
EFFECTS OF DEPENDENCY INJECTION ON MAINTAINABILITY
 

Ekaterina Razina
 
Intuit, Inc.
 

2550 Garcia Ave
 
Mountain View, CA, USA
 

email: kate razina@intuit.com
 

ABSTRACT 
Software maintenance consumes around 70% of the soft­
ware life cycle. Improving software maintainability could 
save software developers significant time and money. This 
paper examines whether the pattern of dependency injec­
tion significantly reduces dependencies of modules in a 
piece of software, therefore making the software more 
maintainable. This hypothesis is tested with 20 sets of open 
source projects from sourceforge.net, where each set con­
tains one project that uses the pattern of dependency in­
jection and one similar project that does not use the pat­
tern. The extent of the dependency injection use in each 
project is measured by a new Number of DIs metric created 
specifically for this analysis. Maintainability is measured 
using coupling and cohesion metrics on each project, then 
performing statistical analysis on the acquired results. Af­
ter completing the analysis, no correlation was evident be­
tween the use of dependency injection and coupling and co­
hesion numbers. However, a trend towards lower coupling 
numbers in projects with a dependency injection count of 
10% or more was observed. 

KEY WORDS 
Maintainability, Dependency Injection, Spring Framework 

1. Introduction 

Non-functional requirements are important to all software 
system development. One major non-functional require­
ment that encompasses many others within itself is main­
tainability. Maintainability is the ease with which a soft­
ware system or component can be modified. Modifications 
may include extensions, porting to different computing sys­
tems or improvements. Flexibility, reusability, testability 
and integrability contribute to modifiability, and therefore 
are defined as sub attributes of maintainability [12]. Soft-
ware maintainability is difficult to fully measure because it 
relies on many factors, some of which are very subjective 
[1]. However, studies have shown that small, decoupled, 
highly cohesive modules lead to an increase in maintain­
ability [2, 15]. A new technique of dependency injection 
attempts to separate programs into smaller, more indepen­
dent components that can be externally configured [7]. 

The authors hypothesize that use of the dependency 

David Janzen
 
Department or Computer Science
 

California Polytechnic State University
 
1 Grand Ave.
 

San Luis Obispo, CA, USA
 
email: djanzen@calpoly.edu
 

injection pattern significantly reduces dependencies of 
modules in a piece of software, therefore making the soft­
ware more maintainable. This hypothesis is tested by 
calculating coupling and cohesion metrics on 20 sets of 
projects. Each set contains two projects, one project that 
uses the pattern of dependency injection and one project 
that uses similar technologies to the first, yet does not use 
the pattern of dependency injection. The extent to which 
the pattern of dependency injection is used will be mea­
sured using a new metric developed for this analysis, the 
Number of DIs metric. This paper is structured as fol­
lows. Section 2 explains the pattern of dependency injec­
tion and discuss how maintainability is measured in our ex­
periments. Section 3 discusses how data is collected, what 
tools are used to measure the projects, and what tools are 
used for the statistical analysis. Section 4 presents the re­
sults of the experiments and the analysis of the results. Fi­
nally, section 5 provides some conclusions and suggestions 
for future work. 

2. Previous Work 

2.1 Dependency Injection 

This section briefly introduces dependency injection in or-
der to give the reader the basic idea of the concept that is 
prevalent throughout this study. This study is concerned 
with two types of dependency injection: constructor and 
setter injection. The Spring framework, a framework that 
every dependency injection project uses in the experiments 
that follow, allows for constructor injection and setter in­
jection [7]. 

Dependency injection is a pattern that allows the pro­
grammer to inject objects into a class by using a container 
that is externally configured (often by an XML file), instead 
of letting the class directly instantiate the objects. This pat­
tern will be explained through a simple example. Suppose 
we have written a class, a, that contains a class b object. 
Class b is an implementation of the interface B. This makes 
class a have a dependency on class b, as well as interface 
B, as shown in Figure 1. 

Dependency injection removes the dependence of 
class a on class b by adding a container and making it re­
sponsible for the dependency look up. This container is 

591-111 7 

nicholas




Figure 1. Class Dependencies 

usually configured by an XML file. This changes the de-
pendencies as shown in Figure 2. 

