aER, aE istheset {ae:e E},and a+E={a+e:e E}. 

Definition 2.1. For each integer b > 1, the (base b) mantissa function, Mb, 
is the function Mb: R+ -+ [1, b) such that Mb(x) = r, where r is the unique 
number in [1, b) with x = rbn for some n E Z. For E c [1, b), let 

(E)b = Mb-(E) = W bnE c R+. 
nEZ 

The (base b) mantissa c-algebra, Zb, is the c-algebra on R+ generated by 
Mb * 

Remarks. It is easily checked that Mb is well defined. The restriction of its 
domain to R+ is only for convenience and may easily be extended to all reals 
via Mb(O) = 0 and Mb(-x) = Mb(x), in which case the only significant change 
in the results below is addition of an atom at 0. Similarly, bases b E N\{ 1} 
are used only for convenience and may easily be extended for the purposes of 
this article to any element in Z\{ 1, 0, -1 }. Although general integral bases 
other than the standard decimal base b = 10 will be addressed below, unless 
otherwise noted all specific constants will be expressed base 10. 

Example 2.2. M10(9) = 9 = M100(9), M2(9) = 9/8 [= 1.001 (base 2)], ({l})io 
= {Ion: n E Z}, ([1, b))b =R+ forall integers b > 1. 

Lemma 2.3. For all b > 1, 
(i) (E)b = Ug-1(bkE)bn for all n E N and E c [1, b); 

(ii) ,ob = {(E)b: E E B(l , b)}; 
(iii) J4b c J4 c B for all n E N; 
(iv) ,b is closed under scalar multiplication, i.e., S E Jb, a > 0 =b aS E 

Proof. Conclusion (i) follows from the definition of ( )b; (ii) is routine; (iii) 
follows easily from (i) and (ii); and (iv) follows easily from (ii). 0 

Conclusion (i) will be a key ingredient in the definition of base-invariance 
below. It is clear from (ii) that every nonempty set in ,b is unbounded (with 
accumulation points at 0 and at +ox). In particular, finite intervals of the 
form (c, d) are not in ,b, and hence the problem (cf. [9]) of existence of 
a universal median h satisfying Prob(O, h) = 1/2 is avoided, since (0, h) 
is not a (.,ob) measurable set. It is easily seen that the inclusions in (iii) are 
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strict; for example, the set ([1, 2)) 10 of all real numbers whose first significant 
digit (base 10) is 1 is in A1oo, but the set ([1, 20))ioo is not in A91o. As was 
pointed out by Goran Hognas, it is also interesting to note that A1b is self- 
similar in the sense that for every set S e Ab and every integer n, bnS = S. 
In contrast to (iv), Ab is not closed under scalar addition; for example, the set 
({1})lo+5={...,5.Ol,5.l,65 15, 105,...} isnotin J10. 

Definition 2.4. For b E N\{ I } and i E , N D)(x) is the ith significant digit 
of x when represented base b; e.g., D(l)(7r) = 3, D(2i)(7) = 1, D(1)(x) 1, 
D(2) (7)= 1, D(3) (7r) = 0 . 

More formally, D('): R+ -* {01, l, b-l} is given by D() = (g1)ioMb , 
where: Mb is the mantissa function above; gb is the function gb(io, il, .* ) = 

EZ=oiklbk for io E {1, 2, ...,b - } and ik E {0, 1, 2, ...,b - } for 
k E N, and gj , where nonunique, is taken to be the "terminating" inverse (e.g., 

gj1(3) =g'(2.999 ... )=(3, 0, 0, ...) and gj1(9.99 ... )=(1, 00,...)); 
and (.)f is the coordinate function (projection) (al, a2, i.. )i = as. 

The next lemma records the fact that the a-algebra 1b, rather than the 
larger Borel a-algebra, is exactly the proper domain for a general significant 
digit probability law. 

Lemma 2.5. For each interger b > 1, Ab is the a-algebra generated by {D('): 
i E N}J 
Proof. Immediate, since the function Mb can be written in terms of the func- 
tions {D(l)} and vice versa. O 

As mentioned in the introduction, the arguments which have been used in the 
past to justify (1) and (2) carry over immediately to other bases and digits and 
even joint distributions of the digits (to yield, for example, the probability that 
the first two significant digits are d, and d2, respectively). This generalized 
significant digit law, "which may be summarized in one diagram: The C scale 
of a slide rule" [9, p. 536], can now be easily stated in terms of the significant 
digit functions {D(l)I}. 

