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Abstract. – In this paper, a sheaf-theoretic approach toward fundamental problems in quan-
tum physics is made. For example, the particle-wave duality depends upon whether or not
a presheaf is evaluated at a specified object. The t-topos theoretic interpretations of double-
slit interference, uncertainty principle(s), and the EPR-type non-locality are given. As will
be explained, there are more than one type of uncertainty principle: the absolute uncertainty
principle coming from the direct limit object corresponding to the refinements of coverings, the
uncertainty coming from a micromorphism of shortest observable states, and the uncertainty
of the observation image. A sheaf theoretic approach for quantum gravity has been made by
Isham-Butterfield in (Found. Phys., 30 (2000) 1707), and by Raptis based on abstract differ-
ential geometry in Mallios A. and Raptis I., Int. J. Theor. Phys., 41 (2002), qr-qc/0110033;
Mallios A., Remarks on “singularities” (2002) qr-qc/0202028; Mallios A. and Raptis I.,
Int. J. Theor. Phys., 42 (2003) 1479, qr-qc/0209048. See also the preprint by Requardt
M., The translocal depth-structure of space-time, Connes’ “Points, Speaking to Each Other”,
and the (complex) structure of quantum theory, for another approach relevant to ours. Special
axioms of t-topos formulation are: i) the usual linear-time concept is interpreted as the image
of the presheaf (associated with time) evaluated at an object of a t-site (i.e., a category with
a Grothendieck topology). And an object of this t-site, which is said to be a generalized time
period, may be regarded as a hidden variable and ii) every object (in a particle ur-state) of
microcosm (or of macrocosm) is regarded as the microcosm (or macrocosm) component of a
product category for a presheaf evaluated at an object in the t-site. The fundamental category
Ŝ is defined as the category of

∏
α ∈∆ Cα-valued presheaves on the t-site S, where ∆ is an

index set. The study of topological properties of S with respect to the nature of multi-valued
presheaves is left for future study on the t-topos version of relativity (see Kato G., On t.g.
Principles of relativistic t-topos, in preparation; Guts A. K. andGrinkevich E. B., Toposes in
General Theory of Relativity (1996), arXiv:gr-qc/9610073, 31). We let C1 and C2 be microcosm
and macrocosm discrete categories, respectively, in what will follow. For further development
see also Kato G., Presheafification of Matter, Space and Time, International Workshop on
Topos and Theoretical Physics, July 2003, Imperial College (invited talk, 2003).



Basic definitions. – For t-topos theory, the notion of a t-site plays the role of hidden
variables. More conditions will be added to the site when the further applications in [1] are
made. For the concept of a Grothendieck topology, see [2–4] or [5].

Definition 1.1 . Let S be a site, namely, a category with a Grothendieck topology and
let Ŝ be the category of presheaves from S to the product category

∏
α∈∆ Cα. That is,

Ŝ = (
∏

α∈∆ Cα)S
opp

, where Sopp is the dual category of S. Then site S is said to be a
temporal site or simply t-site when S is used in this context. Category Ŝ is said to be a
t-topos or temporal topos. We sometimes call an object of Ŝ an entity.

Remarks 1.2 . i) See [3] or [5] for Grothendieck topologies which is sufficient for t-topos
theory.

ii) For an object F in Ŝ, which we write as F ∈ Ob(Ŝ) and for an object V in S, i.e.,
V ∈ Ob(S), F (V ) is an object in

∏
α∈∆ Cα. Namely,

F (V ) = (F (V )α)α∈∆ ,

where F (V )α is the α-th component of F (V ). We also say that F (V ) is the manifestation of
F at the generalized time period V .

Definition 1.3 . Let F be an object of Ŝ. The state of F during a generalized time period
W , namely, an object of S, is defined by the pair (F,W ) = F (W ). Then F is said to be
manifested during W . When a generalized time period is not given, F is said to be in a
pre-state or in an unmanifested state. (See Note 1.4′ below.) For a specified object V , the
object F (V ) is said to be in the particle ur-state of F over the generalized time period V , and
when one object in the t-site is not specified for F , then F is said to be in a wave ur-state of
F and sometimes denoted as {F (W )}W∈Ob(S) or F (−).

