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Bisphosphonates suppress bone remodeling activity, increase bone volume, and significantly reduce

fracture risk in individuals with osteoporosis and other metabolic bone diseases. The objectives of the
a b s t r a c t

current study were to develop a mathematical model that simulates control and 1 year experimental

results following bisphosphonate treatment (alendronate or risedronate) in the canine fourth lumbar

vertebral body, validate the model by comparing simulation predictions to 3 year experimental results,

and then use the model to predict potential long term effects of bisphosphonates on remodeling and

microdamage accumulation. To investigate the effects of bisphosphonates on bone volume and

microdamage, a mechanistic biological model was modified from previous versions to simulate

remodeling in a representative volume of vertebral trabecular bone in dogs treated with various doses

of alendronate or risedronate, including doses equivalent to those used for treatment of post-

menopausal osteoporosis in humans. Bisphosphonates were assumed to affect remodeling by

suppressing basic multicellular unit activation and reducing resorption area. Model simulation results

for trabecular bone volume fraction, microdamage, and activation frequency following 1 year of

bisphosphonate treatment are consistent with experimental measurements. The model predicts that

trabecular bone volume initially increases rapidly with 1 year of bisphosphonate treatment, and

continues to slowly rise between 1 and 3 years of treatment. The model also predicts that microdamage

initially increases rapidly, 0.5–1.5-fold for alendronate or risedronate during the first year of treatment,

and reaches its maximum value by 2.5 years before trending downward for all dosages. The model

developed in this study suggests that increasing bone volume fraction with long term bisphosphonate

treatment may sufficiently reduce strain and damage formation rate so that microdamage does not

accumulate above that which is initiated in the first two years of treatment.
1. Introduction

Bisphosphonates (BPs) are anti-resorptive drugs that suppress
bone remodeling, increase bone volume and bone mineral density,
and are used to treat post-menopausal osteoporosis and other
bone fragility disorders (Rodan and Fleisch, 1996; Chavassieux
et al., 1997; Tonino et al., 2000; Ding et al., 2003; Dufresne et al.,
2003; Recker et al., 2005). At the tissue level in humans, BP
treatment is associated with decreased bone resorption and
turnover (Storm et al., 1993; Rodan and Fleisch, 1996; Eriksen
et al., 2002) and, therefore, provides a transient increase in bone
volume (filling of pre-existing remodeling spaces). This may be
followed by a further trend to increase bone volume by reducing
the amount of bone resorbed relative to that formed by basic
multicellular units (BMUs) (Boyce et al., 1995). In post-menopau-
sal women, BPs reduce fracture risk by improving the structural
properties of bone (Delmas, 2000) and increasing the degree
of mineralization (Boivin et al., 2000). However, BP treatment
also results in significant microdamage accumulation and a
reduction in bone toughness in canine vertebrae (Mashiba et al.,
2001; Komatsubara et al., 2003; Allen et al., 2006; Allen and Burr,
2007). The microdamage accumulation is due, at least in part, to
decreased remodeling, which is the only mechanism in bone
to remove fatigue damage (Burr et al., 1985; Mori and Burr, 1993).
These observations, some having positive and others nega-
tive implications in bone, indicate the need for a better under-
standing of BP effects on bone remodeling, structure, and material
properties.
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Table 1
Model state variables.

State variable

E Elastic modulus (MPa)

BV/TV Bone volume fraction

N.Rs.BMU Number of resorbing BMUs (# BMU/mm2)

N.F.BMU Number of refilling BMUs (# BMU/mm2)

Ac.f BMU activation frequency (# BMU/mm2/day)

Ac.fyear BMU activation frequency (# BMU/year)