(Generalized Significant Digit Law). For every integer b > 1, 

(3) P nD)(n{ - di}) = logb [1 + ( bk-idi) ] 

forall keN; all d1 E {1,2,...,b- 1}; and all dj E {, 1,...,b- 1}, 
j = 2, ... , k. 

It is an easy matter to check that (1) and (2) are special cases of (3). The 
natural measure-theoretic structure (R+, Ab) has now been identified which 
will allow probabilistic analysis of events such as "the leading digit base 10 is 
less than 5", since, by Lemma 2.5, any probability measure on the measurable 
space (R+R, Al40) will uniquely determine the probability of such an event. 

To facilitate notation, it is often convenient to identify a probability measure 
on 1b with its canonical representation as a probability on B [I, b) . 

Lemma 2.6. The relationship 

(4) P((E)b) = P(E), E E B[l, b), 
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defines a 1-1 correspondence (measure isomorphism) between probability mea- 
sures P on (R+, Ab) and Borel probability measures P on [1, b). 
Proof. Immediate from Lemma 2.3(ii). 5 

3. BASE-INVARIANCE AND MAIN THEOREM 

The underlying motivation for an assumption of base-invariance in a general 
significant digit law is simply the intuitive feeling that any "reasonable" such 
law should be as valid for other integral bases as for base 10. 

To motivate the definition of base-invariance below, consider the set S of 
positive reals whose first significant digit (base 10) is less than 5. By Lemma 
2.3(i), 

S = ([1, 5))io = ([1, 5)) loo ([ 10, 50)) loo, 
so (letting a = logl0 5) this same set S can be represented either way, i.e., 

S { ([1 ))b if b = 10, 
l 1 ba/2))b W ([bi/2, b(l+a)/2))b if b = 100. 

Hence if a probability P on Ab is "base-invariant", the measures of the two 
corresponding S-representing subsets of [1, b) should be the same, i.e., 

P[l1, ba) = P[l , ba!2) + P[b1/2 b(l+a)/2) 

and similarly for higher power bases bn, where P is the "restriction" of P to 
B[ 1, b) given in (4). This suggests the following key definition. 

Definition 3.1. A probability measure P on (IR+, Jb) is base-invariant if the 
corresponding probability P on B[ 1, b) satisfies 

n-l 
(5) P[l, ba) - E P[bk/n b(k+a)/n) for all n EN and all a E (0, 1) . 

k=O 

This definition of base-invariance is a very general one in that it involves only 
a single integral base b and, automatically via Lemma 2.3(i), integral powers of 
that base b. There is no a priori assumption, for example, on the relationship 
between probabilities of the sets of numbers with first significant digit 1 base 
10 and 1 base 7, and this is reflected in the observation that neither a-algebra 
A7 nor e#o contains the other, in contrast to the case (Lemma 2.3(iii)) for 
powers of a single base. On the other hand, this definition is strong enough 
to guarantee that invariance with respect to any single base b implies (via the 
natural correspondence (9) and Theorem 3.5 below) invariance with respect to 
all other bases. 

The next example shows, as mentioned above, that the probability defined 
by the generalized significant digit law (3) is necessarily base-invariant (in the 
sense of (5)). 

Example 3.2. Let Pb be the probability measure on (R+1, 4b) defined by 

(6) Pb((1 , Y))) = 109b Y for y E [1, b). 

It is easy to check that Pb satisfies (5) and is in fact precisely the probability 
defined by the generalized significant digit law (3). 
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powers of a single base. On the other hand, this definition is strong enough
to guarantee that invariance with respect to any single base b implies (via the
natural correspondence (9) and Theorem 3.5 below) invariance with respect to
all other bases.

The next example shows, as mentioned above, that the probability defined
by the generalized significant digit law (3) is necessarily base-invariant (in the
sense of (5)).

Example 3.2. Let Pb be the probability measure on (lR+, v-!4) defined by

(6) Pb ( ([ 1 , 1'))b) = 10gb I' for I' E [1 , b) ·

It is easy to check that Pb satisfies (5) and is in fact precisely the probability
defined by the generalized significant digit law (3).
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The constant 1 plays a special role among the positive numbers with respect 
to the mantissa function, and hence the significant digit problem, since 1 is 
the only positive number for which Mb is constant for all b (Mb (1) - 1). 
The possibility that this special constant 1 occurs (say "in nature") with posi- 
tive probability is precluded under assumptions of scale-invariance or density/ 
summability methods, but is perfectly acceptable under the base-invariance hy- 
pothesis, and in fact is the only constant that may have positive probability 
under this hypothesis. The next example reflects the extreme case when all the 
mass is concentrated on 1. 