Definition 1.4 . An observation of an object m of Ŝ by another object P of Ŝ in a non-
discrete category Cα, α ∈ ∆, over a generalized time period V is a natural transformation s
over V . Namely, the morphism in Cα

sV : m(V ) −→ P (V ) (1)

is said to be an observation of m by P during the generalized time period V . If such a natural
transformation s over a specified object V of t-site exists, then m is said to be observable
or measurable by P during the generalized time period V . We may also say that m interacts
with P if there exists such a natural transformation from m to P over some generalized time
period. Notice that when m is measured, m needs to be in a particle ur-state since an object
in S must be specified for the natural transformation in (1).

Note 1.4′. When an object m of Ŝ is not observed, not only m is in the wave ur-state,
i.e., {m(V )} in Definition 1.3, but also (we will be more precise in Definitions 2.1 and 2.2) m
may be considered as the totality of decomposed subobjects of m which are to be evaluated
at unspecified objects of S. It may be most appropriate to consider an unobserved object m
to be simply presheaf “m”.

Note 1.5 . Let {Vi → V } be a covering of V and let {Vi←j → Vi} be a covering of Vi

as in [2–6] or [7]. Then by composing covering morphisms, {Vi←j → V } is a covering of V .
Similarly, by composing further, one gets a covering {Vk←j←i → V } of V . Then, consider the
inverse limit covering {

lim← V...←k←j←i −→ V
}

(2)

of V . In the next section, we will need this notion.



Definition 1.6 . Let C1 be the microcosm discrete category. That is, an object of C1 is
a particle in microcosm, and as a category, C1 is discrete, namely, no morphisms exist except
identity morphisms.

Note 1.7 . The topos approach in [8] and [9] by Butterfield-Isham can be interpreted in
terms of t-topos as follows. First, we will explain the basic method in [8] and [9]: Let S be the
state space and let A be a physical quantity and let Ā be a real-valued function representing
A as in [8]. Then the functional composition principle (referred to as FUNC in [8] and [9]) is
the commutative diagram

H
V−−−→ R

↓ ↓
H

V−−−→ R

where the left-hand side vertical morphism h̃ : H → H on the Hilbert space H is induced by
a function h : R → R on real numbers. That is, for the value V (Â) of the physical quantity
A represented by the operator Â, we have V (h̃(Â)) = h(V (Â)) which is the commutativity of
the above diagram. The Butterfield-Isham topos theory interprets this commutative diagram
as follows: Regarding the valuation V as a natural transformation γ from a terminal object
1 to an object X in the topos of presheaves, for f̂ : B̂ → Â in the category of all bounded
self-adjoint operators, we first have X(f) : X(A) → X(B), and γA in X(A) and γB in X(B),
since γ is a natural transformation from 1 to X. Here we make the following interpretation
of γA as a morphism from A to X using Yoneda Lemma. Then the Kochen-Specker Theorem
states that such a global section γ does not exist to satisfy the commutative diagram

X = X

↑ ↑
B̂

f̂−−−→ Â

where the vertical morphisms are γA and γB . Namely, γB = γA ◦ f̂ , i.e., X(f)(γA) = γB ,
the matching condition in [8, 9]. In terms of t-topos, the value V s(A) of A at a state s ∈ S
corresponds to m(V ) over V ∈ Ob(S), where m ∈ Ob(Ŝ). Suppose that usual linear time τ(V )
precedes τ(U). And let g : V → U be the associated morphism in the t-site S. (See [10] for
the associated morphism induced by the linear ordering on τ .) Then, the t-topos version of
Kochen-Specker Theorem states that there does not exist a natural transformation s over the
t-site S (itself) making the diagram

m(V )
m(g)←−−−− m(U)

↓ ↓
P (V )

P (g)←−−−− P (U)

commutative, where the left-hand side vertical morphism is sV and the right-hand side vertical
morphism is sU as in Definition 1.4. Note that such a globally defined natural transformation
s (which is γ in Butterfield-Isham) from m to P is defined for the entire objects of S (a global
section from 1 to X). As for t-topos, the definition of an observation is defined for a specified
object of S as in Definition 1.4.

Note 1.8 . Every object in C1 is the C1-component of a presheaf in Ŝ evaluated at a
generalized time period in the t-site S. For example, if e is a particle in C1, then there exists



an associated presheaf e in Ŝ such that for an object V in the t-site S, we have e = e(V ), which
is determining the (particle ur-) state of e for e. Then the particle e is said to be presheafified
by a presheaf e in Ŝ.