BS/TA Bone surface area per section area

Cr.S.Dn Microdamage (mm/mm2)

s Peak stress of cyclic compressive loading

e Peak strain of cyclic compressive loading

F Mechanical stimulus (cycles per day, cpd)
While long term BP studies have focused on alterations to bone
mineral density and bone turnover (Miller et al., 1997; Tonino
et al., 2000; Bone et al., 2004; Ste-Marie et al., 2004; Borah et al.,
2006; Zoehrer et al., 2006), their effects on microdamage
accumulation have not been studied beyond 3 years of treatment
(Forwood et al., 1995; Hirano et al., 2000; Mashiba et al., 2000,
2005, 2001; Komatsubara et al., 2003, 2004; Day et al., 2004;
Allen et al., 2006, Allen and Burr, 2007). Results from canine
studies have documented microdamage increases in the vertebral
body, rib, and ilium following 1–3 years of BP treatment, but these
changes were compensated for by increases in bone mass and
structural properties, including ultimate load and stiffness (Allen
and Burr, 2007). However, some of these studies also documented
significant reductions in bone toughness, the intrinsic ability of
the tissue to resist fracture. Since BP treatment in patients with
osteoporosis now extends 10 years or more, the long term effects
of BPs on microdamage accumulation and bone fragility are of
clinical interest.

In the present study, we develop a mathematical model to
explore the long term effects of BP treatment on bone. We have
previously developed computational models simulating bone
mechanics and remodeling in a representative volume of bone
(Martin, 1995; Hazelwood et al., 2001; Nyman et al., 2004, 2006).
These models simulate BMU activation and remodeling in
response to mechanical loading and fatigue microdamage. Our
overall goal in developing these mathematical models is to
simulate the long term effects of BPs on remodeling and
microdamage accumulation in current animal models and,
ultimately, in humans. As an initial step, our approach in the
current study is to develop a model of remodeling in a
representative volume of trabecular bone based on control and
1 year experimental results following BP treatment in the canine
fourth lumbar vertebral body (Allen et al., 2006), and subse-
quently to test its predictions against data from a 3 year
alendronate study (Allen and Burr, 2007). Then, in an effort to
understand long term bisphosphonate treatment effects over
periods similar to those for clinical use in humans, we examine
model predictions after 10 years of simulated treatment.
2. Methods

The control and 1 year data used for model development were from skeletally

mature female beagles treated daily with saline vehicle or one of three doses of

alendronate (ALN: 0.10, 0.20, or 1.00 mg/kg/day) or risedronate (RIS: 0.05, 0.10, or

0.50 mg/kg/day) (Allen et al., 2006). The middle doses of ALN and RIS correspond to

the clinical treatment dose, on a mg/kg basis, for post-menopausal osteoporosis. The

lower dose of ALN corresponds to the preventative dose for osteoporosis, while the

higher dose of both ALN and RIS are approximately equivalent to those used for

treatment of Paget’s disease. In that study, trabecular bone mineral density (BMD,

g/cm3), volume fraction (BV/TV), activation frequency (Ac.f), and microdamage

(crack surface density or Cr.S.Dn) in the fourth lumbar vertebra (L4) were quantified.

A previous bone remodeling algorithm (Hazelwood et al., 2001; Nyman et al.,

2004) was modified to simulate remodeling in a 1 cm3 volume of canine L4

vertebral trabecular bone under uniaxial cyclic loading. The model describes

histomorphometric variables governing bone mechanical properties (Table 1). The

cancellous bone structure was assumed to be isotropic with a uniform bone

volume fraction, BV/TV. The continuum-level elastic modulus (E) was assumed to

be related to BV/TV by

E ¼ E0ðBV=TVÞb , (1)

where E0 ¼ 19,735 MPa and b ¼ 2.4217 were obtained by fitting experimental data

from control and 1 year BP-treated dogs to Eq. (1) (Table 2). Peak strain was

calculated as

� ¼ s=E, (2)

where s is the peak stress applied during cyclic loading.

