This project is dedicated to our wonderful professors, Ed Saliklis and Ansgar Killing, who we owe mostly everything to.
Intro

Book I - Conceptual

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precedent</td>
<td>7</td>
</tr>
<tr>
<td>Form Finding</td>
<td>9</td>
</tr>
<tr>
<td>Preliminary Analysis</td>
<td>17</td>
</tr>
<tr>
<td>Site & Narrative</td>
<td>21</td>
</tr>
<tr>
<td>Day & Night Sections</td>
<td>23</td>
</tr>
<tr>
<td>Ceiling Study</td>
<td>25</td>
</tr>
<tr>
<td>Light Study</td>
<td>27</td>
</tr>
<tr>
<td>SAP & Buckling Analysis</td>
<td>33</td>
</tr>
<tr>
<td>Thrust Containment</td>
<td>35</td>
</tr>
<tr>
<td>Final Model</td>
<td>37</td>
</tr>
<tr>
<td>Formwork Concepts</td>
<td>39</td>
</tr>
</tbody>
</table>

Book II - Actual

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanging Fabric Study</td>
<td>43</td>
</tr>
<tr>
<td>Formwork</td>
<td>45</td>
</tr>
<tr>
<td>Concrete Pour</td>
<td>47</td>
</tr>
<tr>
<td>Formwork Removal</td>
<td>49</td>
</tr>
<tr>
<td>Day View & Plaster</td>
<td>51</td>
</tr>
<tr>
<td>Night View & LEDs</td>
<td>53</td>
</tr>
<tr>
<td>SAP Analysis</td>
<td>55</td>
</tr>
<tr>
<td>Final Words</td>
<td>61</td>
</tr>
</tbody>
</table>
"IT'S MINIMAL IN USE OF MATERIALS, IT'S SPATIAL, IT'S STRUCTURAL—IT'S EVERYTHING ARCHITECTS SHOULD BE CONCERNING THEMSELVES WITH" - JOHN RONAN
This project by Iwamoto Scott was designed for the SCI-Arc Gallery in Los Angeles as a site-specific architectural installation. The design itself sought to combine the contrasting construction logics of pure compression shell structures and thin lightweight sheets. The result was an incredibly light system of wood laminate vaults with a porous shell.
The architectural form was explored with engineering principles in Geogebra. This three strut exploration was critical in understanding the engineering behind a funicular shell as well as options about design.
COMPLETED WOODEN STICK MODEL
Chains were cut to length using Geogebra guidelines, attached by pinching the chains. Aluminum round bars were cut proportionately to the forces calculated in that strut using Risa and Robot. These bars were attached using rings.
COMPLETED HANGING CHAIN MODEL
The form was found by taking one funicular shell, replicating and scaling it down four times and, then twisting around an axis. Not only were we inspired by biomimicry, but our shells rotate around an axis as Ursa Minor rotates around Polaris.
The physical model was digitized twice. The first time, we digitized our hanging chain model. The second time, we digitized our hanging fabric model. The digitizer automatically put our form in Rhino. From Rhino, the model was exported into AutoCad and then to SAP2000.
RISA AND ROBOT ANALYSIS - GRAVITY

PINNED MEMBER FORCES AND REACTIONS

MOMENT CARRYING MEMBER FORCES AND REACTIONS

PINNED MEMBER FORCES AND REACTIONS (LEFT)
MOMENT CARRYING MEMBER FORCES AND REACTIONS (RIGHT)

BOOK I: PRELIMINARY ANALYSIS
Shell Information:
Surface Area: 7,960 sq. ft.
Uniform Shell Thickness: 4”
Estimate Weight of Shell using Normal Weight Concrete: 400 kips
Lateral Load: 20% of Estimated Weight of Shell

<table>
<thead>
<tr>
<th>Members</th>
<th>RISA (LBS)</th>
<th>ROBOT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>A</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>B</td>
<td>418</td>
<td>-76</td>
</tr>
<tr>
<td>C</td>
<td>-370</td>
<td>116</td>
</tr>
</tbody>
</table>

PINNED MEMBER FORCES AND REACTIONS
ROBOT (LEFT) AND RISA (RIGHT)

SUMMARY OF RESULTS

Base Reactions
SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>Members</th>
<th>RISA</th>
<th>ROBOT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axial (lbs)</td>
<td>My (lb-ft)</td>
</tr>
<tr>
<td>AD</td>
<td>68.7</td>
<td>-0.28</td>
</tr>
<tr>
<td>BD</td>
<td>457.6</td>
<td>0</td>
</tr>
<tr>
<td>CD</td>
<td>440.2</td>
<td>0</td>
</tr>
</tbody>
</table>