Example 3.3. Let P. be the probability measure on (1R+, Ab) defined (via 
Lemma 2.3(ii)) by 

1 ifIeEE 
(7) P*((E)b)={ o Otherwise for all E E B[l, b)]. 

Then the corresponding Borel probability measure P, on [1, b) is the dirac- 
delta measure 31 (point mass at 1), and P. is clearly base-invariant. 

Example 3.4. Let Qb be the probability measure on (IR+, 1b) defined by 

(8) Qb[([l Y))b) = (Y - 1)/(b- 1) for y E [I, b), 

that is, Qb is "uniform" on b4. It is easy to see that the corresponding Borel 
probability measure Qb on [1, b) does not satisfy (5), and thus Qb is not 
base-invariant. 

The next theorem is the main result of this article. 

Theorem 3.5. P is a base-invariant probability measure on (R+, 4b) if and 
only ifforsome q E [O, 1], 

P = qP* + ( -q)Pb, 

where P* and Pb are as in (7) and (6), respectively. 

The proof of Theorem 3.5 will be given in the next section. 

Corollary 3.6. The conditional probability, given RI \ ( 1) b, of every base-invariant 
probability measure on (R+, Ab) is Pb and satisfies the generalized significant 
digit law (3). 

Next, the stronger assumption of scale-invariance will be analyzed; here again 
the key to a clear countably additive theory is use of the mantissa a-algebra Ab 
rather than the whole Borel field. 

Definition 3.7. A probability measure P on (R+, Ab) is scale-invariant for 
a > O if 

P(S) = P(aS) for all SE 4b, 
and is scale-invariant if it is scale-invariant for some positive a which is not a 
rational power of b. (Recall that aS E Ab by Lemma 2.3(iv).) 

Note that this definition of scale-invariance is also very general in that only 
the existence of a single invariant scale factor is assumed; it follows easily from 
the next theorem that any such measure is then scale-invariant for all a > 0. 
In the examples given above, it is easily seen that Pb (Example 3.2) is scale- 
invariant, but neither P. (Example 3.3) nor Qb (Example 3.4) are. 
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Theorem 3.8. Pb is the unique scale-invariant probability measure on (R+ , ,b) . 
Proof. That Pb is scale-invariant is any easy calculation. Conversely, suppose 
P is scale-invariant for some positive number a not a rational power of b, 
and let P be the b-logarithmic rescaling of P on B[0, 1), that is, 

(9) P[O, a) = P[l, ba) = P(([1, ba))b) for all a E [0, 1). 

It is easy to see that multiplication by a in R+ corresponds via log1b() to 
an irrational rotation on the circle [0, 1) mod (1), so the scale-invariance for 
a of P is equivalent to the invariance of P with respect to irrational rotation. 
It is well known that this implies P must be Lebesgue measure, so by (9) 
P(E) = logb(E) for all E E B[l, b), and Lemma 2.6 completes the proof. ol 

(Durrett's [3, Example 2.3, p. 300] uses this argument to show explicitly that 
Benford's Law holds for the kth significant digits of the powers of 2 and implies 
that it also holds for powers of other integers as well, and a short proof of 
Theorem 3.8 could be based on his example and Lemma 2.6; the more detailed 
proof given above is only for the sake of completeness.) 

Theorem 3.9 (Scale-invariance implies base-invariance). If the probability mea- 
sure P on (R+, Ab) is scale-invariant, then P is base-invariant. 
Proof. Immediate from Theorems 3.8 and 3.5. 0l 

Recall that the converse is not true, since P. is base-invariant but not scale- 
invariant. The proof of Theorem 3.5 is slightly more complicated than that of 
Theorem 3.8, essentially because scale-invariance corresponds to the compara- 
tively easy case of invariance under irrational rotations (x 4 x + fl)(mod 1) 
on the circle, whereas base-invariance corresponds to invariance under multi- 
plication (x * 4 nx(mod 1)), regarding which a number of basic questions are 
still unresolved. For example, Furstenberg's twenty-five year old conjecture that 
Lebesgue measure is the only nonatomic Borel probability measure on [0, 1) 
which is invariant under both 2x(mod 1) and 3x(mod 1) is still open. 

4. PROOF OF MAIN THEOREM 

Recall that a measure ,u on (Q, F) is invariant under the measure mapping 
T:Q-+ 2 if 

u(E) = u(T-1(E)) for all E E F. 

