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Abstract

Because aspects of quantum mechanics are both difficult to understand and difficult
algebraically, there is a need for software which symbolically simulates quantum me-
chanical phenomena. To accomplish this goal, code has been added to an open-source
computer algebra system, called SymPy, which models the abstraction of Dirac nota-
tion and the density operator. Additionally, a quantum computer simulation has been
built using this abstraction. This paper shall discuss the code that has been added as
well as any relevant physics important to understanding the code. In particular, we
shall focus on the density operator of statistical quantum mechanics using SymPy’s
density matrices as a guide.

1 Introduction

Students unfamiliar with quantum mechanics oftentimes find themselves getting lost in
arithmetic and algebraic details and consequently have a hard time grasping the fundamental
concepts behind the theory. For this reason, there is a need for software which simplifies the
learning process by doing much of the meticulous algebra for the user. There is no doubt
that a symbolic engine would be highly useful for attaining this goal. With this in mind,
we have added code to an open source project called SymPy, which extends the Python
programming language to handle symbolic computation. The code we have added includes
both a base layer which implements abstract Dirac notation in SymPy, as well as specific
sub-modules which model specific quantum systems.

This paper will discuss the basic quantum mechanics simulation code that was added to the
Computer Algebra System (CAS) SymPy during the 2010 Google Summer of Code by Matt
Curry and Dr Brian Granger. This includes a general introduction to the syntax and data
structures of SymPy as well as a look at how this was used to implement Dirac notation.
The code provides a notion of states, operators, commutators, anticommutators and many
other quantum mechanical structures. These structures can be represented in a basis, as
well as simplified using a function called qapply. In this way, the base layer can be used to
create simulations of many quantum mechanical systems.

One such system which was implemented is a quantum computer. We shall look at how
Dirac Notation was used to simulate the gate model of quantum computation. The quantum



computing module inherits much of its capabilities from the main quantum base layer. We
shall look at how this occurs and what capabilities the module currently has.

Finally, we shall discuss the density operator of statistical quantum mechanics and how we
recently extended the code to model its use. The code (and discussion of its meaning) was
developed during Addison Cugini’s senior project. We shall include a discussion of the im-
portant physics concepts which come from the study of the density operator. This includes
a discussion of the Von Neumann entropy and how it relates to the Louiville Theorem. Ad-
ditionally, we shall look at how the reduced density matrix of a subsystem is calculated and
use this knowledge to inform our understanding of quantum decoherence and the “entropy
of entanglement” measure of entanglement.

2 Python and SymPy

Python is a high level programming language that aims to be easy to use and easy to
learn. To further this aim, the language supports multiple programming paradigms including
functional, imperative and object oriented; both functions and classes are considered first
class citizens. In contrast to Perl’s credo “There is more than one way to do it”, The Zen
of Python asserts “There should be one-and preferably only one—obvious way to do it”. In
this way, Python aims to be easy to read and learn by providing only one obvious way to
solve a particular task (Perl is infamous for requiring people to learn too many programming
techniques).

Keeping with its simplicity, Python is an interactive, interpreted language, which means
that code does not need to be compiled and can be typed directly into an interpreter. In
addition to the basic command line Python interpreter, a third-party open-source package
called IPython adds shell functionality. This includes basic functionality, such as changing
directories, running files, listing files in a directory, as well as more advanced features such
as tab completion and command history. The bleeding edge versions of IPython allow for
rendering of the common typesetting languages I/ TEX and HTML. These features create an
environment that makes it easy to test code. All code examples contained in this document
were created using this version of IPython.

Python has several modules which provide functionality that is useful for mathematics and
scientific computing. Fast numerical algorithms on matrices and arrays are supplied by the
Scipy and Numpy modules, which have run times nearly as fast as hand-written C/C++
code. These modules are competitors to Matlab with the advantage of using a much more
manageable and scalable programming language. SymPy is a computer algebra system
which hopes to compete with well established symbolic engines such as Mathematica, Maple
or Maxima. Features include support for algebraic simplifications, ODE solving, integration
(the Risch Algorithm is partially implemented), linear algebra, INTEX printing of expressions
and more.

What follows is a short demonstration of the general symbolic capabilities of SymPy rendered
in the bleeding edge version of IPython. All code was attained by screen-grabbing the input-
output of the IPython notebook; there is no magic and no trickery, the notebook actually
renders INTEX code. This example is done so that the reader can understand the clear syntax
SymPy provides.



