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This work represents the USAF Academy portion of a culmination of three years of 
cooperative research in the Cranked Arrow Wing Aerodynamics International (CAWAPI) 
RTO Task Group, AVT-113. The objective of the group was to compute high resolution 
CFD simulations of a subset of the conditions created in the CAWAP flight test program 
managed by NASA Langley researchers and others. Seven flight conditions were chosen with 
four of them at symmetric conditions of medium to high angle of attack and subsonic Mach 
numbers, one symmetric condition at a transonic low angle of attack condition, and two 
conditions at medium angle of attack and subsonic Mach number but with positive and 
negative sideslips.  The emphasis of the USAF Academy team was to explore unsteady effects 
and the ability of current methods to predict them. Very good agreement with flight test was 
found in almost all cases and the unsteadiness was documented with flowfield visualization 
and unsteady surface pressure coefficient data.    

Nomenclature 
c = mean aerodynamic chord 
CFL = Courant-Friedrichs-Lewy number 
CFD = Computational Fluid Dynamics 
Cp = pressure coefficient 
Cf = skin friction coefficient nondimensionalized by the freestream dynamic pressure 
BL = butt line station, measured aft from the nose in inches 
FS = fuselage station, measured out the right wing from the symmetry plane in inches 
M = Mach number 
Rec = Reynolds number based on the mean aerodynamic chord 
Sn = Strouhal number 
Δt = time step 
t = time 
y+ = nondimensional boundary layer coordinate used to describe first spacing off the wall 
α = angle of attack 
β = angle of sideslip 

I. Introduction 

THE Cranked-Arrow Wing Aerodynamics Project (CAWAP) provided the CFD community with an excellent 
database for complex aerodynamic validation and evaluation purposes.1,2 The project focused on the 

understanding of the flow phenomena encountered on a cranked-arrow wing relevant to advanced fighter and 
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transport aircraft. The subject of investigation was the F-16XL aircraft, as shown in Figure 1.  The Cranked-Arrow 
Wing Aerodynamics Project International (CAWAPI), which was initiated by NASA as a follow-on project to the 
Cranked-Arrow Wing Aerodynamics Project, allowed for a larger international community of researchers to 
participate in predicting the aerodynamics of the F-16XL.  Along with the Vortex Flow Experiment 2 (VFE-2),3 

CAWAPI was incorporated under the NATO RTO Task Group AVT-113. The objective of the CAWAPI facet was 
to allow a comprehensive validation and evaluation of CFD methods against the CAWAP flight database.1,2 A 
number of researchers simulated the flowfield of the F-16XL at a variety of flight test conditions using different 
numerical approaches, including structured, block, and unstructured grids, as well as various turbulence models and 
numerical algorithms.  This type of full-scale aircraft configuration provides many challenges to state-of-the-art 
CFD flow prediction, including the ability to accurately predict unsteady flowfields at flight Reynolds numbers. 

Figure 1:  F-16XL aircraft (© NASA Dryden Flight Research Center (NASA-DFRC)). 

While advances have taken place in areas such as grid generation and fast algorithms for solutions of systems of 
equations, CFD has remained limited as a reliable tool for prediction of inherently unsteady flows at flight Reynolds 
numbers. Current engineering approaches to prediction of unsteady flows are based on solution of the Reynolds-
averaged Navier-Stokes (RANS) equations. The turbulence models employed in RANS methods necessarily model 
the entire spectrum of turbulent motions. While often adequate in steady flows with no regions of reversed flow, or 
possibly exhibiting shallow separation, it appears inevitable that RANS turbulence models are unable to accurately 
predict flows characterized by massive separation. Unsteady, massively separated flows are characterized by 
geometry-dependent and three-dimensional turbulent eddies. These eddies, arguably, are what defeat RANS 
turbulence models from predicting flows of any complexity.   

To overcome the deficiencies of RANS models for predicting massively separated flows, Spalart et al.4 proposed 
Detached-Eddy Simulation (DES) with the objective of developing a numerically feasible and accurate approach 
combining the most favorable elements of RANS models and Large Eddy Simulation (LES).  The primary 
advantage of DES is that it can be applied at high Reynolds numbers, as can Reynolds-averaged techniques, but 
DES also resolves geometry-dependent, unsteady three-dimensional turbulent motions as in LES. The unstructured 
finite-volume solver Cobalt5 has been used in conjunction with DES successfully on a number of complex problems, 
including a supersonic base flow,6 delta wing vortex breakdown,7,8 the F-15E at high angle of attack,9 the F/A-18E 
with unsteady shock buffet,10 and the F/A-18C with tail buffet.11. 

The specific aim of this work is to perform time accurate calculations for flow over the F-16XL at full-scale 
flight Reynolds numbers, and to document the effects of applying DES at conditions consistent with complex flow 
phenomenon. Understanding the unsteady flowfield can lead to improved knowledge about the flight characteristics 
of aircraft that can be overlooked by steady RANS or unsteady RANS (URANS) calculations.  While unsteady CFD 
predictions of full-scale aircraft are relatively expensive to perform, their value has been shown to be important in 
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many of the studies referenced above.  Abrupt wing stall,10 for example, could not have been predicted using a 
URANS CFD approach, and the aerodynamics of maneuvering aircraft cannot be adequately predicted without the 
use of a hybrid RANS/LES approach.  A brief overview of the turbulence models and numerical methods used is 
presented, as is a detailed look at the determination of the appropriate time steps for the unsteady calculations. 
Results show that there are several flow features of the F-16XL that are predicted correctly using an unsteady 
approach. 