The following proposition is the key to the proof of Theorem 3.5; as no 
reference in the literature is known to the author, a proof is included for com- 
pleteness. Throughout this section b > 1, A denotes Lebesgue measure on 
[0, 1), and 5o denotes the (Borel) Dirac (point mass) measure at 0. 

Proposition 4.1. A Borel probability measure P on [0, 1) is invariant under the 
mappings nx(mod 1) for all n e N if and only if 

(10) P=q.r5o+(l-q)A forsomeqe[0, 1]. 
Proof. It is well known (e.g., [4, p. 595]) that a Borel probability measure P 
on [0, 1) is uniquely determined by its Fourier coefficients 

On= je2dinxdP(x), n E Z. 
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4. PROOF OF MAIN THEOREM

Recall that a measure f1. on (0, 7) is invariant under the measure mapping
T: 0 --+ 0 if

f1.(E) = f1.(T- 1(E)) for all E E F .

The following proposition is the key to the proof of Theorem 3.5; as no
reference in the literature is known to the author, a proof is included for com
pleteness. Throughout this section b > 1, A. denotes Lebesgue measure on
[0, 1), and do denotes the (Borel) Dirac (point mass) measure at O.
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It is easy to check that (10) implies invariance of P under the mappings 
nx(mod 1) for all n . Conversely, assume invariance of P and note that On - q 
for all n E N. To see that q must be real and in fact in [0, 1], observe that 

I N IN 

(11) P({0})= X lim {Ze2ninx dP(x) = lim 1 Okn = q, JN-.+c~o N---,o N 
n=1 ~~~~~~~~~n= I 

where the first equality in (11) follows since N- IN an -, 0 for all a # 1, 
jai < 1 and the second by the bounded convergence theorem. Since the {sbn} 
determine P, this implies P satisfies (10). 0 

Remarks. It follows immediately from Proposition 4.1 that Lebesgue measure 
is the only nonatomic Borel probability measure on [0, 1) which is invariant 
under nx(mod 1) for all n E N, and as Jon Aaronson pointed out, a similar 
argument shows that invariance under primes n suffices, so the definition of 
base-invariance given above could be weakened even further in this respect. 
On the other hand, Lebesgue measure is the unique Borel probability measure 
on [0, 1) which is absolutely continuous (with respect to Lebesgue measure) 
and which is invariant under nx(mod 1) for some n > 1. This follows by 
Fourier analysis arguments similar to those given above, or by the invariance 
and ergodicity of Lebesgue measure for nx(mod 1) and the basic result from 
the Birkhoff theorem that up to absolute continuity an invariant and ergodic 
probability measure is unique. 

With these preliminaries, the proof of Theorem 3.5 is now very easy. 
Proof of Theorem 3.5. Fix an integer b > 1. If P = qP. + (1 - q)Pb, then the 
base-invanance of both P. and Pb (Examples 3.3 and 3.2) easily imply that P 
is base-invariant. 

Conversely, suppose P is base-invariant on (R+, Ab), and let P be the 
b-logarithmic rescaling of P on B[0, 1) given by (9). The definition of base- 
invariance (5) implies that 

P[O, a) = P[-i,+a) for all n E N and all a E (0, 1), 
k=O 

which says that P is invariant under the mappings nx(mod 1) for all n E N. 
Proposition 4.1 implies that P satisfies (10), and it is easy to check using (9) 
and the definitions of P. and Pb that P = qP* + (I - q)Pb. 0 

ACKNOWLEDGMENT 

The author is indebted to Jon Aaronson, John Elton, Jeffrey Geromino, and 
Jeff Xia for several useful conversations concerning invariant measures; to Bob 
Foley for pointing out the example in Durrett's book; to Pieter Allaart for cor- 
recting an error in an earlier draft; and to the referee for a number of useful 
suggestions. 

REFERENCES 

1. F. Benford, The law of anomalous numbers, Proc. Amer. Philos. Soc. 78 (1938), 551-572. 
2. D. Cohen, An explanation of thefirst digit phenomenon, J. Combin. Theory Ser. A 20 (1976), 

367-370. 