Remark 1.9 . Let e be any object in C1. For example, e can be an electron. For a particle
e in C1, the position and time x and t are associated locally. As is mentioned in Note 1.8,
we presheafify e as e = e(V ) in C1, where e ∈ Ob(Ŝ) and V ∈ Ob(S). We will presheafify the
position by presheaf κ and time by presheaf τ defined over the same object V in the third
section, so that (κ(V ), τ(V )) plays a local coordinate system of e(V ).

Definition 1.10 . Let m1,m2, . . . ,mr be objects of Ŝ. If the r-tuple (m1,m2, . . . ,mr) can
be considered as one object of Ŝ over a subsite, then objects m1,m2, . . . ,mr are said to be
ur-entangled (or ur-correlated). See [11] for the application to the EPR-type non-locality.

Sheaf-theoretic methods for non-locality and sub-Planck region. – Let m and m′ be the
presheaves associated with m and m′ and let (κ, τ) be the associated sheaves to space and time
to m. Suppose that m and m′ are ur-entangled as defined in Definition 1.10. Furthermore,
assume that m(V ) and m′(V ) are physically a distance apart (for the same object V ), e.g.,
11 kilometers apart. Then the space-time (κ(V ), τ(V )) of m(V ) does not contain m′(V ),
if necessary by taking V “small” enough in the sense of a covering. That is, space-time
presheaves are associated with m in Ŝ. Namely, (κ, τ) should be denoted as (κm, τm), see
also [11].

Definition 2.1 . LetM be a matter in the macrocosm discrete category C2. Let m be the
associated presheaf to M . Then a finite direct sum of presheaves

∑
λ∈Λ mλ of m is said to be

a uniform quantum decomposition of m with respect to a covering {Vλ → V } of a generalized
time period V if each mλ is an object of Ŝ so that mλ(Vλ) may be an object of C1, and∑

λ∈Λ mλ(Vλ) = m(V ). See [10] for the notion of a sub-Planck decomposition.
Remark 2.2 . A short remark on Double-Slit Interference may be appropriate, see [12] for

details. Suppose that an electron e is fired at a certain time. In terms of t-topos, e = e(V ) is
fired at (κ(V ), τ(V )), where e, κ, and τ are associated presheaves to the electron e, space and
time. Assume also that two slits are appropriately narrow and the spacing between the slits
is much larger than the width of the slit. Let (κ(U), τ(U)) be the position and the time when
the electron hits the screen, inducing a morphism g : V → U . For the two slits, let W and W ′

be the associated objects of the t-site S for which (κ(W ), τ(W )) and (κ(W ′), τ(W ′)) would be
the corresponding slits that e would go through. Without an observation at either one of the
slits, there are two objects, i.e., W and W ′, in S. Hence, by Definition 1.3, e remains to be in
a wave ur-state. In the case where there is no mask between the screen and an electron gun,
one needs to consider not only via W and W ′, but also all the factorizations of g : V → U .
Then e is in the wave ur-state e({g : V → U}), where {g : V → U} = {W ∈ Ob(S) : g = f ◦h,
where f : V → W and h :W → U}, see [12] for details.

Remark 2.3 . One can choose a covering {Vi → V } and another covering {Vi←j → V } as
in Note 1.5, so that m(Vi) and m(Vi←j) may belong to C1 and the Planck scale category CPl,
respectively.

Remark 2.4 . First note, for example, when we consider the C1-components of m(V ) and
P (V ) in Definition 1.4, such a morphism as sV in (1) belongs to a non-discrete category Cα.
However, in the following, we simply say that sV is an observation of m(V ) by P (V ) in C1.
An Ŝ-theoretic interpretation of an observation of an electron by an observer is the following.
Let e be the presheaf in Ŝ corresponding to an electron e. Let P be an observer, i.e., an object
of Ŝ and let V be an generalized time period. As defined in Definition 1.4, an observation of
e by P is a natural transformation sV from e to P over V ∈ Ob(S).