II. Solution Method 

A. Flow Solver 
Computations were performed using the commercial flow solver Cobalt.5 Cobalt is a cell-centered, finite volume 

CFD code. It solves the unsteady, three-dimensional, compressible Reynolds Averaged Navier-Stokes (RANS) 
equations on hybrid unstructured grids. Its foundation is based on Godunov’s first-order accurate, exact Riemann 
solver. Second-order spatial accuracy is obtained through a Least Squares Reconstruction. A Newton sub-iteration 
method is used in the solution of the system of equations to improve time accuracy of the point-implicit method. 
Strang et al5 validated the numerical method on a number of problems, including the Spalart-Allmaras model, which 
forms the core for the Detached Eddy Simulation (DES) model available in Cobalt. Tomaro et al12 converted the 
code from explicit to implicit, enabling CFL numbers as high as 106. Grismer et al13 parallelized the code, with a 
demonstrated linear speed-up on as many as 4,000 processors. The parallel METIS (PARMETIS) domain 
decomposition library of Karypis et al14 is also incorporated into Cobalt. New capabilities include rigid-body and 6 
DOF motion, equilibrium air physics. An overset grid capability is in beta testing and a coupled aeroelastic 
simulation capability is also being developed (pre-alpha). 

B. Numerical Grid and Boundary Conditions 
The baseline unstructured grid was generated by researchers at the NASA Langley Research Center using the 

grid generation packages GRIDTOOL15 and VGRIDNS.16 The grid is a half-span all-tetrahedral mesh with a viscous 
inner region made up of high aspect ratio cells and a nearly isotropic outer inviscid region. The grid has 2,534,132 
nodes and 14,802,429 cells and is based on a CAD representation of the full-scale model of the F-16XL-1 with all 
control surfaces set to zero deflection. The surface of the half-span model of the F-16XL is discretized with 160,266 
triangular elements (see Figure 2). 

Figure 2:  F-16XL-1 half-span model surface grid (160,266 faces). 

Many flow solvers require the initial layers of cells off of the surface to be prisms or hexahedra to improve 
numerics. The all tetrahedral grid was converted to a hybrid mesh with inner layers of prisms by recombining the 
highly stretched inner layers of tetrahedra into prisms. The software used to convert the initial mesh into a hybrid 
grid was the utility program BLACKSMITH17 from Cobalt Solutions, LLC. BLACKSMITH reduced the cell count to a 
total of 11,928,103, corresponding to 2,535,842 nodes, by combining highly stretched tetrahedral cells into prismatic 
cells. The program generated 9 layers of prismatic cells, corresponding to 1,442,394 prisms. Although there are 
additional layers of cells in the viscous region, these layers are not complete around the entire aircraft and would 
require “end caps” of pyramids to match up with the tetrahedral cells of the outer region.  

To allow simulation of engine effects at the inlet and nozzle exit, the engine duct is meshed all the way to the 
compressor face plane and the nozzle is meshed from the engine mixing plane (see Figure 3).  The grid density off 
the aircraft surface is shown in Figure 4, which depicts a crinkle cutting plane through the grid at FS496 close to the 
trailing edge. 
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Figure 3:  Symmetry plane of the F-16XL-1 baseline unstructured grid. 

Figure 4: Crinkle cut plane through the grid at FS496 (fuselage station on airplane in inches, positive aft). 

The boundary conditions for the half-span computations are symmetry, adiabatic solid wall for the aircraft 
surface and the engine inlet duct, and modified Riemann invariants for the far-field boundaries. A source boundary 
condition based on Riemann invariants is used to create an inflow condition at the engine exhaust. A sink boundary 
condition is used at the engine compressor face to model the mass flow into the engine.  

III. Results 
There are seven CAWAP flight conditions chosen by the CAWAPI RTO Task Group as candidates for 

comparison (summarized in Table 1). Flight conditions 7, 19, 25, 46, and 70 are assumed to be symmetric conditions 
and only half-span grids are used in the computations, although there is up to a +0.725 and -0.133 degree sideslip 
error in the assumption as noted in Table 1. Flight conditions 7, 19, and 46 are medium angle-of-attack conditions at 
various subsonic Mach numbers and altitudes, whereas, flight condition 70 is a low angle of attack condition at a 
transonic Mach number of 0.97. Although the Reynolds number essentially doubles (to 88.8 million) for flight 
condition 70, the normal spacing of the grid points above the surface in the viscous region is still within an average 
y+ of one for the grid developed for all of the flight conditions. Flight conditions 50 and 51 are medium angle-of-
attack conditions at sideslips of +5.31 and -4.58 degrees, respectively, and a mirrored full-span grid created from the 
baseline grid was used. 
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Table 1: Subset of CAWAP Flight Conditions Chosen for CAWAPI. 
CAWAPI Flight Conditions 

FC# Mach Altitude (ft) AOA (deg) Beta Actual (deg) Beta Comp (deg) Rec 

7 
19 
25 
46 
70 
50 
51 

0.304 
0.36 

0.242 
0.527 
0.97 

0.434 
0.441 

5,000 
10,000 
10,000 
24,000 
22,300 
24,000 
24,000 

11.89 -0.133 
11.85 0.612 
19.84 0.725 
10.4 0.684 
4.37 0.310 
13.56 5.310 
12.89 -4.580 