894 T. P. HILL

(11)

It is easy to check that (10) implies invariance of P under the mappings
nx(mod 1) for all n. Conversely, assume invariance of P and note that 4>n == q
for all n EN. To see that q must be real and in fact in [0, 1], observe that

_ 11 {I N .} _ 1NP( {O}) = lim - '" e21tlnX dP(x) = lim - '" cPn = q,
o N-+oo N LJ N-+oo N L...J

n=1 n=1

where the first equality in (11) follows since N-l Ef an --+ 0 for all a ¥ 1,
lal ~ 1 and the second by the bounded convergence theorem. Since the {cPn}
determine P, this implies P satisfies (10). 0

Remarks. It follows immediately from Proposition 4.1 that Lebesgue measure
is the only nonatomic Borel probability measure on [0, 1) which is invariant
under nx(mod 1) for all n EN, and as Jon Aaronson pointed out, a similar
argument shows that invariance under primes n suffices, so the definition of
base-invariance given above could be weakened even further in this respect.
On the other hand, Lebesgue measure is the Unique Borel probability measure
on [0, 1) which is absolutely continuous (with respect to Lebesgue measure)
and which is invariant under nx(mod 1) for some n > 1. This follows by
Fourier analysis arguments similar to those given above, or by the invariance
and ergodicity of Lebesgue measure for nx(mod 1) and the basic result from
the Birkhoff theorem that up to absolute continuity an invariant and ergodic
probability measure is unique.

With these preliminaries, the proof of Theorem 3.5 is now very easy.

Proofof Theorem 3.5. Fix an integer b > 1. If P = qP. + (1 - q)Pb , then the
base-invariance of both P. and Pb (Examples 3.3 and 3.2) easily imply that P
is base-invariant.

Conversely, suppose P is base-invariant on (lR+,.L,,), and let P be the
b-Iogarithmic rescaling of P on B[O, 1) given by (9). The definition of base
invariance (5) implies that

p[o,a)=~p[~, k:a) forallneNandallae(O,1),
k=O

which says that P is invariant under the mappings nx(mod 1) for all n EN.
Proposition 4.1 implies that P satisfies (10), and it is easy to check using (9)
and the definitions of p. and Pb that P =qp. + (1 - q)Pb. 0

ACKNOWLEDGMENT

The author is indebted to Jon Aaronson, John Elton, Jeffrey Geromino, and
Jeff Xia for several useful conversations concerning invariant measures; to Bob
Foley for pointing out the example in Durrett's book; to Pieter Allaart for cor
recting an error in an earlier draft; and to the referee for a number of useful
suggestions.

REFERENCES

1. F. Benford, The law ofanomalous numbers, Proc. Amer. Philos. Soc. 78 (1938), 551-572.

2. D. Cohen, An explanation ofthe first digit phenomenon, J. Combin. Theory Ser. A 20 (1976),
367-370.



BASE-INVARIANCE IMPLIES BENFORD'S LAW 895 

3. R. Durrett, Probability: Theory and examples, Wadsworth, Belmont, 1991. 
4. W. Feller, An introduction to probability theory and its applications, Vol. 2, 3rd edition, 

Wiley, New York, 1968. 
5. B. Flehinger, On the probability that a random number has initial digit A, Amer. Math. 

Monthly 73 (1966), 1056-1061. 
6. S. Newcomb, Note on the frequency of use of the different digits in natural numbers, Amer. 

J. Math. 4 (1881), 39-40. 
7. R. Pinkham, On the distribution of thefirst significant digits, Ann. Math. Statist. 32 (1961), 

1223-1230. 
8. R. Raimi, The peculiar distribution offirst significant digits, Sci. Amer. 221 (1969), 109-120. 
9. , Thefirst digit problem, Amer. Math. Monthly 83 (1976), 521-538. 

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332 
E-mail address: hillmath.gatech.edu 

BASE-INVARIANCE IMPLIES BENFORD'S LAW 895

3. R. Durrett, Probability: Theory and examples, Wadsworth, Belmont, 1991.

4. W. Feller, An introduction to probability theory and its applications, Vol. 2, 3rd edition,
Wiley, New York, 1968.

5. B. Flehinger, On the probability that a random number has initial digit A, Amer. Math.
Monthly 73 (1966),1056-1061.

6. S. Newcomb, Note on the frequency ofuse of the different digits in natural numbers, Amer.
J. Math. 4 (1881), 39-40.

7. R. Pinkham, On the distribution ofthe first significant digits, Ann. Math. Statist. 32 (1961),
1223-1230.

8. R. Raimi, The peculiar distribution offirst significant digits, Sci. Amer. 221 (1969), 109-120.

9. __, Thefirst digit problem, Amer. Math. Monthly 83 (1976), 521-538.

