01 PRECEDENT STUDY
02 TRIPOD
03 INITIAL DESIGN
04 SECOND DESIGN
05 RENEFEMENT
06 CONSTRUCTION PROPOSAL
07 CONSTRUCTION
08 LIGHTING
01 PRECEDENT STUDY: In order to understand our project we studied the Teshima Art Museum in Japan. We analyzed the design, load flow and construction which gave us an understanding on how to design and build a self-supporting shell.
Location: Takamatsu, Kagawa Prefecture, Japan
Built: 2010
Architect: Ryue Nishizawa
Artist: Rei Naito
Dimensions: ~40x60 meters
Materials: 25cm thick concrete

The shallow design made this our choice project to study. The info gathered will help us design a shallow shell.
PHASE 02: To understand how a compression shell works, we studied tripods to analyze how forces would flow down a freeform structure. Designing a tripod would then help guide our design for our final free form design.
A 2-D FUNICULAR capturing approximate funiculares by splining between three points on two tripods; finding 2-D funiculares by drawing lines parallel to those on a load diagram through a pole, such that the lines relate to the load diagram and are funicular for those loads.

B LATERAL LOAD TRIPOD graphical static approach to analysing determinate tripod structure with applied lateral load, may also be subdivided as in C

C SUBDIVIDED TRIPOD graphical statics force polyhedron may be divided along edges to represent subdivision of the form – may be divided as many times as necessary to approach desired form, or in as many ways as necessary to represent support conditions (three, four, etc. supports)
Phase 03

Initial Design: The statue is the focus point in this design. The program allows for visitors to walk onto the shell and experience the statue from a different perspective. There will also be space underneath the shell for art installations.

Our project is located in Grutas Park, a sculpture garden of Soviet-era statues and Soviet ideologic relics. The park’s curator has requested design teams to reframe the sculptures in the park and provide a cohesive structure of free forms that live along side the sculptures. The design has to allow covered art installations at the base of the monument while also allowing different vantage points from the accessible roof. Our team has taken the requirements into consideration and has developed a concept model that will begin to satisfy these requirements. The design features a center point for the statue which highlights the sculpture. The design also provides a path to the roof so that visitors can view the sculpture from a different view point that was not initially available.
SECOND DESIGN: After receiving feedback about our initial design, we had to make changes in order to create a more impactful contribution to the statue. The new design celebrates the statue without overpowering it.
Structural Analysis

- Weight: 659.7k
- Shell thickness: 12"
- Max height: 5.4m
- Footprint: 615sqm

Reactions (K)

<table>
<thead>
<tr>
<th>Joint</th>
<th>Load Case</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Thrust (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DEAD</td>
<td>14.8</td>
<td>-24.6</td>
<td>1.0</td>
<td>28.7</td>
</tr>
<tr>
<td>B</td>
<td>DEAD</td>
<td>317.8</td>
<td>17.1</td>
<td>272.0</td>
<td>418.7</td>
</tr>
<tr>
<td>C</td>
<td>DEAD</td>
<td>-407.0</td>
<td>299.7</td>
<td>174.6</td>
<td>534.7</td>
</tr>
<tr>
<td>G</td>
<td>DEAD</td>
<td>36.9</td>
<td>-8.1</td>
<td>19.6</td>
<td>42.5</td>
</tr>
<tr>
<td>H</td>
<td>DEAD</td>
<td>99.4</td>
<td>104.8</td>
<td>66.3</td>
<td>158.9</td>
</tr>
<tr>
<td>N</td>
<td>DEAD</td>
<td>-20.5</td>
<td>-92.2</td>
<td>43.4</td>
<td>104.0</td>
</tr>
<tr>
<td>O</td>
<td>DEAD</td>
<td>-6.6</td>
<td>-130.6</td>
<td>32.3</td>
<td>134.7</td>
</tr>
<tr>
<td>P</td>
<td>DEAD</td>
<td>-34.8</td>
<td>-166.0</td>
<td>50.6</td>
<td>177.0</td>
</tr>
</tbody>
</table>

Largest Dead Load Displacement: 0.95 in.
Phase 05

REFINEMENT: After analyzing our structure we have refined it to fix issues that were addressed. We also further developed the containment ideas and design intention. All in preparation for our midreview and in preparation for construction.
Structural Analysis

weight: 1481kN shell thickness: 15.2 cm
max height: 5.4 m footprint: 615 sqm

Reactions (kN)

