
From RS-232 to Object Request Brokers:
Incremental Object-Oriented Networking Projects

David Janzen
Mathematical Sciences Department

Bethel College
North Newton, KS 67117
djanzen@bethelks.edu

Abstract

Selecting an appropriate set of l aboratory experiences and
projects for a Data Communications and Computer
Networks course can be difficult due to the broad and deep
nature of the topics. Emphasis may be placed on many
networking aspects including design, evaluation,
efficiency, security, protocols, tools, and applications. This
paper presents a set of projects that attempt to integrate
software engineering and systems administration topics.
The projects emphasize network application programming.
Particular attention will be given to a sequence of
incremental projects using an object-oriented approach
including the use of the Unified Modeling Language
(UML) and a design pattern.

1 Context

This set of projects was assigned in the context of a one-
semester undergraduate course in Spring 2000. This is the
only networking course offered in the current curriculum so
it is intended to be a survey of the field of networking.
Lectures followed the required text [3] with supplemental
material focusing on telecommunications, internet services,
and object-oriented middleware based on personal
expertise of the instructor and two guest lecturers. Students
entering the course had completed three programming
courses (CS1 in Pascal or C++, CS2 in C++, Data
Structures in C++) and one computer systems course. The
host institution is a small liberal arts college that
participates in a cooperative of small colleges for most
upper-level Computer Science courses. As a result,
students came from four different campuses to a central
location for course meetings one evening a week. This
allowed little flexibility in creating and scheduling
laboratory experiences, however it did prompt intensive use
of networking applications. Course materials were
distributed via the web, office hours were held in person
and via email, and most projects were completed on remote
computers.

2 All Projects

Project 1: Write a computer program to allow two users on
a single computer to play Tic-Tac-Toe against each other.

Project 2: Extend the Tic-Tac-Toe program from Project 1
so that one of the players can be on a different computer
and the two computers are connected by a serial cable.

Project 3: Write a computer program to extract frame
information from packet traces. [5]

Project 4: Document a campus network using a graphical
layout and a textual description of the campus network.
The documents should show such information as the
physical placement of routers, bridges, switches and hubs
as well as identify which servers are responsible for DNS,
web, email, and DHCP, what IP addresses are available,
networking technologies used, types of cabling and use of
firewalls.

Project 5: Write a computer program to look up hostnames
and IP addresses using DNS. [6]

Project 6: Rewrite Project 2 using sockets allowing the
game to be played between two players across an internet.

Project 7: Rewrite Project 6 using fork to create a game
server that matches pairs of players.

Project 8: Rewrite Project 7 using an Object Request
Broker. (This project was simplified as described in the
Outcomes section of this paper).

Project 9: Write a simple Java client application that uses
sockets to connect to an existing server written in C++ that
returns the number of times it has been contacted, and
separately write a Java applet of the student’s choosing.

3 Incremental Object-Oriented Projects

Within the set of projects above, Projects 1, 2, 6, 7, and 8
comprise a sub-sequence that require students to create a

relatively simple program in Project 1 and modify it
repeatedly to gain additional networking functionality. The
design of the original program can be captured in the UML
diagrams1 in Figures 1 and 2. Figure 1 is a class diagram
showing the primary classes Game, GameBoard and
Player.

Figure 1: Class Diagram for Tic-Tac-Toe

Figure 2 is a Sequence Diagram showing the interactions
between the four instances of the three classes in Figure 1.

Figure 2: Sequence Diagram for TicTacToe

UML Diagrams were used to emphasize the object-oriented
aspect of the projects, as well as to provide exposure to the

1 Use of Rational Rose for UML modeling with permission
of Rational Software Corporation through the Software
Engineering for Educational Development program.

UML. Although most students had no previous experience
with UML, students had little difficulty understanding the
design. The familiar and simple nature of the game of Tic-
Tac-Toe and previous programming experience with
classes likely contributed to students’ quick understanding.
Prior to presenting this object-oriented design, a structured
design was developed in class by the students. A hierarchy
chart and pseudocode were presented which captured this
design. The structured design was then evaluated for
extensibility. Additional requirements of making the
players remote and creating a game server, as well as
making the user interface graphical instead of character-
based were considered. Frustrations with extending the
structured design provided the needed motivation and
appreciation for the object-oriented design.

Project 2 was introduced in the context of a lab on data
communications. Students completed an exercise in which
they connected two microcomputers running Microsoft
Windows using serial cables and null modems, then tested
and modified example client and server programs which
had differing parameters on the communication ports so the
data sent did not match the data received [11]. This
exercise familiarized them with CreateFile, WriteFile and
ReadFile plus the CommState and CommTimeout
structures using the application program interface (API)
defined in windows.h. Students were then introduced to
the Remote Proxy pattern [9,1,4] and its application to the
Tic-Tac-Toe program as in Figure 3.