0 
0 
0 
0 
0 

5.31 
-4.58 

4.44E+07 
4.68E+07 
3.22E+07 
4.69E+07 
8.88E+07 
3.94E+07 
3.90E+07 

All solutions were computed using the software Cobalt version 3.0 from Cobalt Solution L.L.C. installed on the 
Department of Defense High Performance Computing Modernization Program computer systems. Steady-state 
solutions and initiation of time-accurate solutions were computed using the Reynolds-Averaged Navier-Stokes 
(RANS) turbulence model of Spalart-Allmaras with Rotation Corrections (SARC), 1st order-accuracy in time, and a 
time step commensurate with a CFL number of one million. Time accurate solutions were computed with the 
Detached-Eddy Simulation hybrid RANS-Large Eddy Simulation turbulence model with SARC as the underlying 
RANS model. A time-step study was conducted to determine the proper time step for the flight condition and grid 
combination used for this study and is the subject of the next section. 

All of the computations were run on 128 to 256 CPUs on two different supercomputing systems at the 
Aeronautical Systems Center Major Shared Resource Center (ASC MSRC) at Wright-Patterson Air Force Base in 
Ohio.  The initial solutions (mainly FC7) were accomplished on “hpc9”, a Compaq SC-45 with 836 Alpha EV6.8 
processors running at 1 GHz and running the True64 UNIX operating system.  A total of 836 GB of distributed 
memory was available, and each processor has access to 8 TB of hard disk space.  This machine was 
decommissioned on September 30th, 2006. The balance of the solutions were accomplished on “falcon”, a 2,048-
processor AMD Opteron (2.8 GHz) cluster with 1,024 XC Compute Nodes (2 processors/node) connected with 
Infiniband Interconnect. Each node has 4GB of memory (4TB total) with access to 97 TB of local disk space.  The 
machine has a peak performance of 11.5 TeraFLOPS. 

Nominally, each solution (corresponding to a flight condition from Table 1) was initialized by accomplishing 
3,000 flow solution iterations with 2nd order spatial accuracy, 1st order time accuracy with the time step size 
determined by the global minimum CFL number, and 1 Newton subiteration per time step.  For the half-span 
solutions, this required 17.6 seconds per iteration on hpc9 (880 CPU hrs, 6.88 hrs of wall clock time on 128 procs) 
and 10.2 seconds per iteration on falcon (510 CPU hrs, 3.98 hrs of wall clock time on 128 procs).  From these initial 
solutions, at least 6,000 additional iterations were performed with a specified time step size and 2nd order spatial and 
temporal accuracy with 3 Newton subiterations.  These runs required 38.9 seconds per iteration on hpc9 and 20.9 
seconds per iteration on falcon for the half-span solutions. The full span solutions (FC50/51) required 42.3 seconds 
per iteration on falcon. These timings varied depending on whether or not time-accurate flow solution files were 
requested.  Typically, the last 2,000 iterations of each run were time-averaged to compute the average solution 
values in the results, and time-accurate flow solution files were exported every 5 time steps during this time period. 
The unsteady bounds shown in the results were determined by interrogating these flow solution files. 

There are several major features of the F-16XL that contribute to the aerodynamic phenomena to be discussed in 
the Results section. Figure 5 is a three-view drawing of the F-16XL-1 depicting these important geometrical 
features and was extracted from Reference 1. The wing is a cranked arrow wing with a leading edge sweep of 70 
degrees prior to the crank and 50 degrees in the post crank outboard wing region. The wing leading edge is blended 
to the fuselage with an s-curve shape to aid in high angle of attack pitch characteristics1. There is also an actuator 
pod just inboard of the crank and an air dam protruding forward of the actuator pod. Finally, there is an AIM-9 
missile attached to the wing-tip pylon. 

In the subsequent sections, data will be presented with the nomenclature of butt line (BL) and fuselage stations 
(FS). The coordinate system used for analyzing the flight and CFD data is x measured aft, y measured out the right 
wing, and z measured up, with an origin near the nose of the aircraft. The BL is an x-z plane at a constant y 
coordinate and the numerical designation gives the distance from the symmetry plane to the BL plane measured in 
inches. The FS is a y-z plane at a constant x coordinate and the numerical designation gives the distance from the 
nose region to the FS plane measured in inches. The BL and FS measurements are illustrated in Figure 5. 
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Figure 5: Three-view drawing of the F-16XL-1 airplane. Linear dimensions are in feet (inches). Figure 
extracted from Ref. 1. 

A. Time Step Study 
In order to accurately predict unsteady flows about the F-16XL, both a good grid and a proper time step is 

required.  Of course, “good” and “proper” are relative terms that need to be examined in light of the flow features of 
interest.  If the computation is trying to resolve vortical flow features, the grid of a particular fineness coupled with a 
specific time step may be adequate.  If the computation is trying to resolve smaller turbulent structures, then a finer 
grid with a smaller time step may be necessary.  Figure 6 shows the various Strouhal numbers (dimensionless 
frequency defined as Sn = fc/U∞) that regularly occur in aerodynamic flowfields18, which can aid in finding a good 
“starting” time step, based on the flow feature of interest. 
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Figure 6: Spectrum of unsteady flow phenomena (Ref. 18). 