<table>
<thead>
<tr>
<th>Joint</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>XY Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>101</td>
<td>-190</td>
<td>30</td>
<td>215</td>
</tr>
<tr>
<td>B</td>
<td>610</td>
<td>356</td>
<td>958</td>
<td>706</td>
</tr>
<tr>
<td>C</td>
<td>-1341</td>
<td>950</td>
<td>593</td>
<td>1643</td>
</tr>
<tr>
<td>G</td>
<td>268</td>
<td>8</td>
<td>133</td>
<td>268</td>
</tr>
<tr>
<td>H</td>
<td>379</td>
<td>440</td>
<td>253</td>
<td>581</td>
</tr>
<tr>
<td>N</td>
<td>-96</td>
<td>-408</td>
<td>190</td>
<td>419</td>
</tr>
<tr>
<td>O</td>
<td>-32</td>
<td>-527</td>
<td>136</td>
<td>528</td>
</tr>
<tr>
<td>P</td>
<td>-147</td>
<td>-685</td>
<td>209</td>
<td>701</td>
</tr>
<tr>
<td>E</td>
<td>166</td>
<td>159</td>
<td>402</td>
<td>230</td>
</tr>
<tr>
<td>D</td>
<td>91</td>
<td>-103</td>
<td>150</td>
<td>138</td>
</tr>
</tbody>
</table>

Largest Dead Load Displacement: 22 mm

thrust containment

shell thickness
water foundation option A and B

blade connection and foundation

steel plate embedded in concrete
each bearing on 1" A992 steel plate
1" concrete pilecap
8" diameter concrete piles in 48" dia piles @ 10" on center each way
FEM Mesh Development

Modelled with layered membranes (no bending stiffness) for top and bottom concrete layers and perpendicular rebar layers, and with a shell (include bending stiffness) for middle layer of concrete. Materials are A185 WWM conforming to ACI 318 minimum reinforcing ratio and 4 ksi concrete.
Load Cases

Dead + Concentrated Live Load

load on path to oculus and around oculus, 40 psf

max displacement = 0.212 in., OK

blue region indicates 500 psi, potential stability problem

Dead + Lateral Load

X-direction load (equivalent lateral force) of 20 psf and dead weight

max displacement = 1.739 in., shape performs worse for lateral loads than vertical

blue - 500 psi

Dead + Eigenbuckling Analysis

buckling factor: -1.2, NG

Conclusions
Structure may be susceptible to buckling, although stress and deflection results seem reasonable. We believe these results are a function of the shape of our shell rather than modelling inaccuracies, although both may contribute. Possible solutions include revising shell form at the entrance, where stress and buckling issues arise, or providing a stiffer section
CONSTRUCTION PROPOSAL: After finalizing our design we developed a construction plan in order to make this a reality. We proposed two ideas: one idea to build the life size structure and another idea to construct the scale model.
TIMBREL VAULTING BY BLOCK RESEARCH GROUP

GRIDSHHELL DETAILS
Material: Heavy duty double-walled cardboard or plywood
Frequency: 6" spacing

THRUST CONTAINMENT

REMOVAL

- Concrete Shell
- Cardboard Grid
- Platforms
 - Platforms
 - Cardboard Gridshell
 - Plywood
 - Tarp
 - Thrust Containment

Thickness: 0.1524 m (6 in.)
Thickness: 0.3048 m (12 in.)
CONSTRUCTION: After getting our construction proposal approved we began to work on making it a reality. We followed the plans we made but ran into some complications along the way and so we had to make some minor alterations that ended with great results.
To begin, we used our 3D Rhino model and made a laser cur file to obtain the gridshell pieces. After constructing the gridshell we attached wooden blocks that would be used as the tie down position for our strips of particle board. Once the strips were attached we added a layer of plaster on top in order to fill in gaps. We then tested our supports.
Once the formwork was done we poured a layer of concrete and then we placed a layer of wiremesh and added another layer of concrete on top of that. We let the concrete cure for a week and we then removed the formwork from underneath which came out very easily from one side and the other side had to be soaked with water in order to remove it.
PHASE 08

LIGHTING: After completing our shell we were given the task to add lighting to our model in order create a new environment during the night. The added lighting will create an amazing transition from daylight to artificial lighting that will highlight the statue.
DAYLIGHT CONDITIONS

As shown by the daylight studies of our shell, the oculus around the statue creates changing shadow patterns that draw attention to Skye’s Mother. The two main spaces under the shell, which are used for art exhibits, remain shaded for most of the day allowing for equal lighting conditions for the different exhibits.
INTERIOR SHADOWS

7.6m
41.5m
34m

8AM 12PM 4PM