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Abstract 

In this paper I study the El Farol problem, a deterministic, boundedly 
rational, multi-agent model of a resource subject to congestion exter­
nalities that was initially studied computationally by Arthur (1994). 
I represent the interaction as a game, compute the set of Nash equi­
libria in mixed strategies of this game, and show analytically how the 
method of inductive inference employed by the agents in Arthur’s 
computer simulation leads the empirical distribution of aggregate 
attendance to be like those in the set of Nash equilibria of the game. 
This set contains only completely mixed strategy profiles, which ex­
plains why aggregate attendance appears random in the computer 
simulation even though its set-up is completely deterministic. 

1. Introduction 

In this paper I study a famous problem from the field of computational 
economics known as the El Farol Problem, which is a model of bounded 
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ITAM, CIDE, El Colegio de México, Universidad de Alicante, Erasmus University, the 1996 
Santa Fe Institute Workshop in Computational Economics and the 1997 Latin American 
Meeting of the Econometric Society. All remaining shortcomings are mine. 



rationality posed by Brian Arthur (1994). In this problem agents employ a set 
of predictors to forecast the actions of others over time and decide whether to 
attend the “El Farol” bar based on their most accurate predictor of aggregate 
attendance at each period. When each boundedly rational agent forecasts 
that the bar is going to be too crowded, the agent decides not to go to the 
bar, and vice versa. 

The problem has the feature that no forecasting rule of deterministic 
actions can be at the same time correct and available to all agents, and that 
the sequence of outcomes that one obtains through (deterministic) computer 
simulation of the problem looks more like a random process with a stationary 
mean than a deterministic function. 

There are several reasons why the El Farol problem is worth studying. The 
first one is that the empirical distribution of aggregate behavior resulting from 
the system of deterministic forecasting and decision is realization-equivalent to 
the empirical distribution of aggregate behavior resulting from the mixed-
strategy Nash equilibria of the underlying game, thereby providing a clear 
link between equilibria in randomized strategies and the long-run behavior 
of a collection of boundedly rational agents. 

The second reason is that the bar in this problem is essentially a resource 
subject to congestion, therefore making the problem a stylized version of the 
central problems in public economics, such as those of traffic congestion and 
congestion on computer networks like the Internet.1 As congestion of this 
kind is routinely experienced in modern economies, a deeper understanding 
of what transpires in computer simulations of the El Farol problem may help 
us develop methods for understanding how resources subject to congestion 
can be better managed in modern economies. 

The third reason why the problem is worth studying is that it is regarded 
as paradigmatic of those in the complex adaptive systems literature, for it 
involves a fairly large number of intelligent and adaptive agents with local 
information whose “forecasts (. . .) act to create the world they are trying 
to forecast.”2 These systems include multi-agent systems (like the Internet), 
ecological systems, common pool resources, and financial markets. For this 
reason, the El Farol problem has generated a lot of attention from physicists 
and computer scientists. Indeed, the mathematician John Casti has asserted 
that “a decent mathematical formalism within which to describe and analyze 

1While there has been some research in the area, as evidenced by the seminal work by 
Vickrey (1963, 1969), Rosenthal (1973), Arnott, de Palma, and Lindsey (1993), Varian 
and Mackie-Mason (1994), Shenker (1995), and Wolpert et al. (1999) much remains to be 
done. In the words of Ted Bergstrom: “In my opinion neither of these areas has received 
the attention from economists that is merited by its importance and interest. Both seems 
to me areas in which economic theory and econometrics are likely to be powerful tools.” 
See http://www.econ.ucsb.edu/∼tedb/econ230b.html. 
2Casti (1996, p. 8). 



the (. . .) El Farol problem would go a long way toward the creation of a 
workable scientific theory of (complex, adaptive) systems.”3 

Physicists and computer scientists work mainly in the context of a game 
inspired by the El Farol problem deemed the minority game—a game in 
which an odd number of players must join one of two groups. Each player 
wins when he or she joins the group with a minority of the players. 

Interestingly, many of the computer scientists and physicists involved in 
this kind of research have had some resistance in employing the standard tools 
of mathematical economics and game theory to study them. The reason is that 
it has been argued that computational agents lack the kind of sophistication 
that players are supposed to have according to game theory and therefore 
game-theoretic predictions about what would arise in interactions among 
computer agents would not be of use.4 

This paper shows that this need not be the case, as the kind of algorithms 
that define the manner in which computer agents interact over time can be 
given a game-theoretic interpretation in a way that makes the behavior of a 
collection of boundedly rational agents consistent with the equilibria of the 
underlying game. 

This is what the research reported in this paper has done for the case of 
the El Farol problem. This suggests that the standard tools of game theory 
should be of tremendous utility in understanding the rapidly growing world 
of network-based computation and interaction. 