Figure 2. Dependency Injection in Spring 

Now, the container is responsible for providing the 
necessary resources and looking up the necessary resources 
for class a. Also, this allows class a to work with any im­
plementation of the B interface eliminating the previous de­
pendency of a on b [7]. 

Dependency injection in Spring can be done in two 
different ways: constructor injection and setter injection. 
In constructor injection, the components express dependen­
cies via constructor arguments. In setter injection, com­
ponents express dependencies on configuration values via 
JavaBean properties. 

Any non-trivial application is made up of two or more 
classes that collaborate with each other to accomplish some 
task. Traditionally, each object is responsible for obtaining 
its own reference to the object it wants to collaborate with, 
forming a dependency. In the long run this leads to pro­
grams that are highly coupled and hard to test [18]. 

When the pattern of dependency injection is used, the 
responsibility of coordinating collaboration between de­
pendent objects is removed from the objects themselves 
[18]. This way we can substitute any implementation of 

interface B into our program with minimal changes to the 
XML file and no changes to class a. If we no longer want 
to use b, but want to use a new class, c, we can easily make 
the substitution without altering class a. 

Dependency injection also makes testing easier. In 
Figure 1, testing class a inevitably leads us to testing imple­
mentation b. If we use the pattern of dependency injection 
in writing our program, we can insert a mock implementa­
tion of class b into the system and test class a in isolation. 
This allows for easier testing, or testability. Since testabil­
ity is one of the components of maintainability, it leads us 
to believe that the pattern of dependency injection improves 
maintainability. 

Walls and Breidenbach [18] state that using the pat­
tern of dependency injection provides us with less coupled 
modules and code. Logically, we can see that there are 
fewer dependencies in Figure 2 (we do not count the con­
tainer, since Spring provides this for us). However, no stud­
ies have been done to demonstrate that dependency injec­
tion provides significant improvements when it comes to 
coupling measures. An experiment is needed to provide 
concrete data to support that the pattern of dependency in­
jection decouples modules and allows for better maintain­
ability. 

2.2 Maintainability Measures 

2.2.1 Coupling 

Coupling is defined as “the degree of interdependence be-
tween parts of a design” [6]. An object is coupled to an­
other if one object uses methods or instance variables of 
another [6]. Excessive coupling between objects makes 
modules very dependent on each other. This makes the 
program hard to understand and makes the code hard to 
reuse. Higher coupling of objects increases the sensitivity 
to changes in other parts of the design. This also makes 
maintainability more difficult [14]. 

In a widely cited paper by Briand et al.[3], the authors, 
drawing on the existing coupling measurement techniques, 
come up with a list of seven different ways to measure cou­
pling. The two coupling measures that will be used in our 
experiments are described below. 

•	 Coupling between objects (CBO) for a class is the 
count of the number of classes to which it is coupled. 
If class a is coupled to class b and c, its CBO is two. 
This definition of coupling includes inheritance [9]. 
The less an object is coupled to other objects, the more 
likely it is to be reused in another application. Since 
reusability is one of the four components of maintain­
ability, CBO should correlate directly to maintainabil­
ity. 

•	 Response for class (RFC) is a set of methods that can 
be potentially executed in response to a message re­
ceived by an object of the class. If a large number of 

8 



methods are invoked in response to receiving a mes­
sage, the testing and debugging becomes more com­
plicated since a greater level of understanding is re­
quired. Testability is also one of the four components 
of maintainability, so RFC should also directly corre­
late to maintainability. 

Lower coupling leads to fewer errors [3] which re­
duces the testability aspect of maintainability. Lower cou­
pling also allows the modules to be changed easier, which 
speeds up the flexibility aspect of maintainability [3]. Flex-
ibility and testability are both components of maintainabil­
ity. Therefore reducing these components reduces the time 
spent in the maintainability phase. 

As Figure 2 demonstrated, dependency injection 
should intuitively influence coupling by loosening the con-
nection between the interface implementation, b, and the 
class that uses that implementation, a. This connection is 
loosened by relocating it to the configuration file and in-
jecting b into a via the configuration file. Intuitively, this 
rearranging, should reduce the number of couplings in the 
Java code. If the number of couplings is reduced, maintain­
ability should also be reduced. 