General CAS capabilities and syntax example in Sympy

Expressions are fully symbolic
(Operator overloading has been used to allow Sympy objects to be subjected to binary ops)

In [19]: expression = (x**2+y**2)/x; expression
Qut[19]: 42 _|_y2
T

Capable of taking derivatives and integrals of expressions

In [20]: derivative = diff(expression, x); derivative
Out[20]: g_ m2—|—y2

2
In [21]: integrate(derivative, x)

out[21]: y2
T+ —
T

The code above shows the creation of an algebraic expression, xQIy2 , using standard Python
operators for division, addition, and powers. The code allows for taking derivatives of
expressions using the diff function, which takes an algebraic expression as its first argument
and the second argument is the variable in which the derivative was taken. The integrate

function takes the same arguments and returns the integral of the input expression.

2.1 Data Structures in SymPy

SymPy’s symbolic engine takes advantage of object orientation (inheritance in particular)
to create an easily extensible code base. All classes derive features, such as the ability to
compare itself with other objects, from methods in the Basic super-class. Objects which can
be acted upon by algebraic operations gain this ability through a set of methods in a class
called Expr. These Expr objects can be held in container objects (which also subclass Expr)
such as Mul, Add and Pow; the container objects are instantiated using Python’s operator
overloading feature which allows the constructor of the container class to be called whenever
the appropriate binary operator is used (* for Mul, + for Add, and ** for Pow).

In this way, additional objects can be added by simply creating a subclass which inherits
features from the Expr class. These subclasses get for free certain features such as the
ability to be compared, multiplied, added, etc. Herein is how SymPy creates a maintainable,
modular and therefore easy to extend environment. With the ability to inherit properties
from higher classes, the amount of code required to develop, for example, a system which
models quantum mechanics and Dirac notation decreases significantly.
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Figure 1: SymPy’s inheritance diagram including some of the important classes.

3 General Quantum Mechanics in SymPy

SymPy has a base module which provides functionality for symbolic quantum mechanics in
Dirac notation. Much of this functionality was added during the 2010 Google Summer of
Code by Matt Curry and his advisor Dr. Brian Granger, with some help/input from Addison
Cugini. The code has a notion of ket and bra states, the operators which act on these states,
the Hilbert spaces to which states and operators belong, as well as inner, outer and tensor
products. Representation of the these objects is done through the use of a represent
function which goes through a Mul, Add, or Pow of expressions and represents them in the
basis given as an input argument; if no basis is given, then the code uses a default basis.
Code also exists within a function called qapply which can apply operators to states as well
as evaluate inner products based on orthogonality rules. Using these bits of code as a base,
a variety of quantum systems have been implemented including: Hilbert space rotations,
second quantization, continuous Cartesian systems and quantum computation with more
systems being added. In this way, the code has the ability to represent quantum systems in
Dirac notation as well as preform many elementary operations on these quantum objects.

The base class for this module is QExpr which inherits from Expr and provides some features
unique to quantum mechanics (such as Hilbert spaces and the ability to be represented).
These abilities are inherited by all subclasses.

The following is a code example, which shows some of the capabilities of the module:



General Quantum

We can produce arbitrary states with no reference to what system it represents
In [7]: superposition = Ket('psi')/sqrt(2) + Ket('phi')/sqrt(2); superposition

1 1
3 V209)+ 5 V2¥)

Out[7]:

We can multiply states together, take their dagger and their inner product

In [18]: inner_prod = Dagger(superposition)*superposition; inner_prod
out[1e]: (1 1 1 1
(3v2el+ 52w ) (520 + 3 vEW)

(note that the code makes no assumptions about orthonormality)

In [12]: gapply(inner_prod)
out[12]: 1 il 1 1
3 (#10) + 3 (Blv) + 5 (Wlo) + 5 (W)

We can also form outer products of states with their daggers

In [14]: density = gapply(superposition*Dagger(superposition)); density
out[14]:

Il Il 1 1
5 [o)e| + 5 ()] + 5 [9) (6] + 5 [¢)¥l

The above code produces an arbitrary superposition of Ket states by forming an algebraic
expression of Ket objects. The Ket constructor takes as its argument the label that will
identify the state. The dagger of this state is formed by calling the Dagger class’s constructor
which distributes the dagger operation on each ket, thus producing the superposition of bra
states that we see. We use qapply to form the inner and outer products that we see in the
last two outputs.