To summarize, in this paper I study the El Farol problem, a determinis­
tic, boundedly rational, multi-agent model of a resource subject to congestion 
that was initially studied computationally by Arthur (1994). I represent the 
interaction as a game, compute the set of Nash equilibria in mixed strate­
gies of this game, and then show analytically how the method of inductive 
inference employed by the agents in Arthur’s computer simulation leads the 
empirical distribution of aggregate attendance to be like those distributions 
in the set of Nash equilibria of the game. This set contains only completely 
mixed strategy profiles, which helps to explain why aggregate attendance 
appears random even though the set-up of Arthur’s computer simulation is 
completely deterministic. 

The ability to do this illustrates the nice interplay that exists between 
computational modeling and mathematical analysis. Both the El Farol prob­
lem and the Minority Game have been the subject of many computational 
models. In this paper, I show how we can use mathematics to explain what 
happens in these computational models. This should not be interpreted as 

3Casti (1996, p. 9). 
4Challet and Zhang (1997), for example, when introducing the minority game to the 
physics community, stated: “the approach traditionally used in economics is not convenient 
to generalise to include irrationality,” and methods of statistical physics are used by these 
and other authors instead. 
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a demonstration that mathematics always trumps computation. On the con­
trary, the two are complementary. The computational models of Arthur and 
others open a new set of questions and generate phenomena that we would 
like to understand fully. The mathematics I present provides an explanation 
of some dimensions of those phenomena. They erase some of the mystery. 
In doing so, they enhance, not diminish, the discovery of the phenomena 
themselves. 

The structure of the rest of this paper is the following. In Section 2, I 
present the details of the El Farol problem, in Section 3 I rewrite the El Farol 
problem in game-theoretic terms, and in Section 4 I provide analytic results 
that explain some characteristics of the empirical distribution of outcomes 
over time. I provide a discussion of related work in Section 5 and offer con­
clusions in Section 6. 

2. The El Farol Problem 

2.1. The El Farol Model 

One hundred inhabitants of Santa Fe decide independently each week 
whether to go to the bar El Farol, where it is known that a good evening 
awaits if not too many people show up at the same time. Concretely, each 
inhabitant goes to the bar if she expects fewer than 60 to show up, and stays 
home otherwise. The only information available to every inhabitant at each 
week is the number of people that went to the bar in the previous weeks. 

To decide whether or not to go to the bar each inhabitant needs a method 
to forecast attendance. However, the problem has the feature that no fore­
casting rule of deterministic attendance can be at the same time correct and 
available to all agents. To see why assume that the forecasting rule asserts that 
60 or more individuals will show up at El Farol. Then nobody will go, thus in­
validating the forecast. Similarly, if the forecasting rule asserts that less than 60 
individuals will show up at the bar, then all will go, which again invalidates the 
forecast. To deal with this difficulty Arthur (1994) allows each agent to “form 
several predictors or hypotheses that map the past d weeks attendance figures 
into next week’s.”5 Examples of possible predictors include the following: 

Predict next week’s attendance to be the same as last week’s; 

Predict an average of the last 4 weeks; 

Predict the same as 2 weeks ago. 

At each period each individual uses the predictor that is “currently the 
most accurate (. . .) in her set”6 (the so-called active predictor), and makes a 
decision as to whether to attend the bar or not based on it. Arthur (1994) has 

5Arthur (1994, p. 409). 
6Arthur (1994). 



the agents compute the accuracy of the predictors as follows: If s i is one of 
the predictors for agent i, its accuracy at the end of period t is computed as 
follows: 

Ut (s i ) = λUt−1(s i ) + (1 − λ)|s i (d(ht−1)) − yt | 
where ht−1 is the history of attendance up to period t − 1, d(ht−1) ∈ D, is the  
attendance for the last d weeks (where d is a fixed number), D is the set of all 
possible attendance profiles for the last d weeks, s i (d(ht−1)) is the prediction 
of predictor s i for period t given history ht−1, yt is the actual attendance for 
period t, and λ is a number strictly between zero and one. In other words, 
Arthur (1994) computes the accuracy of each predictor at a given period as 
a weighted average of the accuracy of the predictor in the previous period 
and the absolute difference between the predictor’s last prediction and the 
actual attendance.7 

In this set-up, the collection of decisions of the agents determines each 
week’s attendance figure, which is reported to all agents in the next period. 
Then the figure is used by each agent to update the accuracies of her moni­
tored predictors, and a new decision is made. 

To analyze this model Arthur designs a computer experiment where he 
first creates a finite but fairly large family of possible predictors, of which a 
number of them are independently and identically distributed to each of the 
100 agents. The forecasting rules given to the agents are diverse enough that 
at every period each agent has at least a rule that forecasts an attendance 
level below 60, and a rule that forecasts an attendance level of 60 or above. 
Then, given starting conditions and the fixed set of predictors available to 
each agent the overall dynamics is completely determined. 

2.2. The Puzzle 

When performing computer experiments of the “El Farol” problem Arthur 
(1994) obtains the following: 

Fact 1. Mean attendance always converges to 60, and 
Fact 2. On average, 40% of the active predictors are forecasting above 60 

and 60% below 60. 