MOMENT CARRYING MEMBER FORCES AND REACTIONS ROBOT (LEFT) AND RISA (RIGHT)
Our site was located in Parc La Mutta, Switzerland, a Celtic astrological viewing site dating back to the Middle Bronze Age. Polaris is an astrological viewing site for the modern era that honors the Celtic standing stones on site. Physically, our shells keep a low profile on the cherished landscape; no shell is over 30', and our footprint is 6400 ft2. Our oculus points to the most important Northern constellation to the Celtics, Ursa Minor or “The Lesser Bear”.

Polaris not only accommodates the viewing of the night sky, but also daytime and nighttime live music performances. The curvature and placements of the shells work as an amphitheater, and the ground slopes down to work with the shell for natural seating.
The daytime section (left) shows how soft ambient Northern light links into the space. It also shows how the curvature of the shells accompanied by the gentle sloping of the hills makes a natural performance space. Light from the oculus highlights the performers. The nighttime section (right) shows views to Ursa minor and glimpses to the stars as you progress through the space.
NIGHT SECTION SHOWING URSA MINOR
We took a view of our shells from underneath to better represent our shallow ceiling heights (right) and the way light bounces off the interior surfaces of the shell during different times of the year (left.)
We drew inspiration for our fading shell from James Turrell’s Gugganheim instalment. Upon entering the shell, the lights are white and in high contrast to the night sky. As you move further into the space the colors get more rich and compressive until the final conclusion at the last shell oculus.
[EXTERIOR NIGHT LIGHTING CONDITION]
The light placement on the final shell fades into black as it approaches the oculus—framing the night sky.
INTERIOR NIGHT LIGHTING CONDITION
ANALYSIS OF SHELL ONE

SURFACE AREA: 2600 SF.
CONCRETE THICKNESS: 4"
ESTIMATED WEIGHT: 130 KIPS
(Left) is the analysis of our first largest shell which we anticipated having the largest buckling issues. (Right) is a graphic showing those buckling issues. We added a curved, sculpted wall underneath to prevent buckling.
Our thrust containment consisted of a poured concrete foundation platform. We had two different thrust containment conditions. We placed a wall underneath the pointiest side that was at risk for buckling (left top.) We also had a gradual fade connection form the shell to the ground (both on right.)
A CNC router was used to create the topo out of laminated ply. The final model was made by hanging fabric and applying plaster sheets.
Vacuummatic 3-D Formwork System: flexible plastic formwork molded into the desired shape and then depressurized. Afterwards, all that is left is a rigid form.

Felix Candela’s Timber Formwork

Scaffolding Formwork: adjustable steel tubes
• SHELL IS BROKEN UP INTO GRIDS
• SEGMENTS FROM GRIDS ARE EPOXY-RESIN HARDENED PIECES OF LINEN
• HARDENED FABRIC PIECES ATTACHED TO SCAFFOLDING
• SCAFFOLDING ARRANGED TO SPECIFIED LOCATION USING DIGITIZED MODEL
• CONCRETE POURED OVER HARDENED FABRIC FORMWORK
BOOK II
ACTUAL
PROCESS