A loading potential, F, was defined to characterize the mechanical environ-

ment as it affects remodeling (Hazelwood et al., 2001)

F ¼ RL�q , (3)
where RL is the loading frequency (assumed to be constant at 3000 cycles per day),

and q ¼ 4 adjusts the relative contribution of peak strain and loading frequency to

the loading potential.
2.1. Microdamage

Microdamage (Cr.S.Dn) was defined as cumulative microcrack length per unit

cross-sectional area of bone (mm/mm2). The damage formation rate was assumed

to be proportional to the loading potential

dCr:S:Dn

dt

� �
F

¼ kDF, (4)

where kD is chosen to make the damage formation and removal rates equal under

steady state conditions (Hazelwood et al., 2001).

The fatigue microdamage removal rate was modeled as (Martin, 1995)

dCr:S:Dn

dt

� �
Rs

¼ Cr:S:Dn � Ac:f � Rs:Ar � Fs, (5)

where Ac.f is the BMU activation frequency, Rs.Ar is the resorption space area, and

Fs is a ‘‘steering factor’’ to account for targeted damage removal (Martin, 1985).

Hence, the net damage accumulation rate is

dCr:S:Dn

dt
¼

dCr:S:Dn

dt

� �
F

�
dCr:S:Dn

dt

� �
Rs

. (6)
2.2. Bone volume fraction

The time rate of change of bone volume fraction, d(BV/TV)/dt, was assumed to

be a function of the mean bone resorption (Rs.Ar/Rs.P) and refilling (FAr/FP) rates

within individual BMUs, and the mean densities of resorbing (N.Rs.BMU) and

refilling (N.F.BMU) BMUs (Martin, 1985)

dðBV=TVÞ

dt
¼

FAr

FP
N:F:BMU�

Rs:Ar

Rs:P
N:Rs:BMU, (7)

N:F:BMU ¼

Z t�ðRs:PþRv:PÞ

t�ðRs:PþRv:PþFPÞ
Ac:f dt0 , (8)

N:Rs:BMU ¼

Z t

t�Rs:P
Ac:f dt0 , (9)

where Rs.Ar and FAr are the mean resorption and refilling areas and Rs.P and FP are

the mean resorption and refilling periods, respectively, of individual BMUs (Table 2).

The shape of the BMU resorption cavity was modeled as a semi-ellipse having a

mean cross-sectional area of 0.014 mm2 as measured from the control dogs

(previously unpublished data (Allen et al., 2006)).
2.3. BMU activation frequency

BMU Ac.f (BMUs/mm2/day) was assumed to be a function of disuse, micro-

damage, and the available surface area for remodeling, BS/TA. This leads to the

equation

Ac:f ¼ ðAc:fdamage þ Ac:fdisuseÞ
BS=TA

ðBS=TAÞmax
, (10)
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Table 2
Model constants.

Constant Values Source

E0 Tissue modulus (MPa) 19735 Calculateda

b Modulus-BV/TV exponent 2.4217 Calculateda

Rs.Ar Resorption area, mm2 0.01395 Measureda

FAr Refilling area, mm2 0.01395 Assumed equal to Rs.Ar

CF Ratio of FAr to Rs.Ar(BP) 1.45–2 –

Rs.Ar(BP) BP treatment resorption area, mm2 FAr/CF –

E.De Erosion cavity depth, mm 0.0667 Measureda

E.Wi Erosion cavity width, mm 0.293 Measureda

Md.S.Le Mean mineralized bone surface length, mm 0.1935 Measureda

Rs.P Resorption period, days 10 Measureda

Rv.P Reversal period, days 5 (Nyman et al., 2004)

FP Refilling period, days 44 Measureda

kD Damage rate coefficient, mm/mm2 11�105 Estimatedb

q Damage rate exponent 4 (Whalen et al., 1988; Hazelwood et al., 2001)

RL Loading rate, cpd 3000 (Hazelwood et al., 2001)