Figure 3: Adding the Proxy pattern to Tic-Tac-Toe

The proxy pattern is used to minimize code changes in the
Game and Player classes. In this design, LocalPlayer is a
new name for the Player class in Figure 1. The Game,
GameBoard, one LocalPlayer instance, and the
RemotePlayerProxy instance are all located on one
computer. The RemotePlayer and another LocalPlayer
instance are located on the other computer. The
RemotePlayerProxy is a representative of the LocalPlayer
on the remote computer. It shares the same interface as the
LocalPlayer so the only change necessary in the Game
class is where the PlayerInterface is instantiated. This

 : Game XPlayer : Player

makeMove(,)

retrieve(,)

insertSymbol(,)

isCat()

isWinner()

announceSpaceTaken()

announceCat()

announceCat()

OPlayer :
Player

 : GameBoard

Repeat until
retrieve returns
a space that is
not taken

Repeat entire
sequence,
alternating
between X and
O, until either
isWinner() or
isCat() LocalPlayer

RemotePlayer

send()
receive()

GameBoard

boardArray[3][3] : Char

insertSymbol()
retrieve()
display()

LocalPlayer

Game

Xplayer : *PlayerInterface
Oplayer : *PlayerInterface

play()
isCat()
isWinner()

announceGameWinner()

announceGameWinner()

RemotePlayerProxy

send()
receive()

1

1

1

1

Network
Connection

Player

makeMove(row, column)
announceSpaceTaken()
announceGameWinner(Char)
announceCat()

GameBoard

boardArray[3][3] : Char

insertSymbol(row, column)
retrieve(row, column) : Char
display() : String

Game

Xplayer : *Player
Oplayer : *Player

play()
isCat()
isWinner()

2

1

2

1

1
1

1
1

point is made clear in Figure 4 where the Player class has
been refactored [8] so that LocalPlayer, RemotePlayer-
Proxy, and RemotePlayer are all realizations of the new
PlayerInterface. Notice that RemotePlayerProxy and
RemotePlayer add the operations send and receive which
enable the remote communication. Not shown in the UML
diagram is the need for code in the constructors of
RemotePlayerProxy and RemotePlayer that establishes the
connection across the serial communications channel (i.e.
calls CreateFile). At the instructor’s suggestion, most
students transmitted one of four characters to represent the
four operations defined in the PlayerInterface. Based on
the character, the RemotePlayer knew whether to look for
additional parameters such as the character of the winner
(X or O) when announcing the game winner. All
communications were terminated with a special character
such as ‘$’ or ‘\0’. Students were given the hint to make
the RemotePlayer loop until the special terminating
character is received.

Figure 4: Create a PlayerInterface

Project 6 then had the students retain the design of Figures
3 and 4, but replace the calls to the windows.h API for
serial communications with the socket API allowing the
program to communicate across an internet. This project
was required to run on a Linux server and used TCP rather
than UDP. In Project 7 students separated the Game and
GameBoard instances out into a game server program that
acted like a daemon listening for player clients to contact it
wanting to play Tic-Tac-Toe. When two clients were
received, the game server would fork a slave process to
manage the game between the two players, reporting back
an answer on the winner or if the game ended in a cat (tie).
With this design, the clients had to know the location of the
server, but neither client cared whether they were the X or
O player. In other words, they were the same executable
unlike in the previous two projects.

Finally in Project 8, students were to rewrite Project 7
using an Object Request Broker (ORB). This approach
would remove the constraint that the clients had to know
the location of the server. Plus it would remove the
complexities and explicit choice of using the socket API.
The CORBA Naming Service [12] was employed to allow
clients to look up the Game object by name rather than by
IP address or DNS name. The ACE ORB (TAO) was used
for this project. TAO is a free, yet mature CORBA-
compliant ORB developed at the Center for Distributed
Object Computing at Washington University in St. Louis,
MO under the direction of Douglas Schmidt originally and
now David Levine. Precompiled binaries for The ACE
ORB (TAO) are available at [13].

4 Outcomes

One of the major challenges with incremental projects is
that some students may fall behind on a project. If the next
project builds on the previous one, then catching up is
extremely difficult. In this course offering, non-
incremental projects were interleaved to allow some time
for students to complete a project in the incremental
sequence late. Some students were still not able to
complete the incremental projects even with the extra time.
A working version of Tic-Tac-Toe with serial
communications (Project 2) was provided when the Tic-
Tac-Toe with sockets project (Project 6) was assigned.
Most students chose to continue with their original source
code on the subsequent project. Those students who had
not completed the earlier project were able to start with a
working version on the new project. This greatly improved
their success in the course and their satisfaction according
to the course evaluations.

Two-thirds of the students were successful in completing
all of the projects. One student completed all of the
projects except project 2 and 5, and the remaining two
students completed none of the programming projects.
External factors probably contributed to the poor
performance of the last two students. Student evaluations
were very positive. The two (expected) primary criticisms
concerned the emphasis on programming for those
planning careers in systems administration and the amount
of effort and time that the projects required.