2.2.2 Cohesion 

Cohesion is the degree of similarity of methods [4, 6]. It is 
the degree to which each part of the module is associated 
with each other part. Cohesion of methods within a class 
is often desirable. Cohesive methods promote encapsula­
tion of objects [6]. A lack of cohesion in a class implies 
that the class should be re-factored into two or more sub­
classes. Low cohesion increases complexity and therefore, 
increases the likelihood of errors during the development 
process [6]. Modules with high cohesion, however, have 
more reliable and easy to understand code [8]. These mod­
ules are also easier to develop, maintain, and reuse and are 
less fault-prone [11]. 

The original Lack of Cohesion in Methods (LCOM) 
[6] metric that was presented by Chidamber and Kemerer 
is still in use today. They define this metric in the following 
way: 

Consider a class C1 with methods M1, M2,. . 
.Mn. Let {Ii} = set of instance variables used by 
methods Mi. There are n such sets {I1},. . . {In}. 
The degree of similarity of methods is given by � � � 
{I1} {I2} . . . {In} 

LCOM is generally tied to the instance variables and 
methods of an object; therefore, it is a measure of the at­
tributes of an object. 

Clearly, cohesion is related to maintainability. Since 
low cohesion increases complexity and therefore, the like­
lihood of errors, maintainability decreases. A study [8] of 
a 148,000 source line system from a production environ­
ment found that routines with the highest coupling to cohe­
sion ratios had seven times as many errors per 1,000 source 

statements as compared to those with the lowest coupling 
to cohesion ratios. These were also twenty times as costly 
to fix. 

LCOM, the metric used to measure cohesion in this 
study, is a broadly used cohesion metric. However, LCOM 
has been argued to be incomplete and to not accurately 
measure cohesion [5, 10]. Chae and Kwon found that ac­
cessor methods, constructors and destructors do not affect 
class cohesion; however, LCOM takes these methods into 
consideration. Kabaili et al. [10] found a weak correlation 
between cohesion and changeability, leading the authors to 
believe that LCOM does not reflect the real cohesion of a 
class. 

3. Experiment 

3.1 Data Collection 

To find out whether the stated hypothesis is true, 20 sets 
of projects were gathered. Each set contained two projects 
that used similar technologies. One project used the Spring 
framework and the other did not use Spring. 

In order to gather these projects, sourceforge.net was 
utilized. Sourceforge.net is an open source community that 
contains many projects written using various technologies. 
Here, 20 sets of projects that comprised the data set were 
gathered. 

First, the 20 Spring projects were selected to be used 
in the study. These projects were all open source, written in 
Java using the Spring framework as well as other technolo­
gies. Some projects used technologies such as Hibernate, 
MySQL, Tapestry, Struts, and others. Most of the projects 
were web-based. 

Then, 20 projects that did not use Spring, but used 
similar technologies to their counterpart Spring project 
were selected. For example, if the Spring project was web-
based and used Hibernate, then the non-Spring project was 
also web-based and used Hibernate. For an ideal exper­
iment, we would have wanted pairs of projects that were 
implemented from the same set of requirements, one done 
using the Spring framework and the other done without the 
use of the Spring framework. However, this ideal scenario 
was difficult to accomplish. 

3.2 Metric Tools Used 

3.2.1 CKJM 

Because maintainability is correlated to coupling and co­
hesion, these were the main metrics used to evaluate each 
project set. A tool called the Chidamber and Kemmerer 
metric (CKJM) tool was used in the data collection of this 
paper [16]. 

The CKJM tool uses Chidamber and Kemmerer met­
rics such as Coupling between Objects (CBO), Response 
for Class (RFC), Lack of Cohesion (LCOM), as well as 
other complexity metrics. We will mostly focus on the 

9 



CBO, RFC, and LCOM measures since these measures re­
late directly to maintainability. Also, CBO and RFC mea­
sure coupling, which, from Figure 1, appears to be what 
dependency injection reduces. The simple examples in Fig­
ures 1 and 2 were implemented to verify that the CBO and 
RFC results come out as hypothesized. The RFC and CBO 
values in the Spring example were reduced by one as com­
pared to the non-Spring example. The code verified what 
the figures show, therefore there is reason to believe that 
Spring will have an effect on CBO and RFC numbers of 
larger projects. 