Casti in turn reports the third interesting feature of the problem, namely, 
that the sequence of outcomes looks more like a random process than a 
deterministic function, even though the set-up of the problem is entirely 
deterministic.8 This, according to Casti, leads to the following conjectures: 

7I am grateful to Bruce Edmonds for kindly providing me with a copy of Arthur’s original
 
code.
 
8Casti (1996, p. 8).
 



Figure 1: One hundred weeks of aggregate attendance according to the El Farol 

simulation 

Conjecture 1. The average number of people who actually go to the bar 
converges to the threshold value as the number of periods becomes 
large. 

Conjecture 2. The time series on attendance levels is a deterministic ran­
dom process, i.e., it is “chaotic.”9 

There is a major obstacle to a resolution to these conjectures: Casti as­
serts “there currently exists no mathematical formalism within which to even 
meaningfully phrase these questions.”10 

2.3. The Statistics 

One of the messages of the present paper is that game theory is a useful for­
malism for thinking about problems like the one studied by Arthur (1994). 
Before presenting the precise game-theoretic representation of the interac­
tion underlying the El Farol problem I briefly analyze statistically the outcome 
of a typical run from Arthur’s code. 

Figure 1 displays 100 weeks of aggregate attendance according to a run 
of Arthur’s model. The mean attendance in the entire run (which consists 
of 10,000 “weeks”) is 59.07 and the standard deviation is 12.8. The mean is 
remarkably stable early in the run, as Figure 2 shows. It is noteworthy that, 
while the mean is close to 60 (more precisely: within one to 60), it is not 60, 

9Casti (1996). 
10Casti (1996, p. 9). 



Figure 2: Average of aggregate attendance over time in the El Farol simulation 

as Fact 1 and Conjecture 1 would suggest. The long-run median, however, is 
exactly 60. One could then rewrite Conjecture 1 as follows: 

Conjecture 1′. The median number of people who actually go to the bar 
converges to the threshold value as the number of periods becomes 
large. The average number of people converges to a number that is 
within one to the threshold. 

Conjecture 2 suggests that a run obtained from Arthur’s code is “as if” it 
was a realization of a stochastic process, even though Arthur’s setup is entirely 
deterministic. 

To verify this claim I ran a non-parametric test of whether in a typical 
run from Arthur’s code the observations for aggregate attendance occur in 
random order. If aggregate attendance is positively serially correlated it will 
tend to remain above or below its median for several observations in a row. 
On the other hand, if aggregate attendance is negatively serially correlated 
observations above the median are likely to be followed by observations below 
the median. Therefore, the number of times the time series of aggregate 
attendance “crosses” the median cannot be either too high or too low under 
the random order hypothesis (Swed and Eisenhart 1943). 

The number of times aggregate attendance crosses the median in our 
sample run of Arthur’s code of 10,000 weeks is 7,901 while the expected 
value of crossings under the the null hypothesis of random order is about 
5,000, numbers that are statistically different to any reasonable significance 
level (the test’s z-statistic, which is approximately normal, was equal to 
58.01). 



Figure 3: Standard deviation of aggregate attendance over time in the El Farol simulation 

Despite this, persistent fluctuations in the data remain, as evidenced by 
the fact that the standard deviation of aggregate attendance over time is 
bounded away from zero (Figure 3). Hence, while Conjecture 2 does not 
seem to hold, the question remains as to why the persistent fluctuations in 
the data do not vanish over time. One could write this as follows: 

Conjecture 2′. The standard deviation of aggregate attendance is stable 
over time and bounded away from zero. 

3. Game Theory 

3.1. The Prediction Game 

A game G = 〈N , (Ai ), (ui )〉 consists of a set N of players and, for each player 
i, a finite action set Ai and a payoff function ui : Ai × A−i → 
, where A−i := 
� j � i A j , is the Cartesian product of the action sets of every player but i.=

One can view the “El Farol” model as a game where the decision that 
each player makes is one of either going or not going to the bar, subject to 
the player’s forecast, and where the payoff of attending (respectively, not at­
tending) when the bar is uncrowded (respectively, crowded) is greater than 
the payoff of attending (respectively, not attending) when the bar is crowded 
(respectively, uncrowded).11 Call this the attendance game. A more useful 

11In fact, this is how many in the literature represent the interaction. See the discussion of 
the related literature in Section 5. 
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representation, for the purpose of obtaining analytical results, is the following 
representation: 

The strategy set for each player is the set of integers from 0 to 100. 

The payoffs for each player are measured as the negative of the absolute 
difference between the player’s choice of strategy, and the number of 
(other) players that chose a number smaller than 60.12 The number 
of (other) players that chose a number smaller than 60 will be called 
the “aggregate attendance.” 