Another challenge was the inclusion of the ORB project at
the end of the class. TAO was installed on a Linux server
after a fairly steep learning curve and with the help of an
excellent undergraduate student systems administrator.
However, due to some complications with installing and
using the ORB and the lack of time left at the end of the
semester, Project 8 was simplified to a modification of the
TimeOfDay sample [10] delivered with TAO. Students
were asked to create a client-server application using an
ORB where the client provides an ISBN of some
publication and the server replies with additional
information on the publication (author, title, number of
pages). This project still seemed sufficient to provide
students at least an appreciation of the significance of

PlayerInterface

makeMove()
announceSpaceTaken()
announceGameWinner()
announceCat()

Game

Xplayer : *PlayerInterface
Oplayer : *PlayerInterface

play()
isCat()
isWinner()

1
2

1
2

GameBoard

boardArray[3][3] : Char

insertSymbol()
retrieve()
display()

1
1

1
1

LocalPlayer RemotePlayerProxy

send()
receive()

RemotePlayer

send()
receive()

Object Request Brokers and an added respect for and
interest in Dr. David Levine when he presented several
guest lectures near the end of the semester. The Naming
Service was employed and students gained familiarity with
defining data structures through the Interface Definition
Language (IDL).

Students worked individually on all projects except Project
2, where they worked in pairs in a laboratory environment,
and Project 4, where students from each campus worked as
a team to document their local campus network. Based on
experiences in other courses and the attention to eXtreme
Programming [2], pairs would have been used more
extensively if the constraints of multiple campuses were
removed.

5 Conclusion

The set of incremental programming projects accomplished
the goals of applying networking technologies such as
client-server programming, serial communications, sockets,
and object request brokers, while also addressing software
engineering issues such as design reuse, object-oriented
design, design patterns, and refactoring. Although C++
was the appropriate language for this course, the projects
could have easily been completed in other languages such
as Java, or a combination of languages could have been
used. For instance, it may be interesting to use different
languages for the two players in project 6, or to write the
game server in project 7 in a language different from that
used for the players. A mixture of languages might help
emphasize some of the benefits of using an ORB as well.

As with any choice, there is an opportunity cost associated
with this sequence of projects. For instance this class did
not have time to complete projects on such topics as
encryption or protocol design. The distributed nature of
this course inhibited additional laboratory experiences that
might have been useful as well. In particular, additional
laboratories on network configuration and management [7]
would have been useful. Interestingly, despite the
geographic separation between most students and the
instructor and the extensive use of email for office hours
and project assistance, some students still drove to the
instructor’s campus for face-to-face assistance.

Including Dr. David Levine, with expertise in network
programming and Object Request Brokers, as a guest
speaker near the end of the course was a very positive
motivator both for the instructor and the students. This
technique of inviting guest lecturers to complement an
upper-level course and tailoring projects to the speaker’s
expertise has been very effective. A previous experience
included design reviews coupled with lectures on object-
oriented design from Dr. Ralph Johnson in a software
engineering course with a significant semester-long team
project.

References

[1] Addison-Wesley. NEXTSTEP General Reference:
Release 3, Volumes 1 and 2, 1994.

[2] Kent Beck. Extreme Programming Explained.
Addison-Wesley, 2000, 100-102.

[3] Douglas E. Comer. Computer Networks and Internets
Second Edition. Prentice Hall, 1999.

[4] James O. Coplien. Advanced C++ Programming
Styles and Idioms. Addison-Wesley, 1992.

[5] Ralph Droms. CSCI363 - Computer Networks. Online.
Internet. August 7, 2000. Available WWW:
http://www.eg.bucknell.edu/~cs363/laboratories/lab03
_0.html.

[6] Ralph Droms. CSCI363 - Computer Networks. Online.
Internet. July 13, 2000. Available WWW:
http://www.eg.bucknell.edu/~cs363/laboratories/lab04.
html

[7] Bruce S. Elenbogen. Computer Network
Management: Theory and Practice. The Proceedings
of the Thirtieth SIGCSE Technical Symposium on
Computer Science Education. (March 1999), 119-121.

[8] Martin Fowler. UML Distilled, Second Edition.
Addison-Wesley, (2000), 30-31.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1995, 207-217.

[10]Michi Henning and Steve Vinoski. Advanced CORBA
Programming with C++. Addison-Wesley, 1999, 38-
47.

[11] Brad Richards. Bugs as Features: Teaching Network
Protocols Through Debugging. The Proceedings of the
Thirty-first SIGCSE Technical Symposium on
Computer Science Education. (March 2000), 256-259.

[12] Doug Schmidt and Steve Vinoski. Building a Stock
Quoter with TAO – A Tutorial. Online. Internet.
August 7, 2000. Available WWW:
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TA
O/docs/tutorials/Quoter/.

[13]Online. Internet. August 7, 2000. Available WWW:
http://www.theaceorb.com/TAO/Support/download.ht
ml.