Fs Damage removal specificity factor 20 Estimatedb

Cr.S.Dn0 Threshold damage, mm/mm2 0.01 Estimatedb

Ac.f0 Threshold BMU activation frequency, BMUs/mm2/day 0.08 Estimatedb

F0 Threshold mechanical stimulus, cpd 1.875�10�10 (Beaupre et al., 1990)

Ac.fmax Maximum BMU activation frequency, BMUs/mm2/day 0.50 (Frost, 1969; Schaffler et al., 1995)

kb activation frequency dose-response coefficient, cpd�1 6.5�1010 (Hazelwood et al., 2001)

kc activation frequency dose-response coefficient, cpd 9.4�10�11 (Hazelwood et al., 2001)

kr activation frequency coefficient �1.6 (Hazelwood et al., 2001)

Pmax Maximum potency 1 (Nyman et al., 2004)

ts Coefficient 1–50 (Nyman et al., 2004)

a Previously unpublished data measured or calculated from the specimens of Allen et al. (2006).
b Parameters estimated in the model simulation to produce steady state values for Ac.f, Cr.S.Dn, and BV/TV similar to the remodeling data for controls and 1 year

experiments.

Ac:fdamage ¼

Ac:f0 Ac:fmax

Ac:f0 þ ðAc:fmax � Ac:f0Þ expðkr Ac:fmax ðCr:S:Dn� Cr:S:Dn0Þ=Cr:S:Dn0Þ
Cr:S:Dn4Cr:S:Dn0

Ac:f0 ðCr:S:Dn=Cr:S:Dn0Þ Cr:S:DnpCr:S:Dn0

8><
>: , ð11Þ
Ac:fdisuse ¼

Ac:fmax

1þ expðkb ðF� kcÞÞ
FoF0

0 FXF0

8><
>: , (12)

where Ac.fdamage and Ac.fdisuse represent the BMU activation frequencies associated

with microdamage and disuse, respectively, and are assumed to be independent

remodeling responses. Specific surface area was determined from BV/TV using an

empirical relationship,

BS=TA ¼ 32:3ð1� BV=TVÞ � 93:9ð1� BV=TVÞ2 þ 134ð1� BV=TVÞ3

� 101ð1� BV=TVÞ4 þ 28:8ð1� BV=TVÞ5 (13)

normalized by the maximum value, (BS/TA)max ¼ 4.191 mm�1 (Hazelwood et al.,

2001).

To compare simulation predictions with experimental results, the annual

activation frequency (Ac.fyear, BMU/year) was calculated as (Nyman et al., 2004)

Ac:fyear ¼ 365
Md:S:Le � Ac:f

BS=TA
, (14)

where Md.S.Le is the mean mineralized length of a BMU’s active surface

(Table 2).

2.4. Bisphosphonate effects

Bisphosphonate treatment was assumed to (1) suppress BMU activation

frequency (Storm et al., 1993; Chavassieux et al., 1997, 2000; Eriksen et al., 2002)

and (2) reduce resorption cavity depth (Boyce et al., 1995). A potency variable, P,

was defined to quantify the BP’s ability to suppress remodeling activation (Nyman

et al., 2004)

P ¼ Pmaxð1� expð�ts N:Rs:BMUÞÞ, (15)

where N.Rs.BMU is the number of resorbing BMUs, Pmax ¼ 1 is the fully suppressed

potency, and ts is a suppression coefficient (Table 3). The activation frequency was

suppressed by multiplying Ac.f by (1�P), where P has a value between 0 and 1.