This description of the game underlying the “El Farol” model is called 
the prediction game. The interpretation is, of course, that each player is trying 
to predict how many other players chose, as their own prediction, a number 
below 60. 

While this representation seems substantially different than the atten­
dance game, it turns out that they can be made to be equivalent when (i) 
the game is repeated, (ii) the players are using Arthur’s method of belief 
revision in the attendance game, and (iii) the players are using exponentially 
weighted beliefs in the prediction game. This will be explored formally in 
Theorem 3. Before investigating any of this, I consider some properties of 
the equilibria of the prediction game. 

LEMMA 1: The prediction game has no pure strategy equilibria. 

Proof: See the Appendix. 

That the prediction game has no pure-strategy Nash equilibria is exactly 
what the statement that “no forecasting rule of deterministic actions can be at 
the same time correct and available to all agents” refers to. This is no proof that 
“there is no deductively rational solution—no correct expectational model 
[for this problem],”13 however, because there are many forecasting rules of 
stochastic actions that can be at the same time correct and available to all 
agents, namely, the mixed-strategy Nash equilibria of the game. 

LEMMA 2: The median number of players who choose a number less than 60 in any 
mixed Nash equilibrium of the prediction game is exactly 60. The distance between the 
median and the mean in any mixed Nash equilibrium is at most equal to 1. 

Proof: See the Appendix. 

3.2. The Repeated Prediction Game 

Now that we know a number of features of the prediction game let us consider 
the repeated El Farol. The stage game is played every week, and to keep full 

12Each player, as in a model with a continuum of players, ignores his or her effect on this
 
number. This is exactly as in Arthur’s set-up.
 
13Arthur (1994, p. 409).
 



Figure 4: One hundred weeks of aggregate attendance according to the symmetric Nash 

equilibrium of the underlying game 

consistency with Arthur’s framework, the players discount the future com­
pletely. At the beginning of the week the only information available to every 
player is the attendance in the previous weeks. 

It is not hard to see that if any Nash equilibrium of the stage game is 
played at every period, the path of play that one would observe would show 
an average attendance of about 60, and obviously exhibits a variance of ag­
gregate attendance over time that is bounded away from zero. To illustrate 
this point I have simulated the aggregate attendance that arises in a Nash 
equilibrium of the prediction game played repeatedly (Figure 4). That is, 
this sequence exhibits similar properties that the empirical distribution of 
aggregate attendance of the El Farol problem. Moreover, under the repre­
sentation of the El Farol problem used in this paper, the statements “Mean 
attendance always converges to 60,” and “On average, 40% of the active pre­
dictors are forecasting above 60 and 60% below 60,” are, in fact, equivalent, 
which implies that an explanation of why Fact 1 arises is at the same time an 
explanation of why Fact 2 arises. 

The statements in this last paragraph alone do not solve the problem 
posed by Arthur’s simulation, however, because players in the computer ex­
periments of the El Farol model done by Arthur (1994) do not use equilib­
rium strategies of the repeated prediction game. This discussion, however, 
clearly situates the problem as a game-theoretic one and, in particular, one 
for which a satisfactory solution exists. The key to understanding how the 
game-theoretic machinery can be used to shed light on a problem of this 
nature is explained below. 



∑ 

∑ 

3.2.1. Playing a Repeated Game 
That agents in a repeated game are endowed with Bayesian rationality, but 
not mutual knowledge of the strategies chosen by others, means that they are 
endowed with a prior over the relevant uncertainty space of their decision 
problems. 

It turns out that the method of forecasting and decision used by the 
agents in the El Farol model allows us to recover exactly the preferences and 
beliefs underlying each agent’s choice. 

THEOREM 1: The agents in the El Farol model behave exactly as if they are playing 
the prediction game period after period, with beliefs about aggregate attendance given 
by a variant of what is known in the literature of learning in games as “exponentially 
weighted fictitious play.” 

Proof: Notice that if each player i uses at each period the most accurate 
predictor in her set, this means choosing s i to maximize Ut (s i ) at every 
period t. But notice that Ut (s i ) = λUt−1(s i ) + (1 − λ)|s i (d(ht−1)) − yt |
can be written as 

t 

Ut (s i ) = λt−τ u(s i (d(hτ−1)), yτ ) 
τ=1 

where u(s i (d(hτ−1)), yτ ) = |s i (d(hτ−1)) − yτ |. Maximizing Ut (s i ) by  
i λchoice of s is of course equivalent to maximizing Ut (s i ). Notice, 1−λt 

however, that if we define ft to be a probability distribution on the set 
D × {0, 1, 2, . . . , 100} such that the forecast probability of attendance y at 
date t + 1 and an attendance profile for the last d weeks of δ (up to week 
t), is 

t−1
λ 

λt−τ 1{yτ =y ,d(hτ−1)=δ}1 − λt 
τ=0 

λthen Ut (s i ) is the expectation of u(s i (d̃), ỹ), with respect to ft . Call 1 − λt 

this expectation V (s i , ft ). Distribution ft is the exponentially weighted 
fictitious play belief function, so that players at the end of every period t 

i ichoose strategy ŝt+1 from the set arg maxsi V (s , ft ); that is, they basically 
behave according to the model known in the literature on learning in 
games as “exponentially weighted fictitious play.” � 