4 Quantum Computation in SymPy

Quantum computation is an emerging field which promises to exploit quantum effects (such
as superpositions, entanglement, and interference) to create algorithms with faster asymp-
totic run times than what is possible with known classical algorithms. The field is of interest
to individuals across many fields including mathematics, computer science and physics.

There is a need to provide software packages which simulate quantum computers for the
purpose of teaching and research. For this reason, the general quantum package has been
extended to include a quantum computer simulator. This includes a notion of Qubit ob-
jects (which are the states of interest to quantum computing), and the Gate objects which
operate on the states. Many of the most well known quantum algorithms have been imple-
mented using this extension including the quantum Fourier transform, Shor’s order-finding
algorithm, and Grover’s search algorithm. With these example algorithms, someone new



to the field can quickly get a sense for how a quantum computer would exploit quantum
effects to produce speed-ups over known classical algorithms. Additionally, researchers may
be able to use the software to test new algorithms and gain intuition for how the algorithm
functions.

As stated earlier, qubit objects are the state of interest for a quantum computer. In SymPy,
these states are implemented by inheriting characteristics from the State superclass and
then teaching the qubit object how to print and represent itself as a vector. Gate objects
are implemented by inheriting properties from Operator and then teaching the gate class
how to print, represent itself as a matrix, and apply itself to a qubit. Specific examples of
quantum gates (e.g. H, X, CNOT, etc) are implemented by subclassing the generic Gate class
and defining an associated matrix. The ’qapply’ function works by looking at this matrix
and applying it to a state without first representing the gate as a matrix in its full basis.

We can create a qubit state by instantiating the Qubit class

In [26]: qubit_state = Qubit('e8'); qubit_state
out[26]: |00)

We can see that the qubit_state object is indeed an instance of a state.

In [27]: isinstance(qubit_state, State)

Qut[27]: True

In [28]: gate_operator = HadamardGate(®); gate_operator

out[28]: Hyp
We can see that gate_operator is indeed an instance of a operator

In [29]: isinstance(gate_operator, Operator)

Out[29]: True
We can add together states to produce a superposition

In [30]: superposition = (Qubit('@®') + Qubit('11'))/sqrt(2); superposition

out[30]: %\/E(IOO}—HII)]



Likewise, we can have multiple gates operating in sequence

In [31]: circuit = CNOT(O,1)*H(0)*X(0)*Z(1)*Y(1); circuit
out[31]: CNOTy1Ho X021 Y1

We can plot the sequence of gates using the circuit_plot function

In [32]: circuit_plot(circuit, ngubits=2)

out[32]: <sympy.physics.quantum.circuitplot.CircuitPlot at 0x4442e90>
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We can represent this gate in the default z-basis

In [33]: represent(gate_operator, nqubits=1)
out[33]: l\,-ﬁ l\;ﬁ
2 2

1 = 1 =
-2 —=4/2
y Y 2V



We can apply the HadamardGate to the qubit state

In [34]: gapply(gate_operator*qubit_state)

out[34]: %ﬁlDO)Jr%\/ilDl)

We can also intermix easy to read Python code with Sympy objecis
We can create a superposition of states using a 'for-loop'
(Note the way that we can instantiate the qubit class with integers)

In [35]: superposition = @
for i in xrange(8):
superposition += (-1)**i*IntQubit(i, 3)
superposition

out[351: —|1) - [3) — [5) — |7) +[0) + |2) + |4) +[6)

The code above shows Sympy’s general quantum computational capabilities. As in the
general quantum example, we create Qubit states and Qubit superpositions as well as Gate
operators. We can see from the results of Python’s ’isinstance’ function that Qubit and Gate
are indeed subclasses of State and Operator respectively. In the case of the Qubit class,
the argument passed to the constructor determines in what state the individual qubits are;
Qubit(’00’) produces a ket where both the O-th and 1st bit are set to zero. By multiplying
a sequence of gates together, we produce a quantum circuit. This circuit is printed using
the ’circuit plot’ function, which takes a quantum circuit as the first argument and the
number of qubits that it acts on as the second. Likewise, we represent the circuit as a
matrix using the 'represent’ function which takes the same arguments as the ’circuit_plot’
function. We then use of "qapply’ to apply a Hadamard gate to the state |00) which produces
a superposition of states. We then use the for-loop syntax to produce a superposition with
alternating phases on odd and even kets. The IntQubit class, which is a subclass of Qubit,
displays itself in decimal form rather than binary.