Resorption cavity area (Rs.Ar) was also assumed to be reduced, depending on the
type and dosage of BP treatment (Nyman et al., 2004). A refilling coefficient

describing the balance between bone formed and resorbed at each resorption site

was defined as

CF ¼
FAr

Rs:ArðBPÞ
, (16)

where Rs.Ar(BP) is the reduced resorption cavity area dependent on the BP

administered and dosage (Table 2).
2.5. Numerical simulation

All simulations were performed in MATLAB (MathWorks, Natick, MA). The

model was implemented using a time step of 1 day. An equilibrium status of

trabecular bone remodeling that matched the experimental control data for canine

vertebral trabecular bone was obtained first (Table 4). For a BV/TV of 22.3% (Allen

et al., 2006) in a 1 cm3 representative volume of trabecular bone, it was found that

a peak cyclic stress of s ¼ 0.265 MPa produces steady state values for the principal

outcome variables Ac.f, Cr.S.Dn, and BV/TV similar to the remodeling data of the

control dogs. Then, using the equilibrium condition as the baseline, the model was

used to find values of the bisphosphonate variables ts and CF that matched the 1

year canine experimental data (Tables 3 and 4). Because BPs suppress bone

turnover soon after treatment initiation (Porras et al., 1999), their effects were

assumed to begin immediately.

The simulation then was carried out for 3 years of BP treatment and results

were compared to recent 3 year experimental data available for the fourth lumbar

vertebral body in canines at the middle (0.20 mg/kg/day) and high (1.00 mg/kg/

day) doses of alendronate treatment (Allen and Burr, 2007). Finally, the model was

used to predict the effects on remodeling and damage accumulation after 10 years

of BP treatment to provide an understanding of longer term bisphosphonate use at

periods similar to those for human osteoporosis patients.

Comparisons of simulation predictions to experimental results were made by

examining the similarity of the values in comparison to the measured standard

deviation and by a one sample t-test (po0.05 significant) with the hypothesis that

the simulation values represent the experimental means.
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Table 4
Model predictions and experimental measurements in the canine vertebral body

after 1 year of ALN or RIS treatment.

Treatment Variable Simulation Experiment

Control BV/TV 0.223 0.21970.031

Cr.S.Dn (mm/mm2) 0.0135 0.006870.0073

Ac.fyear (# BMUs/year) 1.70 1.8970.84

1 year ALN 0.10 mg/kg/day BV/TV 0.252 0.25770.052

Cr.S.Dn 0.0198 0.021070.0178

Ac.fyear 0.64 0.6670.38

1 year ALN 0.20 mg/kg/day BV/TV 0.252 0.26470.036

Cr.S.Dn 0.0252 0.025070.0140

Ac.fyear 0.45 0.5470.24

1 year ALN 1.00 mg/kg/day BV/TV 0.252 0.25970.044

Cr.S.Dn 0.0321 0.032270.0212

Ac.fyear 0.26 0.4570.27

1 year RIS 0.05 mg/kg/day BV/TV 0.244 0.25470.038

Cr.S.Dn 0.0140 0.019970.0075

Ac.fyear 1.04 1.1370.65

1 year RIS 0.10 mg/kg/day BV/TV 0.250 0.23170.038

Cr.S.Dn 0.0197 0.020070.0121

Ac.fyear 0.65 0.6570.38

1 year RIS 0.50 mg/kg/day BV/TV 0.251 0.26370.037

Cr.S.Dn 0.0344 0.037070.0195

Ac.fyear 0.21 0.3170.31

Fig. 1. Ac.fyear decreases in relation to control after 1 year of ALN and RIS

treatment. The error bars represent one standard deviation. CON represents the

control data. ALN 0.10 refers to an alendronate dose of 0.10 mg/kg/day, etc.
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Fig. 2. Predictions for BV/TV, Cr.S.Dn and Ac.f during 3 years of ALN treatment.

Time ¼ 0 represents the beginning of ALN treatment. ALN 0.10 refers to an

alendronate dose of 0.10 mg/kg/day, etc. The error bars represent 71 standard

deviation.

Table 3
Sensitivity analysis of bisphosphonate effects simulated by the model.