In order to determine the appropriate time step for the numerical simulations of the F-16XL, a study was carried 
out for the unsteady flowfield above the wing.  Figure 7 shows the variation of power spectral density of the normal 
force on the aircraft as a function of time at seven time steps, Δt = 0.00500, 0.00250, 0.00100, 0.00050, 0.00010, 
and 0.00005 seconds.  These time steps were chosen based on the rule of thumb that aerodynamic features of interest 
are usually “visible” at non-dimensional time steps of approximately Δt* = 0.01 (Δt* = Δt U∞ / c).   

Figure 7: PSD of normal force variation with time at various time steps. 
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The computations were all performed for the same physical time (1.0 second) by varying the number of 
iterations for each time step, and each computation was completed with three Newton sub-iterations. An additional 
side study was accomplished at a time step of 0.005 seconds to determine if simulating the flow field for a longer 
physical time (up to 3.0 seconds) affected the frequency content of the flow.  No significant changes in the power 
spectral density results were evident.  As shown in Figure 7, the resulting dominant Strouhal number does not show 
a definite trend with time step: if the dominant frequency were “converging” with decreasing time step then a lower 
time step would be required.  However, in this case, there is no definite trend with time step.  Based on our 
experience in predicting these flows19, this trend leads to the conclusion that the integrated normal force is 
“masking” a number of different flow features that are all contributing to the frequency content shown in Figure 7 
(multiple vortices, possible vortex breakdown, flow separation regions, etc.).  Because of this, we have found that 
taking detailed flow “measurements” within the flowfield region of interest is the only way to properly determine 
the primary frequencies and appropriate time steps.  Therefore, a series of “pressure taps” were located in the flow, 
as shown in Figure 8, as well as Table 2.  Figure 8a shows the complexity of the flowfield in the region of interest, 
where a primary leading-edge vortex intersects with the air dam vortex, as well as the creation of another leading-
edge vortex at the wing crank.  Figure 8b shows the pressure tap locations used in the time step study. 

Figure 8:  a) Iso-surfaces of X-vorticity and velocity cutting planes, b) Velocity cutting planes and pressure 
tap locations (white dots) 

Table 2:  Pressure Tap Location in Region of Interest 
Tap # X (in) Y (in) Z (in) 

1 470 124 125 
2 475.39 123.326 125.135 
3 480.11 122.736 125.253 
4 484.941 122.132 125.374 
5 491.13 121.359 125.528 
6 495.509 120.811 125.638 
7 499.788 120.277 125.745 
8 504.74 119.657 125.869 
9 510 119 126 

Each time step was run with the pressure tap locations “collecting” data as a function of time.  These pressures 
were then used to perform PSD calculations for each time step.  A representative set of results is shown in Figure 9, 
which is the power spectral density at pressure tap #1.  As can be seen, as the time step is decreased, the primary 
frequency begins to take place at a common frequency, which we consider time step “convergence.”  Similar results 
take place at pressure tap #2, but as the more aft pressure taps were evaluated, the flow became much less coherent, 
without any obvious primary frequencies (as can be seen in Figure 9 for tap #1). 
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Figure 9:  Power spectral density results for pressure tap #1. 

The results for pressure tap #1 are consolidated and shown as a function of time step and wave number in Figure 
10.  As can be clearly seen, the primary wave number is converging to a constant value as the time step decreases, 
with a wave number of approximately 0.19 reached when the physical time step is below Δt = 0.001 sec.  While a 
converged time step has been attained at Δt = 0.001 sec, a smaller time step may be desirable for accurate flow 
prediction.  It is also clear that the Strouhal frequency for the primary flow feature is somewhere in the range of 5, 
which corresponds to a helical mode instability in Figure 6. 

Figure 10: Wave number variation with time step for pressure tap #1. 
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While an additional time study could be performed to determine the effect of the number of Newton sub-
iterations on the solution, our experience19 shows that 3 Newton sub-iterations is usually sufficient for accurate 
prediction of the unsteady flows about full-scale aircraft.  All subsequent calculations are performed with a physical 
time step of Δt = 0.0005 seconds and 3 Newton sub-iterations. 

B. Low Speed Medium to High Alpha Flight Conditions 
There are four flight conditions with angles of attack greater than 10 degrees and subsonic Mach numbers. Three 

of the flight conditions are considered a medium angle of attack in the range 10 to 12 degrees (FC7, FC19, and 
FC46). The fourth condition, FC25, is considered a high angle of attack condition at 19.84 degrees. This section 
presents results for these four flight conditions.  

Flight Condition 7 
Flight Condition 7 (FC7) is at an angle of attack of 11.89 degrees, a Mach number of 0.304, and an altitude of 

5,000 ft resulting in a Reynolds number of 44.4 million. This condition was used by the CAWAPI RTO Task Group 
as an initial comparison case between the various research teams. Unfortunately, this particular case had no flight 
test data to use for comparison, although there were two flight conditions close enough to be considered comparable 
from Flight 44 with approximately the same angle of attack and Mach numbers of 0.37 and 0.42.  

Figure 11 depicts the flowfield over the F-16XL at FC7. Iso-surfaces of vorticity magnitude of 250 1/sec colored 
by pressure are shown in the perspective view and surface Cp for the right wing are shown in the planform view. It 
is apparent that the dominant features of the flowfield are the leading edge vortex, the air dam vortex, the outer wing 
vortex, and a complicated set of vortices from the AIM-9 fins and fore-body. It can also be seen that the leading-
edge vortex changes characteristic from a coherent structure to a complex structure with helical windings, similar to 
vortex breakdown, in the region of the actuator pod. It is also interesting to note that the helical vortex structure is 
above the vortex emanating from the air dam creating a very complex structure. Figure 12 shows a close up view of 
this region for an iso-surface of vorticity-magnitude level of 750 1/sec with labels for the dominant features.  