4.1 The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a key part of Shor’s number factoring algorithm,
which provides an exponential speedup for the problem of finding the order of a number.
The QFT acts exactly like a discrete Fourier transform except that it does not apply to
an incoming array of data, but the state vector of a given system. There is a known short
sequence of quantum gates (whose length grows polynomially in the number of qubits it
applies to) which implements this transformation. To get a sense of how this works, it
would be helpful to see the SymPy module in action:



In [13]: QFT(0,3).decompose()

out[13]: SWAPy2HoCo(S1)H1Co(T2)C1(S2)H>

In [14]: IQFT(0,3).decompose()

Out[14]: HyCi(Ra,—2)Co(R2,-3)H1Co(R1,-2)HoSWAP

In [15]: CircuitPlot(QFT(@®,3).decompose( ), nqubits=3)

OQut[15]: <sympy.physics.quantum.circuitplot.CircuitPlot at 0Ox3da2d90>
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In [16]: represent(Fourier(®,3)*4/sqrt(2), ngqubits=3)

Out[i6]:
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The QFT class is called with the first argument of the QFT class being the first bit it applies
to and the second argument is the number of bits to which it applies. The QFT class and
IQFT classes are created which act on the Oth through 2nd bit, and then the decompose
method is called which displays the transform in terms of elementary gates.



To get an idea of the relationship between the QFT and the DFT,
let's use the QFT in a way that someone knowledgeable in Fourier transforms would understand.
In this case, let's apply the QFT to a state which oscillates 4 times across the domain

In [18]: periodic_state = (IntQubit(e,3)-IntQubit(1,3)+IntQubit(2,3)-IntQubit(3,3)}}
+ IntQubit(4,3) - IntQubit(5,3) + IntQubit(6,3) - IntQubit(7,3))/(2*sqrt(2));
periodic_state

WO L VB(-1) - [3) = 5) = 1)+ [0) +[2) +14) +16))

Let's see that this state does have the expect vector representation

In [19]: represent(periodic_state, ngubits=3)

out[19]: ( iv@ \
4

Applying the QFT to this state returns the expected frequency of 4

In [20]: gapply(QFT(@,3).decompose()*periodic_state)
out[20]: |4)

The above code shows us actually applying the QFT to a state. In particular, we apply the
QFT to three qubits which oscillates with a frequency of 4 cycles across the domain. One
would expect that the frequency of this state would be 4; this indeed occurs when we apply
the QFT to the state. In this way, we can see that a QFT is really not all that different
from a standard DFT.

5 Density Operator Formalism in SymPy

In real situations found in the lab, an experimentalist cannot know with certainty what
state a system is in. If the quantum state is not completely known, that is if there is
a classical uncertainty as to what state a system is in, the density operator (or density
matrix) formalism more naturally describes the system. In this way, the density operator is
useful for modeling systems where both classical uncertainty and quantum superpositions
are present. This is useful for real systems in which the whole history of a system may be
impossible to account for. Despite the clear use of density matrices, undergraduate students
of quantum mechanics tend to focus on how a well known state vector of a system evolves.
For this reason, it is useful to add code which would model the density matrix.

10



5.1 Density Operator Defined

If a system is in a state |¢,,) with a certain classical probability W,,, such that
SW,=1
n

(That is the system is normalized such that it must be in one of the ensemble of given
states). Then the density operator which defines the system is defined by:

Note that the states |1,,) need not be orthogonal. In a discrete basis with basis set |¢1),
|¢2); --s|dm), We can define a' = (¢i[)n) and a} = (¢;[th,). The density operator takes the
form of a matrix where the i-th and j-th matrix element is determined by the equation:

(Pilplos) = > Whaial*

mn

(Blum, page 43)

5.2 Density Operators in SymPy

In SymPy, the density operator is implemented using the class Density, a subclass of QExpr.
The Density class provides some functionality for any quantum mechanical system, but has
some extra features which only work for Qubit objects.