3.2.2 DI Metric 

Besides using the CKJM tool to collect project metrics, a 
new metric tool was written to calculate Number of DIs. 
This tool will be used to examine the number of times the 
dependency injection pattern is used in each Spring project. 
The only thing we know about the Spring projects gath­
ered for this experiment is that they use Spring. However, 
Spring is a framework with many components. The use of 
the Spring framework does not guarantee the use of depen­
dency injection. The Number of DIs metric will show to 
what extent each Spring project actually uses dependency 
injection. 

The numbers produced by this tool will be divided by 
the sum of the CBO numbers of each Spring project. CBO 
represents the number of classes to which a class is cou­
pled. Dependency injection reduces the number of classes 
to which a class is coupled through the configuration file. 
When we use the pattern of dependency injection, we move 
the couplings between objects that would have been in Java 
code instead to an XML file. The provided container uses 
the XML file to connect the Java objects together. Because 
of this, the sum of the CBO numbers is the sum of all the 
couplings that could potentially be done using dependency 
injection. Dividing the number of dependency injections in 
a project by the sum of the CBOs (DI / Σ CBO) will allow 
us to normalize the dependency injection numbers of each 
project so we can compare them to each other. 

3.3 Analysis 

Minitab statistical software was used to perform an 
ANOVA analysis on the data. The purpose of this analysis 
is to quantify the relationship between several independent 
variables and a dependent criterion variable (dependency 
injection). This general analysis predicts whether the de­
pendency injection factor has an effect on the metrics of 
each project. 

Using the results of all the projects put together, this 
analysis shows if the presence of Spring, or dependency in­
jection, has an effect on any of the metrics. If the outcome 
of this test is a p-value less than or equal to 0.05, then the 
presence of dependency injection has an effect on the met­
ric we are testing. 

Following the ANOVA general linear data analysis, a 
t-test analysis is used. A t-test assesses whether the means 
of two groups are statistically different from each other 
[17]. This test judges how significant the variability of the 
means in two datasets is with respect to the distribution of 
their values in a bell curve. For this analysis, a two-sample 
two-tailed t-test was used. 

The t-test outputs a probability value or p-value. This 
value represents the probability of getting a value of the 
test statistic by chance alone. If the p-value produced by 
the t-test is 0.05 or less, we can say that we are 95% or 
more confident that the results in these tests did not simply 
occur due to random chance [17]. Therefore, we are only 
interested in metric results with a p-value less than or equal 
to 0.05. 

4. Results 

The ANOVA analysis was performed on the cumulative 
CBO and RFC results using Minitab Statistical Software. 
ANOVA is used to determine if the differences between 
the Spring and non-Spring project’s CBO and RFC values 
are statistically significant [13]. The ANOVA results for 
CBO produced a p-value of 0.00. This tells us that Spring 
contributes to the difference in CBO numbers. However, 
this difference could not be calculated because the type of 
project also contributed to the difference in CBO. We can­
not yet say if the CBO is lower or higher for the Spring 
versus the non-Spring project. The gathered projects were 
all very different. This variance affected the CBO numbers. 
Similar results were found for RFC and LCOM. 

Table 1 lists how many Spring projects performed bet­
ter for each metric as compared to their non-Spring project 
counterpart. A project is considered to have done better on 
a metric, if it had a lower value for the CBO and RFC met­
rics and that value was statistically significant. A project 
was considered to have done better if it had a higher LCOM 
value. Since LCOM is an inverse metric and measures the 
lack of cohesion, a higher LCOM value is more desirable. 
A project was counted if its t-test values for that metric 
were less than or equal to 0.05. 

During our t-test analysis we found that no obvious 
correlation exists between the presence of dependency in­
jection and the Chidamber and Kemmerer metrics. Table 
1 shows a nearly equal number of project sets that had the 
Spring project with lower RFC and CBO numbers, as the 
number of non-Spring projects with lower RFC and CBO 
numbers. There were five sets of projects of the twenty 
sets for which the Spring project had a lower average CBO 
value. There were six sets of projects of the twenty sets 
for which the non-Spring project had a lower average CBO 
value. The other nine projects sets did not demonstrate sta­
tistically significant results. 

