
Implications of Test-Driven Development
A Pilot Study

Reid Kaufmann
Sun Microsystems, Inc.

3450 N. Rock Rd. Suite 401
Wichita, KS 67226

316-315-0382 ext. 228
reid.kaufmann@sun.com

David Janzen
Bethel College
300 E. 27th St.

North Newton, KS 67117
316-284-5259

djanzen@bethelks.edu

ABSTRACT
A Spring 2003 experiment examines the claims that test-driven
development or test-first programming improves software quality
and programmer confidence. The results indicate support for these
claims and inform larger future experiments.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques
object-oriented programming.

General Terms
Management, Measurement, Design, Experimentation.

Keywords
Test-Driven Development, Agile Development, Software Quality

1. INTRODUCTION
Many software professionals such as [1] and [2] advocate test-
first programming, claiming it's benefits include faster debugging,
greater reliability, increased confidence, and superior design.
Test-first programming, or test-driven development, is included as
a best practice in agile software development methodologies such
as Extreme Programming. Although Extreme Programming has
attracted widespread attention, it has not been universally
adopted. Much of the evidence supporting the best practices is
merely anecdotal. In Spring 2003, a small pilot experiment was
conducted at Bethel College to study the effects of test-first
programming on software quality, programmer productivity, and
programmer confidence. The experiment is described along with
results and potential future experiments.

2. THE EXPERIMENT
Two groups of four students each served as the test subjects.
These students varied in classification from sophomore to senior,
but all were computer science majors having completed at least
two programming courses with C++ as the primary language.
One group used test-first programming and the other served as a
control group by practicing test-last programming.

The students were enrolled in an elective course titled “Software
Studio.” The objective of the course was to give students an
opportunity to gain experience programming cooperatively in a
small group on a longer, more sustained project than those
completed in the first two programming courses.

The groups and projects were self-selected. Both groups used the
Java programming language to develop graphical game
applications. Group 1 chose to write an adventure game that
focused on a character advancing through a predetermined plot.
This group was the control group, which did not use test-first
programming. Group 2, which volunteered to try test-first
programming, chose to write an action game in which stick
figures fight each other [3].

Since no one in the class had any experience writing games in the
Java programming language, the first several weeks of the
semester were spent learning how to use the graphics APIs and
how to obtain input from the mouse or keyboard. During this
period, the students were not expected to write tests, since they
were not producing “production” code.

3. METRICS
Design quality and programmer productivity were measured with
the internal variables [4] class size, functions per class, McCabe’s
Cyclomatic Complexity, fan-in, fan-out, information flow, and
non-commented lines of code. Several metrics tools were
employed to collect metrics including JavaNCSS [5], JDepend
[6], JMetric [7], and CCCC [8].

A snapshot of the production code was gathered on three dates:
April 10, May 6, and May 9 from each of the groups. Each
snapshot was analyzed with all four metrics tools.

Programmer confidence was measured through a survey
administered to all students at the end of the semester. Defect rate
was not directly measured due to the short time frame of the
experiment and the lack of concrete external requirements with
which to identify defects. It should be noted however that the
test-last group’s second code snapshot did not compile.

4. RESULTS AND OBSERVATIONS
Lines of code and observable functionality indicated that the test-
first group was considerably more productive. The test-first
group produced 50% more code than the test-last group as
measured by non-commented lines of code. The cyclomatic
complexity numbers [9] indicated that the code produced by both
groups was of similar complexity, giving more credibility to using
program size as a measure of productivity. Also, it is arguable
that the test-first group took on a more complex problem, since
their game involved real-time interaction between two players.

Measuring design quality requires the evaluation of numerous
metrics. Metrics often are considered to have a threshold for
normal values and then anything outside of that range would

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

–

cause an “alarm” [10]. A slight variation of this is to designate
“three ranges for each metric: safe, flag, and alarm” [4]. This is
the method used in CCCC.

Among the available metrics that pertain to design quality are the
structural metrics and object-oriented design metrics from CCCC
and perhaps cyclomatic complexity. The CCCC metrics indicated
that the test-last group code contained a class with more than
twice the information flow measure (square of fan-in and fan-out)
of any other module between either project. This may be an
indicator of a possible design problem and may be a result of the
overburdening of a class [11]. JDepend also would have
applicable metrics for large projects, but there were not
meaningful differences between the two projects.

Using statistics from JavaNCSS, trends in both groups were
observed regarding the organization of their code in objects and
functions. While both groups were within reasonably safe
bounds, it is important to notice how many functions there are per
object. If one object is overburdened with too many functions it
is a sign of poor design. The test-last group showed a possibly
problematic trend of reducing the number of classes with time as
the number of functions increased (and as the amount of source
code increased).

To evaluate programmer confidence, a survey was given to each
member of both groups. The self-reported confidence in their
projects' functionality as of May 9th differed. On a scale of 1 to 5
with 5 being the most confident, the test-last group averaged 2.5
while the test-first group averaged 4.75. Also on a 5-point scale,
the test-first group was asked how much they thought test-first
programming helped with their debugging and design. With an
average response of 4.25, they affirmed advantages of test-first
programming.

There are clearly problems with this pilot experiment. Obviously
the sample and project sizes are both too small. The context is
unrealistic because the students knew they would not likely have
to maintain their code over time. Neither group completed a
sufficient number of tests. Even the test-first group only wrote 16
JUnit assertions.

It is likely that the test-first group’s increased productivity and
confidence, as well as the superiority in their project's design and
functionality, was a result of greater programming experience.
The test-first group had one senior, one junior, and two
sophomores, while the test-last group had two juniors and two
sophomores.

The average final grade in the Programming 2 class for the test-
first group was a whole letter grade higher than the average grade
of the test-last group. This indicates a better mastery of
programming. In a Java skills and core knowledge test
constructed for this experiment, the test-first group scored higher
on average than the test-last group. Most of these problems were
anticipated prior to conducting this experiment. It is often very
difficult to control all variables. In this case, the context of the
academic course with set objectives limited the constraints of the
experiment.

Since the test-first group demonstrated more programming
experience and did not adhere to test-first programming faithfully,
it would be completely inappropriate to conclude that test-first
programming was the reason their project was more successful
than the test-last group. To make this experiment successful, a
larger sample population of equally skilled programming groups
working on identical projects is needed. Supervision and
feedback on the creation of tests would also be helpful so that
each group's project could be judged on a more equal basis.

5. REFERENCES
[1] Beck, Kent. Extreme Programming Explained. Addison Wesley

Longman, Inc., Reading MS, 2000.

[2] Martin, Robert Cecil. Agile Software Development. Prentice Hall,
Inc., Upper Saddle River NJ, 2003.

[3] Stick Figure Karate http://sourceforge.net/projects/sfkarate/

[4] Henderson-Sellers, Brian. Object-oriented Metrics: Measures of
Complexity. Prentice Hall, Inc., Upper Saddle River NJ, 1996.

[5] JavaNCSS http://www.kclee.com/clemens/java/javancss/.

[6] JDepend http://www.clarkware.com/software/JDepend.html.

[7] JMetric http://www.it.swin.edu.au/projects/jmetric/default.htm.

[8] CCCC http://cccc.sourceforge.net/.

[9] McCabe, T. J., A complexity measure. IEEE Transactions on
Software Engineering. vol. 2. (December 1976), 308-320.

[10] Kitchenham, B. A., S. J. Linkman. Design metrics in practice.
Information and Software Technology. vol. 32 no. 4. (1990), 304-
310.

[11] Card, David N., Robert L. Glass. Measuring Software Design
Quality. Prentice Hall, Inc., Englewood Cliffs NJ, 1990.