Nachbar (1999), Kalai, Lehrer, and Smorodinsky (1996), Nyarko (1997), 
and Jordan (1997) have shown that any model of best-responding subject 
to adaptive forecasts can be given a full Savage-Bayesian decision-theoretic 
representation. The contribution of Theorem 1 goes beyond this in that it provides an 
exact decision-theoretic representation of the behavioral rules that the players in the El 
Farol model employ. Therefore, individual behavior in the El Farol problem is 
consistent with Savage-Bayesian rationality. But there is more: the empirical 
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distribution of aggregate attendance over time in the model is consistent with 
Nash equilibrium. This I will show in the following section. 

4. When Learning Leads to Equilibrium 

To study the long-run properties of the sequence of attendance it is useful 
to define the regret that a player experiences from having played the actions 
that he or she has actually chosen over time. Using an idea adapted from Hart 

jand Mas-Colell (2001), define the conditional expected regret from strategy s 
to s k at time t [ ( ) ( )]j k jDC i (s , s k ) = 1 

V s , fτ−1 − V s , fτ−1 .t t 
τ≤t : ŝ i =s j ,τ 

Notice that each bracketed term in the summation is non-positive since play­
ers are best responding at every period τ to fτ−1. Since expected payoffs are 
linear in the probabilities, 

j k jDC i (s , s k ) = V s , 
1 

fτ−1 − V s , 
1 

fτ−1 ≤ 0.t t t 
τ≤t : ŝ i =s j τ≤t : ŝ i =s j

τ τ 

and by a proposition in Hart and Mas-Colell (2000, p. 1133), the average 
belief, 1 f (t), is a correlated equilibrium distribution (projected onto the t 
aggregate attendance levels) of the game being played. 

From here it quickly follows that: 

THEOREM 2: The empirical distribution of aggregate attendance converges to the 
set of correlated equilibria of the prediction game. 

Proof: Exponentially weighted fictitious play beliefs evolve over time accord­
ing to the formula 

(1 − λ)
f (t + 1) = f (t) + [yt+1 − f (t)]. 

1 − λt+2 

For large t, the denominator of the second summand can be ignored. 
Therefore, 

T T T T1 1 1 1 
f (τ + 1) − f (τ) ≈ (1 − λ) yτ+1 − f (τ) . 

T T T T
τ=t τ=t τ=t τ=t 

Since the average belief converges to a correlated equilibrium of the 
game, the left-hand side of the previous equation converges to zero, and ∑Thence the empirical distribution 1 yτ+1 converges together with T τ=t 
the average belief to the set of correlated equilibria, as well. � 

The last step in understanding the behavior of the El Farol model is the 
following: 



THEOREM 3: The set of Nash equilibria and the set of correlated equilibria of the 
prediction game coincide. 

Proof: See the Appendix. 

The contribution of the last three theorems is that together they show 
that the empirical distribution of attendance in the El Farol model converges 
to the set of Nash equilibria of the prediction game. One should therefore 
expect a median attendance equal to 60, an average attendance within 1 to 
60, which explains Fact 1, Fact 2, and Conjecture 1′ as outlined in section 2 
of the paper. Moreover, all of these equilibria are in mixed strategies, which 
explains why the standard deviation of aggregate attendance is bounded away 
from zero, as posed in Conjecture 2′. This is so even though all players use 
pure strategies period by period. 

4.1. Remarks 

It is important to comment on what the result does not say. First, it does 
not say that the players have learned to predict the strategies chosen by the 
others because players cannot recover the strategies chosen by others solely 
by observing the time series of aggregate attendance. 

Second, it does not even say that the players have learned to predict the 
continuation path of play. This is in general a much stronger result that holds 
for beliefs with very restricted support, as explained by Nachbar (1997, 1999). 

Third, it does not say that the beliefs of the players converge to the set 
of Nash equilibria of the game. Beliefs that are an exponentially smoothed 
variant of fictitious play beliefs converge to a Nash equilibrium only if the 
equilibrium is a pure strategy equilibrium. But this is impossible for the pre­
diction game, since there is no pure strategy Nash equilibrium. 

Fourth, it does not say that the players end up using the mixed strategies 
that form the Nash equilibrium of the repeated game, or that the process of 
aggregate attendance is random, for that matter. It does say, however, that 
the empirical distribution of aggregate attendance has features that are just 
as the features that arise in the empirical distribution induced by the set of 
Nash equilibria of the game. This set is entirely composed of mixed strategies, 
even though the forecasting rules are entirely deterministic. Therefore, the 
analytic results from the present section explain the puzzling facts about the 
El Farol model simulations, as are outlined in section 2. 