Figure 11:  Flight Condition 7; a) iso-surfaces of vorticity magnitude colored by pressure at an instant in 
time, b) time averaged surface pressure coefficient distribution, Cp. 
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Figure 12: Close up view of the vortical flowfield above the F-16XL-1 at Flight Condition 7; iso-surfaces of 
vorticity magnitude colored by pressure at an instant in time. 

Determining the time-accurate characteristics of the flowfield is the central theme of this paper and so it becomes 
important to determine the relationship between the instantaneous solution, time-averaged solution, and a steady 
RANS solution. Figure 13 depicts iso-surfaces of vorticity magnitude and Cp at an instant in time on the lower half 
of the figure and a time average after 2000 time steps on the top half of the figure. The “pre-breakdown like” regions 
of each of the vortices seem comparable in position, size, and strength of both the vortices and their corresponding 
pressure “foot-prints” on the surface for the time averaged and instantaneous solutions. Aft of the breakdown-like 
region the helical windings are averaged out into a coherent structure. The time averaged solution is also very 
similar to the steady RANS solution using the SARC turbulence model (see Figure 14), although there are some 
differences aft of the breakdown-like region. Many of the standard turbulence models are unable to capture the post-
breakdown windings as accurately as the SARC model.6,7,9,10,11 

Figure 13:  Comparison of an instantaneous solution to a solution time-averaged after 2000 time steps; a) iso-
surfaces of vorticity magnitude colored by pressure, b) surface pressure coefficient distribution, Cp. 
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Figure 14: Comparison of an instantaneous SARCDES solution (upper half) to a SARC RANS solution 
(lower half); iso-surfaces of vorticity magnitude colored by pressure. 

Figure 15 depicts cross-planes of x-vorticity for various FS locations for both time averaged (left half of each 
pane) and instantaneous solutions (right half of each pane).  At FS300 the shear layer emanating from the wing 
leading-edge and the resulting vortex core can be seen in red and the secondary vortex can be seen below the 
primary vortex in blue. FS300 through FS375 all show similar vortical structures and very little difference between 
the time averaged and instantaneous solutions. At FS407.5 the air dam is just visible and the resulting vortex from 
the air dam has become apparent (in blue) as well as its effect on the secondary vortex previously seen. At FS450 
the air dam vortex has lifted off the surface and begun to pair with the leading-edge vortex. The crank outer-wing 
vortex is also evident in red as well as the AIM-9 fin vortices (blue and red) at FS450. There are only minor 
differences in the time averaged versus instantaneous solutions evident in FS407.5 and FS450. At FS492.5 the same 
features exist but a large difference between the time averaged and instantaneous solutions can be observed due to 
the breakdown and resulting helical windings of the primary, outer crank, and AIM-9 fin vortices.  
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Figure 15: Flight Condition 7; cross-planes of vorticity in the x-coordinate direction (down the fuselage axis), 
time averaged vorticity on the left half and instantaneous vorticity on the right half of each image. 

Up to this point all of the results have been computational to show the complex flow features evident at this 
flight condition. Figure 16 depicts the flight test surface pressure coefficient, Cp, data compared to the computed 
time averaged Cp, computed min and max Cp at a given location, and the related RANS solution Cp for FC7 at 
various BL positions. As discussed earlier, the flight test data is at a slightly different condition but considered 
comparable. As is evident in the cross-planes of vorticity away from the air dam or crank, the BL40 through BL95 
plots show that unsteady effects are minimal. BL55, BL70, BL80, and BL95 all show good agreement with the 
available flight test data with only minor discrepancies near the recovery from the strong suction peak. The suction 
peak Cp value and the position of the peak are in good agreement for all of these BL locations. BL105 is located just 
inboard of the air dam/actuator pod and a small amount of unsteadiness is observed as evidenced by a widening of 
the min Cp, and max Cp curves from the mean Cp and RANS Cp curves. At BL127.5, BL153.5, and BL184.5 there 
are large differences in the min Cp and max Cp from the mean Cp curves, especially near the vortex induced suction 
peak, although the mean Cp curve compares well with the flight test data. At BL127.5 and BL184.5 we begin to see 
the difference between the mean Cp computed from a time accurate solution and the RANS Cp. This is especially 
evident at BL184.5 in the range of x/c from 0.1 to 0.4. In this region there is a large “hump” with the time-averaged 
Cp showing the best agreement with flight test. This discrepancy has been observed in other fighter aircraft 
simulations and is typically due to the inability of the RANS turbulence models to accurately capture the effect of 
the massive separation and strong unsteady vortices.6,7,9,10,11 
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Figure 16: Flight Condition 7; surface Cp along various F-16XL Butt Line Stations (BL) for flight test, 
computed mean, and computed max and min value for a series of time accurate solutions. 

Figure 17 depicts similar data for various FS positions for FC7. As is true of all BL positions, all FS positions are 
in excellent agreement with the available flight test data. It is also evident at FS407.5, FS450, and FS492.5 that there 
is significant unsteadiness outboard of the air dam/actuator pod. This unsteadiness is due to the vortices from the air 
dam/actuator pod, crank outer wing, and AIM-9 tip missile and results in large variations in Cp in this region. 
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Figure 17: Flight Condition 7; surface Cp along various F-16XL Fuselage Stations (FS) for flight test, 
computed mean, and computed max and min values. 