Bisphosphonate Dosage (mg/kg/

day)

Suppression

coefficient ts

Refilling

coefficient CF

ALN 0.10 11.3 1.70

0.20 18.8 1.80

1.00 38 2.00

RIS 0.05 5 1.45

0.10 11 1.65

0.50 50 2.00
3. Results

As expected, the simulated results following 1 year of BP
treatment are consistent with experimental measurements (Table 4).
At 1 year, the model predicts that the high dose of ALN will
suppress Ac.f by 85% compared to 62% for the low dose. The
equivalent values predicted for RIS are much more widely spread
at 87% and 39%, respectively (Fig. 1). At the doses used for
treatment of human post-menopausal osteoporosis, ALN
(0.20 mg/kg/day) and RIS (0.10 mg/kg/day) reduce the number of
active BMUs per year to 0.45 and 0.65, respectively. The model
predicts that 1 year of ALN treatment increases BV/TV approxi-
mately 13% (Fig. 2) compared to 9.7–13% for RIS depending on
dose (Fig. 3). Microdamage is predicted to reach its maximum
within the first year for the low dose of ALN (Fig. 2) or RIS
(Fig. 3) treatment. For the middle and high doses of ALN and
RIS, Cr.S.Dn is predicted to increase rapidly by 46% to 155% after 1
year of treatment. All predicted Ac.f, BV/TV, and Cr.S.Dn values at 1
year of treatment are within one standard deviation of their
corresponding experimental measurements. The t-test analysis
indicates a similarity between experimental results and their
corresponding model predictions for all values at 1 year of BP
treatment except for Ac.f for ALN at the high dose (p ¼ 0.03) and
Cr.S.Dn for RIS at the low dose (p ¼ 0.02).
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Fig. 3. Predictions for BV/TV, Cr.S.Dn and Ac.f during 3 years of RIS treatment.

Time ¼ 0 represents the beginning of RIS treatment. RIS 0.05 refers to a risedronate

dose of 0.05 mg/kg/day, etc.

Table 5
Model predictions for changes in the canine vertebral body after 3 years of ALN or RIS

Treatment Variable Simulation

3 year ALN 0.10 mg/kg/day BV/TV 0.262

Cr.S.Dn (mm/mm2) 0.0128

Ac.fyear (# BMU/year) 0.62

3 year ALN 0.20 mg/kg/

day

BV/TV 0.264

Cr.S.Dn 0.0193

Ac.fyear 0.43

3 year ALN 1.00 mg/kg/

day

BV/TV 0.265

Cr.S.Dn 0.0338

Ac.fyear 0.26

3 year RIS 0.05 mg/kg/day BV/TV 0.248

Cr.S.Dn 0.0103

Ac.fyear 1.08

3 year RIS 0.10 mg/kg/day BV/TV 0.259

Cr.S.Dn 0.0133

Ac.fyear 0.64

3 year RIS 0.50 mg/kg/day BV/TV 0.262

Cr.S.Dn 0.0414

Ac.fyear 0.21

a Three year experimental data are available for only the 0.20 mg/kg/day and 1.00 m
The model predicts modest additional increases in bone volume
fraction between 1 and 3 years of treatment (Table 5). For ALN, the
percent increase in BV/TV from the 1 year predictions ranges from
4.2% at the low dose to 5.2% at the high dose (Fig. 2). For RIS, the
increase in BV/TV ranges from 1.5% to 4.5% between the low and
high doses, respectively (Fig. 3). In addition, the simulation predicts
slight changes in Ac.f for ALN (�0.72% to �2.6%) and RIS (�1.5% to
3.4%) between 1 and 3 years of treatment.

Due to the bisphosphonate-induced inhibition of remodeling,
resulting in a greater initial decline in the damage removal rate
than the damage formation rate (Fig. 4), microdamage is predicted
to increase during the first year of treatment. Within 3 years,
Cr.S.Dn reaches its maximum value and thereafter trends down-
ward at greatly varying rates depending on the dosage of ALN or
RIS (Figs. 2 and 3). Compared to 1 year of treatment, the model
predicts a 26% decrease in Cr.S.Dn after 3 years of low dose
(0.05 mg/kg/day) RIS treatment. Under the high dose RIS regimen,
Cr.S.Dn continues to increase throughout the second year and
treatment.