Remark 2.5 (Uncertainty principles). Suppose time τ(V ) precedes τ(U) inducing a mor-
phism V

ε→ U as in Note 1.7. We define the notion of a micromorphism as follows: the
morphism V

ε→ U is said to be a micromorphism if the morphism ε can not be factored as
ε = β ◦ α, where α : V → W and β : W → U and so that τ(V ) may precede τ(W ) which
precedes τ(U). For a general morphism g : V → U , one can consider a micro-decomposition
of g as follows: g = gn ◦ . . . ◦ g0 and each gj : Vj−1 → Vj is a micromorphism. A consequence
of a micromorphism V

ε→ U is that it is impossible to observe a particle (presheaf) between
τ(V ) and τ(U) by the definition. Consequently, the position of particle m between τ(V ) and
τ(U) cannot be known (observed). Since κ and τ are ur-entangled, we also obtain the uncer-
tainty in position as well. (See the following third section and [10], and [4] for the relativistic
version.) The above uncertainty corresponds to the usual Heisenberg uncertainty principle in
the following sense. For a micromorphism V

ε→ U , the difference in position κ(U) − κ(V )
times the difference in momentum p(U) − p(V ) is not less than h̄, where p is the presheaf
associated with momentum.

There is another uncertainty principle that is absolute in nature. Since we have replaced
the notion of a set theoretic point with the notion of an object of a category, we have a finite
value of the direct limit over coverings lim→ τ(V...←j←i). (Note that it is not the inverse limit

since a presheaf is contravariant.) Similarly, we have the absolute uncertainty for position
sheaf. This material is expected to be expanded in a forthcoming paper [1].

Remark 2.6 (Definition 1.10 and the EPR). Let e and e′ be entangled electrons, and
let e and e′ be the associated presheaves which are ur-entangled. Namely, the pair (e, e′) is
an object of Ŝ satisfying e = e(V ) and e′ = e′(V ) for the common object V in a subsite
as in Definition 1.10. Then e∗ = (e, e′) ∈ Ob(Ŝ). For a specified generalized time period
V , we have objects e(V ) and e′(V ). That is, the states of e and e′ are determined by the
generalized time period V and are independent of the physical distance between e(V ) and
e′(V ) in C2. When e is observed or measured by P in the sense of Definition 1.4, there is a
morphism sV : e(V ) → P (V ) for some V in S. This V determining the state of the object
e simultaneously determines the state of e′ in the sense of Definition 1.10, see [11] for the
full-length description of this topic.

Sheafification of space and time.

Axiom 3.1 (Interpretation of the physical time as a sheaf). As in Remark 1.9, we have
already noted that the physical time depends upon generalized time. That is, we hypothesize
that τ is an object of Ŝ so that τ(V ) is the (local) physical time. Then by this definition of the
usual physical time, time is of local nature in the sense that for any object V of t-site S, τ(V )
may exist only locally and may not be globally extended. (See the first paragraph of the second
section.) For the dependency of τ on a (ur-)particle is a consequence of (ur-)entanglement as
we noted earlier.

Axiom 3.2 (Interpretation of the physical space as a sheaf). Let κ be the sheaf associated
with the physical space with dimension d. That is, for an object V of S, κ(V ) is the local phys-
ical space in C1 (or in C2) of dimension d. Then decompose κ(V ) as κ(V ) = (κ(V )3, κ(V )d−3)
so that κ(V )3 may be the observable object of C1, and κ(V )d−3 may be non-observable in C1.

Note 3.3 . A motivation for Axioms 3.1 and 3.2 is the following. The objects κ and
τ in Ŝ are not only presheaves but also need to be sheaves so that the discrete concept of
(pre)sheaves can give the continuum notion of space-time in macrocosm when local data agree
on overlaps as in the definition of a sheaf, see [10] a for more thorough treatment of sheaves κ
and τ . In [1], as an application to quantum gravity, the following case is considered: letm, m′,



P , P ′ κ and τ be in Ŝ and let V ε→ U be a micromorphism in S, where m(V ) and m′(V ) have
non-zero mass and the intersection of κ(V ) and κ(U) is not empty. Then the commutative
diagram is induced from V

ε→ U and morphisms among m, m′, P , and P ′. When m(V ) is
massless, the morphism from P (V ) to P ′(V ) becomes a Lorentz morphism.

Conclusion. – With our model in terms of t-topos Ŝ, particles, space and time are
presheafified, and then the interplay among the concepts of observation, wave-particle ur-
states, uncertainty principles, non-locality (entanglement), and quantum fluctuation are
phrased in terms of objects, morphisms, and sheaves. The sequence of dependency is the
following:

Ŝ
evaluated at Ob(S)−−−−−−−−−−−−−→

∏

α∈∆

Cα
projection−−−−−−→ C1 (or C2).

∗ ∗ ∗

The author is thankful for the referee’s suggestions including I) to make some connections
to the topos theory of [8] and [9], and II) to include some applications of t-topos, and III) to
make connections to quantum gravity.
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