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ABSTRACT 

A formulation in terms of sheaf theoretic (or categorical) notions for 
quantum entanglement is given with direct experimental consequences. The 
notions from sheaf theory and category theory give structural theory, i.e., 
qualitative theory, as a candidate for quantum gravity.  Its advantage is the 
following:  it provides not only space-time background independent, but also scale 
independent.This theory is called the theory of temporal topos (or simply t-topos 
theory). 

Keywords: Presheaf, contravariant functor, Grothendieck topology. 

INTRODUCTION 

By presheafifying space, time and matter, a candidate theory for quantum 
gravity has been formulated (Kato 2003, 2004 and 2005) as the notion of t-topos. 

Let S  be a site, i.e., a category with a Grothendieck topology, and let S 
^
 be the 

cateogry of presheaves on S.  (Gelfand and Manin 1996, Kashiwara and Schapira 
2006, Kato 2006 for the needed mathematical backgrounds for t-topos.) Namely, 
for a presheaf m , object m(V) is in a category where an observation (or 
measurement) takes place between an observer P(V) and the observed m(V). 
Then an observation is a morphism in the category (Kato 2004).  On the other 
hand, we have the notions of decompositions of m  into subsheaves m= �mi , 
and of the object V  in the t-site into covering decomposition as in Kato (2005). 
We have the projection morphisms 

�mi ������mi . 
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Notice: even when m  is defined for V , but mi (V ) may not be defined. 
That is, the observer P  can measure m  over V , but possibly a decomposed micro 
subobject mi  may not be measured over the same V  (Kato 2006).  Conversely, for 
an observation morphism mi (V)������P(V )  for a subsheaf mi  by P  over V , if m(V) 
exists, the composition of this morphism with the projection above gives a 
morphism from m(V)= ( �mi )(V) to P(V).  Namely, global information does not 
provide local information on subsheaf mi (V)������P(V ), but local information on 
a subsheaf partially provides global information through the projection morphism. 
If m(V) does not exist, no global information can be measured by P over V then 
associated presheaves �  and �  of space and time to presheaf m  have the following 
effects. For a morphism in the t-site 

V ����g��U 

we have, since �  and �  are contravariant functors, the canonically induced 
morphism 

� (g )�(V)�������(U), 

and similarly for presheaf �  associated with space.  Next, consider a covering 

{Vi ����fi ��V}i�1,2 

of V  in the sense of Kato (2005), Gelfand et al (1996) and Kashiwara et al 
(2006).  Notice that we are considering a special covering with only two objects 
for the sake of simplicity. We let V '� V1 and V"� V2 . Then we have the 
“restriction” morphism 

� ( f1 )�(V)���������(V '), 

and similarly for V"� V2. The above “restriction” morphism should be understood 
as, for example, the time period �(V) for the observation of m(V) by the observer 
P(V) over the object (the generalized time period) V  is restricted to a “shorter” 
time period �(V ').  For a category with a Grothendieck topology, rather than a 
usual topological space, in general the set HomS (V,U) of morphisms from V to U 
consists of more than one element, where for a topological space such a set of 
morphisms consists of one element, i.e., the inclusion morphism. When �(V) 
precedes �(U), e.g.,  measurement took place first during �(V), then �(U), there 
exists a morphism �  in HomS (V,U) indicating the induced morphism 
�(�) :�(U) ��(V) is the linear order in the classical sense. Recall that presheaves 
associated with space and time are actually sheaves. 
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Namely, the following sequence for sheaf � , associated to time, is an 
exact sequence. For this material see Kato (2005), Gelfand et al (1996) and 
Kashiwara et al (2006). 

� ( p j )
� ( f j ) ���������(V ) ����������(Vj ) ��(Vj �Vi )� ( pi ) 

j �������� j,i 

where, e.g., pj : Vj �Vi ������Vj  is the projection. 

Remark 1:  In general, let �mi be a (micro-) decomposition a presheaf m 
i�I 

f jin S 
^
 and let {Vj �� be a (micro-) decomposition of an object V  of the�� ��V} j �J