The Density class constructor takes in a state and it's associated classical probability
These states can he completely general, or belong to a particular system

In [2]: Density([Ket('psi'), .5], [Ket('phi'), .5])

ouctz):  0.5[u) (] +0.5/) (4]

From now on, we will look at the density matrix associated with tensor products of two state systems.
We can create a superposition of states and see the matrix representation using the represent function

In [14]: superposition_state = Density([(Qubit('@0')+Qubit('61')+Qubit('10"')+Qubit("'11'))/2, 1]);
superposition_state

out[14]: 1

7 (100) +[01) +[10) +[11))({00] + (0] +{10] + (11])

In [4]: superposition_matrix = represent(superposition_state,nqubits=2); superposition_matrix

out[4]:

Bl e | e -
Bl e | e -
Bl e | e -
el [ | |-

The matrix_to_density function allows the conversion of a Hermetian matrix representing a density operator into a
instance of Density class

In [5]: matrix_to_density(superposition_matrix)

out[51:  (|00) + |01} +[10) + [11})({00| + (01| + (10] + {11])

11



We form a Density object made up of general ket states. The constructor for Density
takes in a sequence of lists containing a state with its associated statistical weight. We
then represent the density matrix using the represent function which takes in the same
arguments as before. The matrix_to_density function takes in a matrix representation of
a density operator and returns the Dirac notation representation (more on how this is done
can be found in the next section).

‘We can very easily see the difference between a classical mixture and a superposition of states by representing
its density matrix

In [7]:
out[7]:
In [8]:
out[8]:

classical _mixture = Density([Qubit('ee'), .5], [Qubit('11'),.5]); classical_mixture
0.5/00)(00| +0.5/11)(11|

represent(classical _mixture, nqubits=2)

0500 0
000
000
0005

csof

We can operate on states using gapply just as we did with pure states

In [10]:
out[10]:

In [11]:
out[11]:

hadamarded_state = gapply(classical_mixture.operate_on(HadamardGate(®)*HadamardGate(1))); hadamarded_state
il 1 1 il il il 1 1 il i 1 1 il Il 1 1
0.5(5 100) + 5 [01) + 5 [10) + 5 |11>) (E (00| + 501 + 5 (10] + 3 (11|) +0.5(E 100) + 5 |11) - 5 Jo1) - 3 |10>) (E 00|+ 5 (11— 5 (01 - 3 <10|)

represent (hadamarded_state, nqubits=2)

We use the same set of functions on a mixed state as we did on the pure state. The Density
matrix has an ’operate _on’ method which applies a sequence of gates to the density operator.

5.3

Matrix to Dirac Notation for a Density Operator

As seen in the previous segment of code, it is possible to take in a density matrix which
represents the state of a system and determine a representation as a series of outer products
of states using the eigenvalues and eigenvectors of the matrix. For a density matrix, p, with
eigenvalues ), and associated eigenvectors |1, ), the matrix can be represented as

p= %:)‘n|"/}n><wn|

For a non-pure state the Dirac notation representation is not unique, so the returned result
might not be the same set of states as one may expect. In SymPy, this is implemented
in a separate function “matrix_to_density”. So far, this function only works on Density
matrices composed of qubits, but the mathematics described for doing this is general for
any discrete system.

5.4

Von Neumann Entropy

An important concept which can be easily determined from the density operator formalism
is the entropy of a system. In rough terms, the entropy of a system measures the amount
of uncertainty we have about what state the system is in.

12



The entropy of a system can be determined by taking the eigenvalues A, of the density
operator p and preforming the operation:

S == Alog(\).

It is easy to show (see appendix) that when the system is in a pure state, the only non-zero
eigenvalue of the density matrix is A = 1. Plugging this eigenvalue into our equation for the
Von Neumann entropy, we see that a pure state has zero entropy. This matches with our
intuition as a perfectly well known system (a pure state) should not have any entropy.

In SymPy, the Von Neumann entropy is implemented for discrete systems using a method
within the Density class. This method determines the eigenvalues of the density matrix
by representing the operator as a matrix and making calls to the SymPy function which
determines eigenvalues. The eigenvalues are then plugged into the equation for the Von
Neumann entropy. This can be seen in the following code example:

Von Neumann Entropy

We can call the entropy method of a pure state density matrix to find that it does not have any entropy, as expected.