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332
E-mail address: hill<Omath. gatech. edu


	Article Contents
	p. 887
	p. 888
	p. 889
	p. 890
	p. 891
	p. 892
	p. 893
	p. 894
	p. 895

	Issue Table of Contents
	Proceedings of the American Mathematical Society, Vol. 123, No. 3 (Mar., 1995), pp. 647-977
	Front Matter
	Buildings as Inner Ideal Geometries [pp. 647-650]
	A Proper G Action on C Which is Not Locally Trivial [pp. 651-655]
	A New Characterization of Totally Projective Groups of Cardinality ℵ [pp. 657-662]
	On the Exponent of the Ideal Class Group of [pp. 663-671]
	Characterizations of Natural Submodular Graphs: A Polynomially Solvable Class of the TSP [pp. 673-679]
	The Casselman-Shalika Formula for a Distinguished Model [pp. 681-692]
	Conditions for a Module to be Injective and some Applications to Hopf Algebra Duality [pp. 693-702]
	The Riccati Flow and Singularities of Schubert Varieties [pp. 703-709]
	Weak Maximality Condition and Polycyclic Groups [pp. 711-714]
	The Weak Convergence of Unit Vectors to Zero in Hilbert Space is the Convergence of One-Dimensional Subspaces in the Order Topology [pp. 715-721]
	Star-Shaped Complexes and Ehrhart Polynomials [pp. 723-726]
	Castelnuovo Regularity and Graded Rings Associated to an Ideal [pp. 727-734]
	Banach Algebras in Which Every Element is a Topological Zero Divisor [pp. 735-737]
	Local Derivation of Nest Algebras [pp. 739-742]
	The Finite Fibre Problem and an Index Formula for Elementary Operators [pp. 743-746]
	Application of the Operator Phase Shift in the L-Problem of Moments [pp. 747-754]
	Local Minimizers of Integral Functionals are Global Minimizers [pp. 755-757]
	Linear Tame Extension Operators from Closed Subvarieties of C [pp. 759-763]
	A Note on Hermitian Operators on Function Spaces [pp. 765-769]
	Asymptotic Behaviour of Firmly Nonexpansive Sequences [pp. 771-777]
	Kähler Moišezon Spaces Which are Projective Algebraic [pp. 779-783]
	Stochastic Continuity of Random Derivations on H-Algebras [pp. 785-796]
	The Arc Length of the Lemniscate {|p(z)| = 1} [pp. 797-799]
	A Note on the Dirichlet Problem for the Stokes System in Lipschitz Domains [pp. 801-811]
	Tempered Boehmians and Ultradistributions [pp. 813-817]
	A Counterexample to Access Theorems for C Functions [pp. 819-825]
	A Class of Riesz-Fischer Sequences [pp. 827-829]
	A Pythagorean Inequality [pp. 831-839]
	Some Counterexamples to the Regularity of Monge-Ampère Equations [pp. 841-845]
	A Remark on Distribution of Zeros of Solutions of Linear Differential Equations [pp. 847-854]
	Surfaces in R with Constant Affine Gauss Maps [pp. 855-863]
	Surfaces with Orthogonal Families of Circles [pp. 865-872]
	Axiomatization and Undecidability Results for Metrizable Betweeness Relations [pp. 873-882]
	Representing Projective Sets as Unions of Borel Sets [pp. 883-886]
	Base-Invariance Implies Benford's Law [pp. 887-895]
	Descriptions of Conditional Expectations Induced by Non-Measure-Preserving Transformations [pp. 897-903]
	Remarks on the Topology of Folds [pp. 905-908]
	Cut Points in Čech-Stone Remainders [pp. 909-917]
	Functions of Conditionally Negative Type on Kazhdan Groups [pp. 919-926]
	Cycles in C Twists [pp. 927-934]
	D-Sets and BG-Functors in Kazhdan-Lusztig Theory [pp. 935-943]
	Menger Manifolds Homeomorphic to Their n-Homotopy Kernels [pp. 945-953]
	Dold Manifolds with (Z)-Action [pp. 955-958]
	Numerical Meshes and Covering Meshes of Approximate Inverse Systems of Compacta [pp. 959-962]
	Knotted Symmetric Graphs [pp. 963-967]
	A Counter-Example on a Quasi-Variational Inequality Without Lower Semicontinuity Assumption [pp. 969-970]
	A Topological Equivalence of the Singular Cardinals Hypothesis [pp. 971-973]
	Corrigenda for "A Conjecture of S. Chowla via the Generalized Riemann Hypothesis" [p. 975]
	Correction to "Remarks on Automorphisms of Subfactors" [p. 977]
	Back Matter