While the techniques are somewhat different, the method used for ob­
taining the result in Theorem 3 is related to results on the convergence of 
empirical distributions to Nash and correlated equilibrium by Jordan (1997) 
and Nyarko (1994), respectively. Those results do not apply to the present 
paper directly, as some key hypotheses of those theorems regarding mutual 
absolute continuity of the beliefs of the players are not readily verifiable for 
the El Farol model. Those results, however, are the direct inspiration behind 
the analysis in the present paper. 



5. Related Literature 

To enable the reader to contrast my results to those already available in the 
literature on this problem, let me recall them here briefly. I have written the 
El Farol model as a repeated game of prediction where beliefs about other 
player’s predictions evolve according to exponentially smooth fictitious play 
beliefs. This is not a variant on the El Farol problem: my representation 
yields the exact behavioral rules used for decision making and prediction by 
the players in Arthur (1994)’s simulation of the El Farol model. My repre­
sentation also has the advantage that it allows me to analytically demonstrate 
why aggregate attendance oscillates around 60 in the simulations, and why 
the empirical distribution of outcomes appears to be generated by a random 
process even though the set-up is completely deterministic. This is, in short, 
the contribution of this paper. 

The papers more directly related to the present work are Arthur (1994), 
which I have already discussed, Greenwald et al. (2000), Edmonds (1999), 
Bell et al. (2003), Farago et al. (2002), Johnson (1998), and Leady (2002). 
All these papers contain either simulations, or analytical results to variants 
on the El Farol problem, or both. None of them contain analytical results 
related to the original simulation done by Arthur (1994). 

Greenwald et al. (2000) study the El Farol problem with the purpose of 
showing that rationality and predictability are incompatible in this game, in 
the spirit of Nachbar (1997)’s seminal work. While they succeed in what they 
attempt to do, this does not contradict the findings of the present paper. 
This is so because players’ beliefs in the present paper, consistent with their 
findings, do not converge to the truth. The average of the beliefs over time, 
however, does converge to the set of correlated equilibria, and this is, in this 
game, sufficient for the empirical distribution of attendance to converge to 
the set of Nash equilibria of the game. 

Edmonds (1999) endows the agents with an evolving set of predictors, 
allows communication between the players, and studies the outcome of sim­
ulations very much like the one by Arthur. His findings are consistent with 
Arthur’s original findings regarding attendance oscillating around 60 in a 
seemingly random fashion. While Edmonds suggests that the results in the 
simulations are inconsistent with Bayesian rationality and equilibrium in the 
limit, he focuses, like Greenwald et al. (2000) on actual play and actual beliefs 
of the game, as opposed to average beliefs and the empirical distribution of 
play, as in the present paper. 

Bell et al. (2003) and Farago et al. (2002) treat the El Farol problem 
as an engineering problem. Instead of trying to explain the outcome of the 
simulations done by Arthur in game-theoretic terms, they are more interested 
in studying what type of learning algorithms players could use for the system 
to find their way to efficient and fair equilibria, and they succeed in finding 
both deterministic and stochastic strategies for the players that do just this. 
They also focus on the attendance game representation of the El Farol model. 



Johnson et al. (1998) consider how the variance of attendance in the 
simulations of the El Farol problem change in response to the number of 
predictors available in the entire system and the number of predictors that 
each agent selects. 

Interestingly, Leady (2002) conducted experiments with human subjects 
playing the attendance game representation of the El Farol model and got results 
qualitatively similar to those from the simulations and the analytical results 
presented in this paper: while the sequence of actions did not approach any 
of the equilibria of the game, average attendance to the bar over time was 
about 60%. 

5.1. The Minority Game 

An important paper in the literature is that of Challet and Zhang (1997), 
which studies the variant on the El Farol problem discussed in the intro­
duction called the “minority game” using tools from statistical physics. The 
papers devoted to the minority game are too numerous to discuss here in 
any detail (a website dedicated to the minority game, http://www.unifr.ch/ 
econophysics/minority/papers.html, contains more than 110 references to 
papers devoted to its study). Let me recall briefly the contribution of three 
papers from that strand of the literature that are relevant for understanding 
what transpires in the El Farol problem. 

Marsili, Challet, and Zecchina (1999) study the minority game under 
alternative assumptions about whether the agents take into account their own 
effect into aggregate outcomes. When the agents do take into account their 
own effect into aggregate outcomes they obtain convergence of outcomes to 
the Nash equilibria of the minority game while this does not happen when 
agents ignore their own effect into aggregate outcomes. In this latter case 
convergence is to a notion they call naive agents’ equilibrium, a point that is 
associated with the maximization of a potential function, as in Hart and Mas 
Colell (2001). 

Shalizi and Albers (2003) use symbolic dynamics to study discrete adaptive 
games like the minority game and show that there cannot be deterministic 
chaos in the canonical model of a such game. 