The results from Table 1 disprove the hypothesis of 
this paper. However, an interesting trend was noticed dur­
ing the analysis of the experiment results. The project sets 
that had lower average CBO and average RFC tended to 

10 



lower the CBO numbers or vice-versa. The other nine 
Table 1. Cumulative Summary projects did not have statistically signifacnt average CBO 

CBO RFC LCOM 
Spring 5 6 4 

No-Spring 6 7 5 

have higher numbers of DI/Σ CBO. Upon further examina­
tion of the five Spring projects that exhibited lower average 
CBO with a CBO p-value of less than or equal to 0.05, four 
had a DI/Σ CBO of over 10%. Table 2 shows this result. 
The Proj column lists the project’s set numbers for which 
the Spring project had a lower average CBO as compared 
to the non-Spring project. The %DI column lists the results 
of the equation DI/Σ CBO *100. From this table, we can 
see a trend: projects with a high percentage of dependency 
injections (greater than 10%) tend to have lower average 
CBO. 

Table 2. Spring Lower Average CBO / Higher
 
DI Percentage
 

Proj %DI 
3 3.1 
9 41.7 

11 10.43 
13 10.09 
14 19.39 

Of the six Spring projects that had higher average 
CBO than their counterparts, all six had DI/Σ CBO num­
bers of less than 10% as seen in Table 3. The project set 
number for which the non-Spring projects had a lower av­
erage CBO is listed in the left hand column. The right hand 
column lists the percentage of dependnecy injection of the 
Spring project from that set. The projects listed in this table 
have less than 10% dependency injection. 

Table 3. Spring Higher Average CBO / Lower 
DI Percentage 

Proj %DI 
4 9.61 
8 2.22 
12 5.61 
15 3.56 
18 1.12 
19 3.90 

The results presented in Table 2 and Table 3 are sig­
nificant findings. However, since eleven of our twenty 
projects exhibit this characteristic, we cannot conclusively 
state that a higher percent of dependency injection will 

and RFC numbers. Further analysis of such projects should 
be done. Simular results were found for RFC. 

5. Conclusion 

Mintainability of a software product is a big problem that 
often consumes 60% to 80% of the software life cycle. This 
problem is familiar to software developers and has existed 
for years, with no sign of relief in sight. Even though a 
complete solution to this problem does not exist, ways to 
measure code and predict maintainability do exist. Some 
of the measures that predict maintainability are coupling 
and cohesion metrics. 

This paper examines if the pattern of dependency in­
jection significantly reduces dependencies of modules in 
a piece of software, therefore making the software more 
maintainable. We tested this hypothesis by collecting 20 
sets of projects and calculating three metrics–CBO, RFC, 
and LCOM–on those projects. 

The experiment results were unable to substantiate 
this hypothesis. There does not appear to be a trend in 
lower coupling or higher cohesion measures with or with­
out the presence of dependency injection. However, a trend 
of lower coupling in projects with higher dependency injec­
tion percentage (more than 10 %) was evident. We cannot 
conclude that such a trend persists through all the Spring 
projects due to the amount of projects that exhibited this 
trend (a fourth of all the projects with a CBO/RFC p-value 
of less than or equal to 0.05). However, further analysis of 
this should be done. 

Even though the coupling metrics failed to produce 
lower numbers for the projects that used dependency injec­
tion, it is still possible that the use of dependency injection 
allows us to write more maintainable software. The use of 
the XML file to configure objects allows us to have more 
configurable couplings. The XML file maintains most of 
the project couplings in one place. In order to change a 
coupling, a developer would simply edit the XML file, in-
stead of figuring out what Java file needs changing. Since 
the Spring framework allows all couplings to be located in 
one XML file, we can easily manage and change them. 

We could produce an experiment to measure whether 
some couplings are more configurable than others. This ex-
periment could involve two similar projects, one written in 
Spring and the other written without the use of Spring. Two 
developers would be given a task of altering each project. 
We could measure how long each developer takes to per­
form the task and how many files he has to alter. We would 
also measure the code for number of lines, and number of 
defects. Ideally, we would run this experiment multiple 
times on different projects. By analyzing these statistics 
we could figure out if the couplings created by dependency 
injection are easier to work with and change. 