Change from 1 year

simulation result (%)

Experimenta

4.21 –

�35.35 –

�2.25 –

4.84 0.24570.017

�23.41 0.037670.0223

�2.58 0.32870.037

5.15 0.25870.017

5.30 0.049370.0293

�0.72 0.31970.094

1.47 –

�26.42 –

3.43 –

3.59 –

�32.49 –

�1.49 –

4.50 –

20.35 –

0.70 –

g/kg/day ALN treatments (Allen and Burr, 2007).
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Fig. 4. In the dogs subjected to the middle dose of ALN (0.20 mg/kg/day), the

simulation predicts that microdamage formation and removal rates initially

decrease sharply after BP administration. As the microdamage formation rate

continues to decline over time due to further increases in BV/TV, the damage

removal rate recovers as a result of increases in Ac.f. As the microdamage removal

rate surpasses the formation rate, damage accumulation declines. Similar patterns

were observed for all doses of ALN and RIS.
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starts to diminish in the third year of treatment, reaching a
damage burden at 3 years that is 20% above that at 1 year. The
dynamics are similar for ALN, and for both bisphosphonates the
maximum amounts of Cr.S.Dn predicted at 3 years increase with
increasing dosage. For both ALN and RIS, the lowest dose allows a
faster return to a low damage burden compared to the higher
doses.

Predicted BV/TV, Cr.S.Dn, and Ac.f results at 3 years of
treatment are at or within one standard deviation of the
corresponding experimental measurements in all cases except
for Ac.f at the middle dose of ALN which is 2.8 standard deviations
different. The statistical analysis indicates significant differences
for experimental results compared to predicted values for the
middle dose (0opo0.02) but similarities for all values at the high
dose after 3 years of treatment.

Depending on dose, the model predicts long term bispho-
sphonate treatment for 10 years to produce BV/TV increases of
20–29% for ALN (Fig. 2a) and 11–27% for RIS (Fig. 3a) compared to
controls. Running the present model out to 10 years of treatment
produces steady state values of Ac.f after approximately 2.5 years
for RIS (Fig. 3c) and 3.5 years for ALN (Fig. 2c) that are 64–86%
below the untreated controls for ALN and 36–88% below controls
for RIS depending on dose. Microdamage accumulation (Figs. 2b
and 3b) is also dose-dependent and reaches its peak between 0.3
and 2.5 years (more quickly for lower doses). Microdamage reaches a
steady state value (0.0093 mm/mm2) slightly below the untreated
controls after 8 years of ALN treatment for the low dose. After
10 years of the high dose RIS treatment, Cr.S.Dn (0.0233 mm/mm2)
is greater than those of the middle (0.0105 mm/mm2) and
low (0.0100 mm/mm2) dose treatments. With the middle and high
doses of ALN or the high dose of RIS, Cr.S.Dn continues to decline
even after 10 years of treatment.
4. Discussion

Bisphosphonates are widely used to treat human post-
menopausal osteoporosis and have well-established anti-fracture
efficacy. Experiments on canines involving 1 year of bispho-
sphonate treatment at various doses (including those used to treat
post-menopausal osteoporosis) show suppressed bone remodel-
ing activity; increased bone volume fraction, mineralization,
stiffness, and microdamage accumulation; and reduced bone
toughness (Mashiba et al., 2001; Komatsubara et al., 2003; Allen
et al., 2006). The goal of the current study was to develop a
computational model to simulate the effects of BPs on bone
remodeling based on 1 year experimental data from canine
vertebrae and then examine results simulating long term BP use.