Figure 18 depicts the boundary layer rake comparisons between flight test and computed time average, min, and 
max scaled velocities at four locations in the neighborhood of FS300. The rakes are at locations along a line 
approximately perpendicular to the leading edge with Rake 3 most inboard and Rake 7 very near the leading edge 
and Rake 4 and Rake 5 in between. Rake 3 is well inboard of the leading edge vortex and shows the best agreement 
with fight test and essentially no unsteady effects of the vortex. Rake 4 is still in good agreement with the flight test 
data and we see unsteadiness as measured by the difference between min and max scaled velocity and the mean 
scaled velocity. In the Rake 5 data we see a large difference in the data near the “knee” in the curve and an increase 
in the unsteadiness of the data. Rake 7 shows the largest discrepancy from flight test including a velocity at the knee 
higher than the rake edge velocity which is not observed in the flight-test data. One possible explanation is rake 
alignment. The actual alignment and position of the rake away from the surface is not precisely known, which could 
impact the comparison. It should also be noted that this rake experiences a significant amount of unsteadiness. Rake 

15
 
American Institute of Aeronautics and Astronautics 




 

 
 

 

 
  

 
      

 
 

    
  

 
 

  
     

 

7 is located in the most challenging flow region due to the separation occurring somewhere near the leading edge 
and the transition of the model from RANS to LES.  This particular data needs further study to determine the cause 
of the discrepancy. 

Figure 18:  Boundary layer rake velocities scaled by rake-edge velocity for rakes 3, 4, 5, and 7 at Flight 

Condition 7. 


Flight Condition 19 
Flight Condition 19 (FC19) is at an angle of attack of 11.85 degrees, a Mach number of 0.36, and an altitude of 

10,000 ft resulting in a Reynolds number of 46.8 million. This condition was chosen for comparison due to the 
availability of skin friction data. Figure 11 depicts the flowfield over the F-16XL at FC19. As in FC7, iso-surfaces 
of vorticity magnitude of 250 1/sec colored by pressure are shown in the perspective view and surface Cp for the 
right wing are shown in the planform view. The dominant features of the flowfield are the same as in FC7 with only 
slight differences.  
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Figure 19:  Flight Condition 19; a) iso-surfaces of vorticity magnitude colored by pressure, b) surface 
pressure coefficient distribution, Cp. 

Figure 20 depicts the local skin friction coefficient along FS330 for flight test and computed mean, min, and 
max. The flight test and computed data compare well qualitatively with the shape and position of the primary peak. 
However, quantitatively the magnitude of the skin friction coefficient primary peak is 22% different than the flight 
test data. It is well known that skin friction is one of the more challenging coefficients to match and may need 
additional grid resolution to improve the flight test data comparison. The secondary peak is well within the min and 
max values of the skin friction coefficient.    

Figure 20: Local Skin Friction Coefficient along Fuselage Station 330. 

Flight Condition 46 
Flight Condition 46 (FC46) is at an angle of attack of 10.4 degrees, a Mach number of 0.527, and an altitude of 

24,000 ft resulting in a Reynolds number of 46.9 million. This condition was chosen for comparison due to the 
availability of skin friction data. Figure 21 depicts the flowfield over the F-16XL at FC46. As in FC7, iso-surfaces 
of vorticity magnitude of 250 1/sec colored by pressure are shown in the perspective view and surface Cp for the 
right wing are shown in the planform view. The dominant features of the flowfield are the same as in FC7 with only 
slight differences.  
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Figure 21:  Flight condition 46; iso-surfaces of vorticity magnitude colored by pressure, b) surface pressure 
coefficient distribution, Cp. 

Figure 22 depicts the flight test Cp data compared to the computed time averaged Cp, and computed min and 
max Cp at a given location for FC46 at various BL positions. As is the case with FC7, the BL40 through BL70 plots 
show that unsteady effects are minimal. However unlike FC7, FC46 shows unsteadiness in BL80 and BL95. The 
flight test comparison for BL55 is in excellent agreement in both shape and magnitude of surface Cp. Both BL70 
and BL80 are in good agreement as well, with a slight shift outboard in the suction peak position and a slightly 
higher over all magnitude for the computational data. At BL95 the computations over predict the magnitude of both 
the primary and secondary vortex and predict a much sharper primary vortex. The BL153.5 computational data 
show an over prediction in suction peak magnitude and a shift outboard in the peak location. The BL184.5 
computational data shows significant unsteadiness as in the FC7 case with the majority of the data within the min 
and max Cp bounds of the computational data. However, the computational data misses the inboard trend of a higher 
Cp. Overall this can be considered a fairly good comparison with flight test but due to the excellent agreement 
between flight test and computations for FC7, it is possible the actual flight test for FC46 may have been at a 
slightly different condition than simulated. 

18
 
American Institute of Aeronautics and Astronautics 




 

 
 

 

 
 

 
    

  
 

 

 

   
 

     

Figure 22: Flight Condition 46; surface Cp along various F-16XL Butt Line Stations (BL) for flight test, 
computed mean, and computed max and min value for a series of time accurate solutions. 