It is nevertheless of interest that the results that are reported on many 
of the minority game papers regarding how an efficient use of the resources 
in the model (i.e., the groups the agents intend to join) depend on the 
richness of the space of predictors that the agents can use to form their 
forecasts. The most efficient use of the resources seems to obtain when the 
pool of predictors is neither too large nor too small, a condition described by 
physicists as a “phase shift.” A canonical example of the type of papers, which 
report findings of this sort, is that of Savit, Manuca, and Riolo (1997). 

A concise summary of what is known about this game can be found in 
Farmer (1999). I conjecture that many of the analytical methods used in the 



present paper could be used to shed light on the puzzling facts of the minority 
game simulations. 

5.2. The El Farol Problem and Congestion Externalities 

The purpose of this sub-section is to remark that this paper contributes to the 
study of the kinds of congestion problems that arise through the interaction 
of computer agents in a network like the Internet. 

The reader may easily see how the El Farol problem falls within the class of 
congestion externality problems: There is a resource (the bar) that provides 
a better service when not so many people use it. Roads and network services, 
among others, are resources subject to exactly the same kind of congestion. 
The case of network services and the Internet are especially important since 
computer scientists have had some resistance in employing the standard tools 
of mathematical economics and game theory to study them. Interestingly, 
the reason is that it has been argued that computational agents lack the 
kind of sophistication that players are supposed to have according to game 
theory and that therefore game-theoretic predictions about what would arise 
in interactions among computer agents would not be of use. 

This paper shows that this need not be the case, as the kind of algorithms 
that define the manner in which computer agents interact over time can be 
given a Savage-Bayesian interpretation. This opens the door for the tools of 
the literature on learning in games to be used to study those interactions in 
the hope that they provide an accurate prediction of the unfoldings of the 
interaction. This is, in fact, what the research reported in this paper has done 
for the case of the El Farol problem, which suggests that the standard tools 
of game theory should be of tremendous utility in understanding the rapidly 
growing world of network-based computation and interaction. 

6. Conclusions 

Proponents of bounded rationality models often argue that what makes ra­
tional choice theory unbelievable is not that agents are supposed to have 
well-defined objectives and that they act to achieve them, but that the agents’ 
choice occurs in a context in which they have detailed information about 
the environment, perhaps under the form of a prior function defined over 
a large and complicated state space. It is then reasonable for many to build 
models with agents that select a standard best response subject to their fore­
casts about the environment, and then having the forecasts be determined 
by some model of adaptive learning, such as least squares learning, genetic 
algorithms, pattern recognition, and so on. 

The main point of this paper is to remark that this class of models of 
bounded rationality can easily be made consistent with the standard Bayesian 
decision-theoretic framework. This is so because the forecasting systems used 
in these bounded rationality models induce a (possibly misspecified) prior 



over the set of possible future outcomes that, conditional on any partial his­
tory, assigns probability 1 to the set of possible futures that are consistent 
with the outcome generated by the forecasting system given that history, and 
probability zero elsewhere. As a consequence, these models of bounded ratio­
nality are just as Bayesian rational as those models where the prior is explicitly 
spelled out. 

While this point has been made repeatedly in the theoretical literature 
on Bayesian learning in games (see, e.g., Nachbar 1999, Kalai, Lehrer, and 
Smorodinsky 1996, Nyarko 1997, and Jordan 1997), this insight has not fully 
permeated into applied research conducted in the bounded rationality camp. 
For this reason the contribution of this paper is to make this point by providing an 
example of a famous model of bounded rationality from the computational economics 
literature that fits into the standard Bayesian decision-theoretic framework. 

Providing a solution to the El Farol problem turns out to be important 
in its own right. Arthur’s model represents very well the central problem 
from the public economics literature of understanding how resources that 
are subject to congestion are used in society. 

As the incredible interest that this problem has generated in the com­
puter science and in the physics literature demonstrates, the results of this 
paper open up many new avenues for research because the issues raised by 
problems like the El Farol, and a deeper understanding of the relationship 
between endogenous uncertainty, bounded rationality, congestion external­
ities, and strategic interaction are far from being completely understood for 
the general case. The reader is strongly encouraged to check Blume and 
Easley (1998) and Nachbar (1997) to see why. 

To conclude, let me reiterate my belief in that the research reported in 
this paper illustrates the interplay that exists between computational model­
ing and mathematical analysis. Both the El Farol problem and the minority 
game have been the subject of many computational models. In this paper, I 
am showing how we can use mathematics to explain what happens in these 
computational models. This should not be interpreted as a demonstration 
that mathematics always trumps computation. On the contrary, the two are 
complementary. The computational models of open a new set of questions 
and generate phenomena that we would like to understand fully. The math­
ematics I present provides an explanation for some dimensions of these phe­
nomena. They erase some of the mystery. In doing so, they enhance, not 
diminish, the discovery of the phenomena themselves. 