In [16]: pure_state = Density([(Qubit('e@')+Qubit('e1')+Qubit('10"')+Qubit('11'))/2, 1]); pure_state

PRSI L (100) +[01) + 10) + [11))((00] + (01 + (10] + (11])

In [18]: round(pure_state.entropy(nqubits=2),3)
Out[18]: 0.0

A non-pure state system will have a non-zero entropy
In [19]: classical_mixture = Density([Qubit('@®'), .5], [Qubit('11'),.5]); classical_mixture
out[19]: 0,5/00)(00] +0.5[11){11|

In [21]: classical mixture.entropy(nqubits=2)

out[21]: (.693147180559945

In the above example, we calculate the entropy for both a pure and mixed state system
using the density operator’s entropy method. The pure state system has zero entropy and
the mixed state has non-zero entropy as expected.

A student of classical statistical mechanics would no doubt be aware of the Louisville theorem
which establishes that any system evolving under a linear Hamiltonian will maintain the
same area of uncertainty in phase space. There is an equivalent form of this theorem for
density operators which states that the uncertainty about the state of the system remains
the same when evolving under unitary transformations. In other words, a pure state remains
pure and a mixed state doesn’t become any more or less mixed as it is operated on. One
way this mathematically manifests itself is that the entropy of a state remains the same
under unitary evolution. Unitary operations are isentropic. This is seen below:

Note that the entropy of a state does not change as you operate on in with linear gates
This is due to the Louiville ion for isti ics (Blum 55-57)

In [23]: hadamarded_state = gapply(classical mixture.operate_on(HadamardGate(®@)*HadamardGate(1))); hadamarded_state
out[23]: 1 1 1 | 1 1 | il 1 1 1 1 1 1 1 1
0.5( =|00) + = |01) 4+ = [10) + ~ |11 =00+ = (01| + - (10| + = (11 0.5( =|00) 4 = |11) — = [01) — = |10, = (00| + < (11| — = (01| — = (10
(3100-+ g 101)+ 5 10)+ 5110y ) (G001 011+ 5 (10]+ 5 (1) 05 100) + 5 111) 01y 3110} ) (5 01+ 5 a1 = (01— - 10

In [24]: hadamarded_state.entropy(nqubits=2)
out[24]: 0.693147180559945

13



We can see that the entropy has remained the same after applying gates to a state.

5.5 The Reduced Density Matrix

Any student of quantum mechanics is aware of the definition of an entangled state as a
state for which the constituent subsystems cannot be factored out. That is a state |¥)
with constituent systems |6) and |¢) is entangled (inseparable) if and only if it is impossible
to write ) = |¢) ® |6). If this condition is not met, then the system is said to be in a
inseparable or entangled state. For this entangled state, it is impossible to describe the
entangled subsystem on its own without the loss of information. If however we wish to
provide a statistical account of the state of a subsystem, the density operator provides a
useful framework in the form of an object called the reduced density matrix.

Consider the arbitrary state |®) with subsystems |¢) and |#). Now, say that we only really
care about the state of |¢). We can describe the state of the subsystem by the reduced
density p,., where the elements of the matrix are determined by

(091pr|00;) = > (0:i9|pr0igj)-

i

Alternatively, we can describe the reduced density matrix in term of something called a
partial trace

pr = tre|®) (@],

The sum describing the reduced density matrix is doubtlessly a pain to calculate (determin-
ing the reduced density matrix for even a Bell state requires the addition of eight numbers,
and it grows exponentially in the number of qubits). Fortunately, I have added code to
the density operator module which can calculate the reduced density matrix of a tensor
product of two-state systems (i.e. qubits) by specifying which bits are to be considered the
unobserved bits (This method could be generalized for any discrete basis, but it would be
more difficult to code as I could not exploit bit twiddling in the implementation). This can
be seen below:

14



Reduced Density Matrix

In [2]: Bell_state = Density([(Qubit('®0') + Qubit('"11'))/sqrt(2), 1]),; Bell_state
out[2]: 0.5(|00) + |11))((00] + (11)

In [3]: represent(Bell_state, nqubits=2)
out[3]: 050
00

00

0

In [4]: round(Bell_state.entropy(nqubits=2),5)
Out[4]: 0.0

In [5]: reduced_Bell = reduced_density(Bell_state, ©, nqubits=2); reduced_Bell

Out[5]: (0[_]5 0[.]5)

In [7]: entropy(reduced_Bell, nqubits=2)
out[7]: 0.693147180559945

The operation seen above is interesting in that we went irreversibly from a pure entangled
Bell state with zero entropy to a mixed state with non-zero entropy. In this way, the partial
trace of an entangled state can be thought of as us ’forgetting’ information about one of
the qubits and thus increasing the entropy. This will generally occur whenever a partial
trace is preformed on two entangled states. It is thus apparent that the Louisville theorem
discussed in the previous section does not generally apply to the partial trace operation as
entropy is not conserved.