Flight Condition 25 
Flight Condition 25 (FC25) is at an angle of attack of 19.84 degrees, a Mach number of 0.242, and an altitude of 

10,000 ft resulting in a Reynolds number of 32.2 million. This condition was added by the CAWAPI RTO Task 
Group to give a high angle of attack comparison case. Figure 23 depicts the flowfield over the F-16XL at FC25. Iso-
surfaces of vorticity magnitude of 250 1/sec colored by pressure are shown in the perspective view and surface Cp 
for the right wing are shown in the planform view. As in the case of FC7, it is apparent that the dominant features of 
the flowfield are the leading-edge vortex, the air-dam vortex, the outer-wing vortex, and a complicated set of 
vortices from the AIM-9 fins and fore-body. However, the increased angle of attack has caused the breakdown of 
these vortices to occur earlier creating a more significantly unsteady flowfield. It is easier to label this classic vortex 
breakdown due to the fact that the breakdown position is well forward and inboard of the air dam/actuator pod. 
Figure 24 shows a close up view of this region for an iso-surface of vorticity-magnitude level of 900 1/sec with 
labels for the dominant features.  
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Figure 23:  Flight condition 25; iso-surfaces of vorticity magnitude colored by pressure, b) surface pressure 
coefficient distribution, Cp. 

Figure 24: Close up view of the vortical flowfield above the F-16XL-1 at Flight Condition 25; iso-surfaces of 
vorticity magnitude colored by pressure. 

Figure 25 depicts the flight test Cp data compared to the computed time averaged Cp, and computed min and 
max Cp at a given location for FC25 at various BL positions. The BL40 through BL70 plots show that unsteady 
effects are minimal. The BL80, BL95, and BL105 positions all show measurable unsteadiness. BL55, BL70, BL80, 
and BL95 all show excellent agreement with flight test data for this condition. The BL127.5, BL153.5, and BL184.5 
positions all show significant unsteadiness in the surface Cp. All of the flight test data is within the bounds of the 
computed Cp min and max curves. Overall, there is excellent agreement with the flight test data for this flight 
condition and the comparison shows the utility of hybrid turbulence models and reliable CFD solvers to compute 
these complex unsteady fighter flowfields. 
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Figure 25: Flight Condition 25; surface Cp along various F-16XL Butt Line Stations (BL) for flight test, 
computed mean, and computed max and min value for a series of time accurate solutions.  

Figure 26 depicts similar data for various FS positions at FC25. As is true of all BL positions, all FS positions 
are in excellent agreement with the available flight test data. It is also evident that there is significant unsteadiness 
on the F-16XL wing at all FS positions aft of FS300 at this flight condition. 
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Figure 26: Flight Condition 25; surface Cp along various F-16XL Fuselage Stations (FS) for flight test, 
computed mean, and computed max and min values. 

C. Transonic Flight Condition 70 (FC70) 
The only transonic condition chosen by the CAWAPI RTO Task Group is Flight Condition 70. FC70 is at a 

Mach number of 0.97, an angle of attack of 4.37 degrees, and an altitude of 22,300 ft resulting in a Reynolds number 
of 88.8 million. Figure 27 depicts the flowfield over the F-16XL at FC70. Iso-surfaces of vorticity magnitude of 250 
1/sec colored by pressure are shown in the perspective view and surface Cp for the right wing are shown in the 
planform view. The dominant features for this flowfield are no longer the same as the subsonic cases. There is a 
leading edge vortical structure that detaches from the leading edge and turns streamwise just after the s-curve 
portion of the leading edge. Also, the air dam/actuator pod and AIM-9 fin and forebody vortices exists but are 
minimal and close to the surface. Of course the more important features are the transonic shocks that are evident in 
the surface Cp distribution. The emphasis of this paper is the unsteady effects, which are essentially non-existent for 
this flowfield, so the data is provided for completeness but will not be discussed in great detail. 
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Figure 27:  Flight Condition 70; iso-surfaces of vorticity magnitude colored by pressure, b) surface pressure 
coefficient distribution, Cp. 

Figure 28 depicts the flight test Cp data compared to the computed time averaged Cp, and computed min and 
max Cp at a given location for FC70 at various BL positions. The BL40 through BL184.5 plots show that unsteady 
effects are minimal. The BL55 and BL95 data are in good agreement with flight test data but the BL70, BL80, 
BL153.5, and BL184.5 data are in rather poor agreement with flight test data. This poor agreement may be due to 
the fact that a control surface in the outer portion of the wing was deflected in flight test but not in the grid. This 
discrepancy was discovered by the CAWAPI RTO Task Group too late in the study to make changes to the grid and 
therefore all participants have seen similar discrepancies.  
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Figure 28: Flight Condition 70; surface Cp along various F-16XL Butt Line Stations (BL) for flight test, 
computed mean, and computed max and min value for a series of time accurate solutions. 

Figure 29 shows very similar agreement between flight test and computations for all FS positions as the BL 
positions. 
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Figure 29: Flight Condition 70; surface Cp along various F-16XL Fuselage Stations (FS) for flight test, 
computed mean, and computed max and min values. 

D. Sideslip Flight Conditions 
There are two flight conditions with non-zero sideslip angles, medium angles of attack, and subsonic Mach 

numbers. These two conditions have sideslip angles of +5.31 (FC50) and -4.58 (FC51). Solutions were computed for 
these two conditions with a mirrored full-span grid based on the original half-span grid used in all of the previously 
discussed computations. This section presents results for these two non-symmetric flight conditions. 