Appendix 

Proof of Lemma 1: Assume that all players choose pure strategy ai , a number 
ibetween 0 and 100. Let F = #{i : a < 60}. Notice that for each player i to 

be best responding to the actions of all, i.e., to be maximizing the payoff 
i−|ai − F |, he or she would choose a = F . Therefore, if there was an 

equilibrium in pure strategies, it would have to have all players choosing 
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the same number. Therefore, F is either 0 or 100. If F = 0 then all players 
choose ai = 0, so F = 100, which cannot be. If F = 100 then all players 
choose ai = 100, so F = 0, which cannot be either. Hence, there is no 
Nash equilibrium in pure strategies. � 

Proof of Lemma 2: Let p be a probability distribution on aggregate attendance, 
i.e., on the set {0, 1, . . . , 100} that arises from the probabilistic choices of 

iall the players, each player i choosing action k with probability qk . I first ∑60 1show that there cannot be any mixed equilibria with 0 p ( j ) >j = 2 . 
The expected payoff of a player choosing action k from the set ∑100{0, 1, . . . , 100} given distribution p is u(k, p ) = −  0 p ( j )|k − j |. Now j =

compare u(60, p ) with u(k, p ) for k > 60: 

100 100 

u(k, p ) − u(60, p ) = −  p ( j )|k − j | −  p ( j )|60 − j |
j =0 j=0   ∑60 n  (k − 60) 0 p ( j) − 1 p ( j )j = j =k+= −   ∑k ∑k +(60 + k) j =61 p ( j) − 2 j =61 p ( j ) j 

60 n 

≤ −  (k − 60) p ( j ) − p ( j ) < 0. 
j=0 j=61 ∑60 1This means that when 0 p ( j ) > no player would want to choose a j= 2 ∑60 1number k above 60. Intuitively, this is so because when 0 p ( j ) > thej = 2 

median of the distribution p must be at most 60, and when players attempt 
to minimize expected absolute loss function, as in this case, they will 
want to choose a number as close to the median as possible.14 Here, any 
number k above 60 must be farther to the median than 60 is. This means 
that, given p, players will put probability zero on any strategy k > 60. ∑60This, of course, means that p (100) = 1 and, consequently, 0 p ( j ) = j=
0, which contradicts our hypothesis. 

A similar argument shows that there cannot be any mixed equilibria ∑60 1with 0 p ( j ) < . In this case no player would want to choose a number j= 2 
k below 60, which would make p (0) = 1, contradicting our hypothesis. ∑60 1Therefore, in any mixed equilibrium of this game, 0 p ( j ) = andj = 2 
60 is the median of the distribution over {0, 1, . . . , 100} of any mixed 
equilibrium. 

To show that the mean is just about 60, we first need to under­
stand a few more properties of the mixed equilibria of this game. We 
have shown above that if k �= 60 then u(k, p ) − u(60, p ) ≤ 0. It turns out ∑60 1that when 0 p ( j ) = this can be refined, using arguments identical j = 2 

14See, for example, exercise 2.19 in Casella and Berger (1990). 
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to those given above, to: if k �= 60, 61 then u(k, p ) − u(60, p ) < 0, 
u(61, p ) = u(60, p ). I ommit the details here. 

This means that in any mixed equilibrium all players put positive 
probability only on the numbers 60 and 61, and the distribution p is ∑60 1such that =0 p ( j ) = . Therefore, the equilibrium distribution p arisesj 2 
from the random choice of 100 players between actions 60 and 61, each 

i iplayer randomizing independently with probabilities (q 60). In 60, 1 − q 
other words, the 100 random choices can be thought as of 100 indepen­
dent heterogeneous (e.g., not identically distributed) Bernoulli trials with 
p being the distribution of the sum of the 100 trials. A remarkable fact 
about heterogeneous Bernoulli trials, which is due to Jogdeo and Samuels 
(1968)15 is that if the mean of the distribution p is an integer, then the 
mean is the median. If the mean is not an integer, then the median is one 
of the two adjacent integers. Therefore, the mean is within a distance of 
one to the median. � 

Proof of Theorem 3: Let P be a correlated equilibrium distribution of the 
prediction game, and p the induced distribution over the number of 
players who choose a number below 60. An argument similar to the 
one used in the proof of Lemma (2) shows that if P(s i = k) > 0 then ∑60 i 1 

=0 p ( j | s = k) = for all i. From this it follows that only 60 and 61 j 2 
can have positive probability as strategies recommended to each player 
i under P . The proof is complete when one shows that the prediction 
about attendance according to p, and the prediction about attendance 
according to p, conditional on s i , are the same. This follows from the Law 
of Total Probability as follows: 

60 60 
i ip ( j ) = p ( j | s = 60)P(s = 60) 

j =0 j =0 

60 
i i+ p ( j | s = 61)P(s = 61) 

j =0 

1 1 = (P(s i = 60) + P (s i = 61)) = . 
2 2 

Therefore, the Nash and the correlated equilibrium distributions 
coincide. � 
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