This shows us that a pure entangled state can appear to be a mixed unentangled state when
we do not have information about one of the entangled systems. This concept sets up the
framework for our understanding of decoherence. Decoherence is what occurs when a quan-
tum superposition interacts with (and becomes entangled with) an unknown environment;
this entanglement results in what appears to be the non-unitary transformation of quantum
superpositions into classical mixtures. Mathematically, this manifests itself as a spontaneous
diagonalization of the density matrix. Decoherence forms the classical/quantum barrier as
this is where the weird effects of superposition and interference come to die. (the reader
should note that coherence theory does not by itself solve the so called 'measurement prob-
lem’ of quantum mechanics because measurement results in a definite state rather than a
mixed state; we are still left with the question of why and when the quantum state collapsed
into a pure definite state. For one interpretation of decoherence see Rolland Omnes, The
Interpretation of Quantum Mechanics).

5.6 Entropy of Entanglement

A wise and observant reader may have noticed that there is a very strong correlation between
the entropy of the reduced density matrix and the entanglement of the system. After all,
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the maximally entangled Bell state also produced a mixed state of maximal entropy under
the partial trace operation. This observation leads to the definition of an entanglement
measure called the ’entropy of entanglement’. This measure defines the entanglement of
two subsystems of the state|¥), A and B, to be the entropy of the partial trace of the
system. Thus:

Entanglement(|¥)) = S(tra|¥)(¥|) = S(trp|V)(¥|)

We have thus added a small bit of functionality to the code which determines the entropy
of entanglement between any specified qubit and the system as a whole. This is seen below:

Entropy of Entanglement
Here, we determine the entropy of entanglement between the 0th and 1st bit of the Bell State

In [8]: Bell_state = Density([(Qubit('ee®') + Qubit('11'))/sqrt(2), 1]); Bell_state

out[8]: 0.5(|00) +|11))((00| + (11])

In [9]: entropy_of_entanglement(Bell_state, 1, ngqubits=2)
out[9]: 0.693147180559945

The input arguments to the entropy_of_entanglement are the same as those used for the
reduced_density function. We can see that the entropy of entanglement for the Bell state
is .69. Right now, the code only allows for the calculation of the entanglement for a two
state system, but there is no fundamental reason that this could not be done for any discrete
system.

6 Conclusions and Future Directions

SymPy’s quantum code base so far has built into it a notion of Dirac notation, the gate
model of quantum computation, and the density matrix. The quantum computational
module has all of the structures important to the gate model of quantum computation, and
as such can simulate quantum algorithms. The density matrix object has the capability to
be represented, acted upon by operators, determine the entropy of a state, and determine
the entropy of entanglement. In this way, the code is quite capable of modeling a wide range
of systems.

We can see from the examples that the code greatly eases the algebraic and arithmetic
difficulty in simulating quantum mechanical systems. The code therefore could be used as
a very powerful teaching and research tool. The added code doubtlessly has potential for
modeling certain quantum phenomena. However, because the code is in its infancy, very
few simulations of physical systems have been written using this framework. When more
examples using this code are written, the module will be of great use for teaching quantum
mechanics and quantum information concepts. Additionally, researchers will be able to
simulate quantum phenomena where symbolic manipulations are necessary. In this way, the
tool will be useful for both educators and researchers.
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Appendix A

Simple proof that 1 is the only non-zero eigenvalue for a pure state:

Suppose we have a generic pure state density matrix defined by p = |[¢){(¢)]

The eigenvalue problem for p is p|¢) = A|@)

It is clear that |¢) = |¢) is a solution for this eigenvector problem as p|y) = |¢)(¥|Y) = |¥)
(since the inner product (|¢)) = 1). Note that 1 is the eigenvalue associated with the
eigenvector |¢). Since we know that > X, =1 for a normalized density matrix, the other
eigenvalues must be zero. QED.

The Zen of Python

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently. Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one —obvious way to do it.
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Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let’s do more of those!
—The Zen of Python
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