One drawback to keeping most of the couplings in 
the XML file is that eventually, when the project becomes 

11 



large, the XML file will also become large. If the XML 
file is large, more hours will be spent on maintaining it. 
Because of this, it may not be optimal to use dependency 
injection in all types of projects. 

The results of the study do not confirm the hypothesis 
because no trend in the metric measurements was discov­
ered. In order to truly measure maintainability and the ef­
fects of dependency injection we would have to construct 
a more controlled study. However, a trend of lower cou­
pling in projects with higher dependency injection percent­
age (more than 10 %) was evident. We cannot conclude that 
such a trend persists through all the Spring projects due to 
the amount of projects that exhibited this trend (a fourth 
of all the projects with a CBO/RFC p-value of less than or 
equal to 0.05). However, further analysis of this should be 
done. 

References 

[1] K. K. Addarwall, Y. Singh, and J. K. Chhabra.	 An 
integrated measure of software maintainability. In 
Annual Reliability and Maintainability Conference, 
Seattle, USA, 2002, 235-244. 

[2] E. Arisholm. Dynamic coupling measures for object-
oriented software. IEEE Symposium on Software Met­
rics, 30(8), 2002, 33-34. 

[3] L. Briand, J. Daly, and J. Wust. A unified framework 
for coupling measurement in object-oriented systems. 
IEEE Transactions on Software Engineering, 24(1), 
1999, 91-121. 

[4] L. Briand, J. Daly, and J. Wust. A unified frame-
work for cohesion measurement in object oriented 
systems. Empirical Software Engineering: An Inter­
national Journal, 3(1), 1998, 65-117. 

[5] H. S Chae and Y. R Kwon.	 A cohesion measure for 
classes in object-oriented systems. In Fifth Interna­
tional Software Metrics Symposium, Maryland, USA, 
1998, 158-166. 

[6] S. R. Chidamber and C. F. Kemerer.	 A metrics suite 
for object oriented design. IEEE Transactions on 
Software Engineering, 20(6), 1994, 476-493. 

[7] Martin Fowler.	 Inversion of control containers and 
the dependency injection pattern. Technical report, 
Thought Works, 2004. 

[8] N. Gupta and P. Rao. Program execution based mod­
ule cohesion measurement. In Proceedings of the 16th 
Annual International Conference on Automated Soft­
ware Engineering, 2001, 144-153. 

[9] Brian Henderson-Sellers.	 Object-Oriented Metrcis. 
(New Jersey: Prentice Hall, 1996). 

[10] H. Kabaili, R. K. Keller, and F. Lustman. Cohesion as 
changeability indicator in object-oriented systems. In 
European Conference on Software Maintenance and 
Reengineering, Lisbon, Portugal, 2001, 39-46. 

[11] Y	 Lee and K Chang. Software maintenance: 
Reusability and maintainability metrics for object-
oriented software. In Proceedings of the 38th Annual 
on Southeast Regional Conference ACM-SE, South 
Carolina, USA, 2000, 88-94. 

[12] M. Mari and N. Eila. The impact of maintainability 
on component-based software systems. In Euromicro 
Conference, 2003, 25-32. 

[13] Minitab. Minitab. http://www.minitab.com/, 2007. 

[14] D. Poshyvanyk and A. Marcus. The conceptual cou­
pling metrics for object-oriented systems. In 22nd 
IEEE International Conference on Software Mainte­
nance, Pansylvania, USA, 2006, 469-478. 

[15] C. Rajaraman and M.R. Lyu.	 Reliability and main­
tainability related software coupling metrics in c++ 
programs. In Third International Symposium on Soft­
ware Reliability, North Carolina, USA, 1992, 303­
311. 

[16] D Spinellis.	 Chidamber and kemerer java metrics. 
http://www.spinellis.gr/sw/ckjm/, 2005. 

[17] William	 Trochim. Re­
search methods knowledge base. 
http://www.socialresearchmethods.net/kb/statt.php, 
2006. 

[18] Craig Walls and Ryan Breidenbach. Spring In Action. 
(Colorado: Manning Publications, 2005). 

12 