t-site, associated with a particle and a generalized time period, respectively. Those 
decompositions of m  and V  are said to be perfectly comparable when for all 
pairs of (i, j)  in the index sets I and J, all the combinations mi (Vj )  of sub­
presheaves mi  and covering family objects V j  are defined, i.e., all the mi (Vj ) are 
possibly observable states.  However, further decompositions of sub-presheaves 
and further decompositions of generalized time periods in terms of further 
coverings, the comparability more likely breaks down.  Consequently, some of 
pairs mi(Vj )  are not defined. Namely it does not define a state of mi  over the 
generalized time period V j .  Dark energy and dark matter may be able to be 
interpreted as the lack of comparability of the decompositions of presheaves and 
objects of the t-site in the micro decompositions (Kato, 2005). According to 
observations, measurement of mass in the universe indicates that further 
decompositions of presheaves and objects in t-site decrease the degree of 
compatibility of the measurable states mi(Vj ) , which is expected in the t-topos 
theoretic formulation.  See Kato (2005) for ur-sub-Planck decompositions as 
inverse (projective) limits, which becomes relevant to the above consequences. 
See Kato G: “A Black Hole and t-Topos Entropy” (manuscript in preparation) for the t­
topos interpretation of a black hole as a pseudo-category change.  It may be 
premature to assert some consequences when those micro decompositions, 
“sufficiently close” to the inverse (projective) limits, happen to be compatible for 

all presheaves in the t-topos S 
^
 and for all objects in the t-site with respect to big 

bang. 
Remark 2:  For further micro decompositions of the matter represented by 

the presheaf m , then, assuming the existence of compatible pair mi (Vj ) , the 
associated generalized time period �(Vj )  to mi(Vj )  may be short-lived (when a 
scaling is assigned). Recall that when �(Vj )  is taken to the direct limit lim �(Vj ) 
as in Eq. (7) in Kato (2005), the time period is shortest possible, where such an 
object is referred to as ur-sub-Planck decomposition of �(V). As such a 
compatible pair approaches the direct limit, for a non-zero mass object, the 
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corresponding preasheaf associated with the space �(Vj ) approaches the 
unbounded curvature (when a scaling is assigned). That is, the corresponding 
space and time associated to micro decomposed presheaves may be interpreted as 
“form-like” due to the short lived mi(Vj )  of non-zero mass particle mi . Namely, 
shortness of �(Vj )  and �(Vj ) associated with mi  creates the deformations of space 
and time .The details of this application in terms of t-topos will appear by Kato in 
“A Black Hole and t-Topos Entropy”. 

SHEAF THEORETIC ENTANGLEMENT 

We will begin with the definition of the sheaf theoretic entanglement as 
defined in Kato (2004). We call such an entanglement “ur-entanglement” since the 
classical notion of the usual entanglement has been well established. 

Definition 2.1 Presheaves m  and m' are said to be ur-entangled if 
they form a paired presheaf, i.e., they are defined on the same objects of the t-site 
S.We write such a paired presheaf as m * � (m,m'). 

One can also say that presheaves m  and m' are ur-entangled when the 
paired presheaf m * � (m,m')  is defined on a t-subsite, where a subcategory is said 
to be a subsite if the subcategory satisfies the axioms for a site with respect to 
covering family. Namely, for an object V in the t-site S, we have the formula: 

m *(V) � (m,m')(V) � (m(V),m'(V)). 

From this formula, when m is observed by P over V, then an ur-particle 
state m(V) is determined. Then the above formula implies that the state of m’ is 
also determined, i.e., the ur-particle state m’(V).  It is crucial for applications that 
the ur-particle state of m’ over V is determined even when m’ is not observed over 
the generalized time period V. Compare with the applications made for double-slit 
interference in Kato and Tanaka (2006).  One of the consequences is as follows: 
when an ur-entangled pair m * � (m,m')  is given, one of them is in (ur-) wave state 
if and only if the other is also in (ur-) wave state. For example, 

2.1 Prediction:  For an ur-entanged pair e*� (e.e') of electrons as in 
Kato and Tanaka (2006), if e  is passing through a single slit, then the other 
electron e' should show a particle state image on the screen in a typical double slit 
experiment setting even when e' is going through a double slit mask. 

See also the report (Genovese, 2005) on recent hidden variable 
approaches.  From the definition of ur-entangled pair m * � (m,m'),  for example, 
m and m’ can belong to different light-cones. (See Kato (2005) for the definition 
of a light cone in the t-topos sense.)  

Final Remark: The fundamental approach in t-topos theory is the 
(pre)sheafification of space, time and matter as in Kato (2003).  Then the methods 
from category and sheaf theory enable t-topos to explain the particle-wave 
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duality, uncertainty principle, entanglement almost canonically as in (Kato, 2004, 
2005, 2008 and Kato et al. submitted).  Our forthcoming project is to study the 
t-topos theoretic aspects and consequences for black holes (Kato, “Back Hole and 
t-Topos Entropy"). 

Acknowledgement: The final portion of this paper was finished during a 
short visit, spring break of 2008, to the Institute for Advanced Study, Princeton, 
N.J. The author also acknowledges that via the discussion during the visit in May 
of 2007 to the University of Antwerp, the non-commutative geometric approach 
by F. Van Oystaeyen provides similar consequences about time and space (Van 
Oystaeyen, to appear). 
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