For varying doses of ALN or RIS, our model predicts a sharp
decline in activation frequency during the first two months of
treatment. Subsequently, Ac.f increases slightly, reaching a new
equilibrium after 2–5 years of treatment. The degree of Ac.f
decline is consistent with 1 year experimental data (Allen et al.,
2006), and its predicted long term steady state results are dose-
dependent, with the three doses of RIS having a wider variation in
long term results compared to the ALN doses.

In the simulation, microdamage accumulates rapidly within
the first 3 years of BP treatment. Although the microdamage
formation rate initially decreases sharply as a result of increases in
BV/TV, which reduces the strain level in the representative bone
volume, the initial decrease in the damage removal rate due to the
Ac.f reduction is greater (Fig. 4). Then Ac.f and, subsequently, the
damage removal rate begin to recover. Eventually, within 0.3–2.5
years depending on dose, the damage removal rate surpasses the
diminished damage formation rate, and the burden of damage due
to remodeling inhibition declines. These data predict that micro-
damage accumulation will be of greatest concern in the short-
term following the initiation of BP treatment, prior to the point
where bone volume increases sufficiently to reduce local strain.
This is consistent with data from the 1 and 3 year experiments
that show a significant increase in damage at 1 year but no
difference between 1 and 3 years of ALN treatment (Allen and
Burr, 2007). These results suggest that the reduced level of
remodeling may be sufficient to control microdamage accumula-
tion during long term BP treatment. The model predicts that
ultimately, after 8 years of ALN treatment for the low dose, a new
equilibrium is reached with a damage burden about 31% lower
than that of the untreated baseline controls. For RIS the return to a
steady state requires approximately 3–8 years for the low and
middle doses, with damage at 10 years predicted to be 26% less for
the low dose and 22% less for the middle dose relative to baseline
controls.

One of the strengths of the current study is the ability to
compare the simulation results with those from a well-designed
experiment with control animals to represent the equilibrium
status before BP treatment. Data on the effects of BP treatment on
BV/TV, Ac.f, and Cr.S.Dn provide a foundation for defining the
‘‘dose-response coefficients’’ for the effects of the bisphospho-
nates examined. That the present model reasonably predicts the
3 year experimental work demonstrates the appropriateness of
the coefficients chosen for the simulation and forms a basis to
explore BP effects over time periods consistent with post-
menopausal life spans.

However, the present work clearly has significant limitations.
The bone remodeling process is simplified in the model. For
example, variability in the size and shape of resorption cavities,
and many other aspects of the remodeling process, are not
represented in the present computer simulation. Furthermore, the
present model only simulates bone volume fraction as governed
by remodeling within trabecular bone, and does not consider the
microarchitecture of trabecular bone or the effects of cortical
bone. Neither does it consider bone modeling activities that may
affect bone fragility (Frost, 1998). The effects of remodeling are
only considered with regard to elastic modulus; certainly bispho-
sphonates are expected to affect strength and toughness as well.

Experimental results show increased trabecular bone stiffness
after BP treatment, but no difference in elastic modulus, ultimate
load, or ultimate stress (Allen et al., 2006). However, our simulation
results indicate 1 year of BP treatment increases not only BV/TV but
also elastic modulus in ALN- and RIS-treated animals compared to
controls. One explanation for this discrepancy is that the effects of
BP treatment on the degree of bone mineralization (Allen et al.,
2006), which significantly affects elastic modulus and other
mechanical properties (Moore and Gibson, 2002; Wang and Niebur,
2006), was not considered in the model.

Over time, many of these limitations may be overcome by
developing more detailed models in conjunction with ongoing
experimental work and the accumulation of human data. In the
meantime, the present simulation and experimental results
suggest that the effects of bisphosphonates on bone remodeling
may not lead to bone fragility associated with microdamage
accumulation, and are consistent in that regard with 10 year
alendronate treatment data for humans (Bone et al., 2004).
Further work is needed, however, before this and other clinical
questions can be answered.
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