Flight Condition 50 
Flight Condition 50 (FC50) is at a sideslip angle of +5.31 degrees (wind in the right ear), an angle of attack of 

13.56 degrees, a Mach number of 0.434, and an altitude of 24,000 ft resulting in a Reynolds number of 39.4 million. 
Figure 30 depicts the flowfield over the F-16XL at FC50. Iso-surfaces of vorticity magnitude of 250 1/sec colored 
by pressure are shown in the left view and surface Cp is shown in the right view. The dominant features of the left 
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wing are similar to the FC7 baseline case but the right wing has additional vortical structures. The effect of a 
positive sideslip angle is an increase in the effective angle of attack and a reduction in the leading-edge sweep angle 
of the right wing. The increased effective angle of attack causes breakdown to occur sooner on the wing and the 
reduced sweep angle causes the double vortex observed by researchers performing studies of lower sweep delta 
wings20. 

Figure 30:  Flight Condition 50; iso-surfaces of vorticity magnitude colored by pressure, b) surface pressure 
coefficient distribution, Cp. 

Figure 31 depicts the right wing flight test Cp data compared to the computed time averaged Cp and computed 
min and max Cp at a given location for FC50 at various BL positions. It should be noted that for FC50 the 
comparison data is on the wing with the highest degree of unsteadiness due to the increased effective angle of attack 
and the reduced leading edge sweep. The BL40 and BL50 plots show that unsteady effects are minimal for these 
inboard stations and the flight test data matches fairly well for both BL40 and BL55. Unlike FC7, FC19, FC46, or 
even FC25, FC50 shows significant unsteadiness for BL70 through BL184.5 for the reasons discussed above. The 
BL70 through BL184.5 flight test data resides primarily inside of the computed unsteady min and max Cp bounds. 
However, in BL95 there is a region near the leading edge that is overpredicted by the computations. Overall, these 
comparisons with flight test are considered good when considering the amount of unsteady massively separated flow 
on the right wing. 
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Figure 31: Flight Condition 50; surface Cp along various F-16XL Butt Line Stations (BL) for flight test, 
computed mean, and computed max and min value for a series of time accurate solutions. 

Figure 32 depicts similar data for various FS positions for FC50. As is true of all BL positions, all FS positions 
are in good agreement with the available flight test data and there is significant unsteadiness observed for FS300 
through FS492.5 at this flight condition. 
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Figure 32: Flight Condition 50; surface Cp along various F-16XL Fuselage Stations (FS) for flight test, 
computed mean, and computed max and min values. 

Flight Condition 51 
Flight Condition 51 (FC51) is at a sideslip angle of -4.58 degrees (wind in the left ear), an angle of attack of 

12.89 degrees, a Mach number of 0.441, and an altitude of 24,000 ft resulting in a Reynolds number of 39.0 million. 
Figure 33 depicts the flowfield over the F-16XL at FC51. Iso-surfaces of vorticity magnitude of 250 1/sec colored 
by pressure are shown in the left view and surface Cp is shown in the right view. Since the flight conditions of FC51 
are nearly the same as FC50 but with an opposite sideslip, the discussions above hold for FC51 but for the opposite 
wing.  
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Figure 33:  Flight Condition 51; iso-surfaces of vorticity magnitude colored by pressure, b) surface pressure 
coefficient distribution, Cp. 

Figure 34 depicts the right wing flight test Cp data compared to the computed time averaged Cp and 
computed min and max Cp at a given location for FC51 at various BL positions. It should be noted that for FC51 the 
comparison data is on the wing with the lowest degree of unsteadiness due to the decreased effective angle of attack 
and the increased leading edge sweep. The BL40 through BL105 plots show that unsteady effects are minimal and 
the flight test data matches very well for BL40 through BL105. The BL127.5 plot shows the largest discrepancy 
with an underpredicted peak located slightly inboard of the flight test data. The BL153.5 and BL184.5 plots show 
very good agreement with flight test data and a fairly large amount of unsteadiness for BL184.5. 
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Figure 34: Flight Condition 51; surface Cp along various F-16XL Butt Line Stations (BL) for flight test, 
computed mean, and computed max and min value for a series of time accurate solutions. 

Figure 35 depicts similar data for various FS positions for FC51. As is true of all BL positions, all FS positions 
are in good agreement with the available flight test data and there is very little unsteadiness observed for FS185 
through FS492.5 at this flight condition. 
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Figure 35: Flight Condition 51; surface Cp along various F-16XL Fuselage Stations (FS) for flight test, 
computed mean, and computed max and min values. 

IV. Conclusions 
Seven flight conditions of the F-16XL-1 aircraft were presented with comparisons to flight test data from the 

NASA CAWAP program. The ability of accurate CFD methods to compute and visualize these very complex 
vortical flowfields was evident and shown to be very useful for the aircraft industry. Very good agreement between 
surface Cp flight test data and computed data was seen in most subsonic cases. The unsteadiness of the simulations 
aft of vortex breakdown-like events were observed and quantified with min and max instantaneous Cp curves and 
compared to flight test, showing the utility of hybrid RANS-LES methods, such as DES, to compute these complex 
flowfields. The discrepencies for one of the rake boundary layer profiles and the surface skin friction data are 
subjects for further study and probably due to either miss-alignment of the velocity data or grid refinement. 
Unsteady DES computations do come at an increased cost over steady RANS computations and are clearly 
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unnecessary for some flight conditions, but when there is a large amount of unsteady flow, it may be the only 
method of capturing either the mean loads or the variations in loads required by the aircraft designer/analysts. 
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