COTTON/NYLON FABRIC

CUT AND SCREWED INTO PLYWOOD
DIPPED IN PAPER-MACHE MIX (ELMERS AND WATER)
DRAPE IN PAPER-MACHE DIPPED PAPER

TARP

CUT TO SIZE AND SCREWED INTO PLYWOOD
LOOSELY DRAPE WITH PAPER-MACHE PAPER
PROGRESS

COTTON/NYLON FABRIC WAS TOO ELASTIC
FORM WAS ALTERED BY WEIGHT OF PAPER-MACHE
FORM WAS INTACT, BUT SAGGED TOO MUCH

TARP WAS TOO STIFF OF A MATERIAL
LEARNED FROM FAILURE: PROPER PAPER-MACHÉ TECHNIQUE

MATERIAL: CLOSE-KNIT LINEN
HARDENING PROCESS: PAPER MÊCHÉ
We chose to begin our formwork with paper-mache hardened fabric hanging from a 6’ x 4’ plywood board marked with a grid. Once the fabric hardened, we flipped it around—what once was in pure tension became pure compression. We measured incremental distances from the plywood to the shell and cut 2x1’s to the correct size. We then placed these 2x’s on the grid in their proper place. To prevent puncturing, between the plywood 2x’s and the paper-mache shell we put cardboard pads to disperse the point load. We attached cardboard lips on the edge to create a clean edge condition. For water-proofing we covered the paper-mache fabric in tin-foil.
We mixed a low-slump concrete and poured it on top of the formwork. The slow slump allowed us to keep the shell thin and to control edge conditions.
After a week, we removed the formwork by pouring water between the tinfoil covered paper-mache and the cured concrete. We removed the plywood 2x’s with a drill.
Once everything was removed we plastered the interior underbelly of the shell and the tippy-tops of our footing. This allows light to bounce into the interior of the shell during the day and night.
DAY LIGHTING CONDITION 3

DAY LIGHTING CONDITION 4
We attached led lights to the perimeter of our shell. After experimenting with colors we thought teal looked best.
CONCRETE
5” thick shell
4 ksi

STEEL
ASTM A185 WELDED WIRE
(6X6 W5.0XW5.0)
F_y = 65 ksi
F_u = 75 ksi

MATERIAL PROPERTIES
From the Deflection Diagram, it becomes evident that the largest deflection occurs at the longest span, or the biggest shell, at 0.70". The deflection at the middle of the span progressively decreases as the shell size decreases.

From the Stress Diagram, it becomes evident that the whole structure is mostly in compression (yellow and orange sections). There are some areas in tension (green and blue sections), which are located in the supports.

The reactions indicate that the largest reaction takes place in the support of the longest-spanning shell. The reaction occurs at the steeper (i.e. more vertical) section of the shell. The reactions at the wall (bottom right image) are minimal, considering that the section has a continuous connection to the ground.

RESULTS

SELF-WEIGHT ONLY

LINEAR ANALYSIS

BUCKLING FACTOR = 21.2

REACTIONS (MAX AND MIN F.)

F. 21.7 k
F. -23.5 k
F: 32.6 k

F. 16.6 k
F. 0.39 k
F: 13.6 k

F. -0.03 k
F. -0.09 k
F: 0.21 k

F. -0.06 k
F. 0.17 k
F: 1.7 k

AVG. STRESS: 50 TO 200 PSI

MAX TENSION: 450 PSI

MAX COMPRESSION: 670 PSI

DEFLECTION

STRESSES
In order to understand the condition of the shell when unbalanced live loads are present, a strip of live load is applied at the middle of the span, where the largest deflection occurs. This unbalanced live load condition can be representative of snow loads that occurs in Switzerland.

From the analysis, it becomes evident that the deflection increases on average, about 100%.

When non-linear concrete and non-linear steel analysis was ran, the deflection came out to be 5 times the value of the linear analysis. After messing around with the different properties in SAP, the conclusion was that concrete went nonlinear under only under its self-weight and had high deflections. This is a problem since the analysis was not supposed converge nonlinearly, so the model needs to have even more meshes to have a more precise values in the nonlinear range from the interaction of the concrete and steel. When running linear concrete and non-linear steel, the results were a lot closer to the expected values from running a nonlinear analysis.
In terms of the lateral analysis, when a lateral load is applied from the north to south direction, the deflections, stresses, and thrusts increases by about 10% from self-weight only. This shows that the structure will perform reasonably well under 20% self-weight lateral load since the structure is a thin shell membrane.
In the non-linear push to fail analysis, there was a 1500 PSF live load applied at a strip on the shell. From the buckling analysis, the dead load was amplified by a factor of 21 to get the live loadings on the strip. Looking at the results, there was major increases in the deflected values at the strips where the point load is applied. The conclusion is that the structure failed due to high deflection and would have trouble with serviceability.
FINAL WORDS

Overall, we felt that the simple repetition and rotation, about an axis, of our original shell created an elegant form of cascading shells. We feel that we accomplished the main goal of our design, which was to design a funicular structure that didn’t distract or overshadow the church in any way and to pay homage to the Celtic astrological traditions of the site. In terms of constructing the physical shell we felt that the hanging fabric approach that we used was one of the more efficient ideas in terms of actual formwork needed however, one change that we would make to add to the structural stability of the shell would be to cast the concrete foundation into the ground rather than complicate things with a separate footing detail. All in all we are happy with the results of our project and believe that while there are things we would change, as a group we are content with the way in which we accomplished our design goals and in how we balanced aesthetic and structure.