ON THE NOTION OF PRECOHOMOLOGY

GORO KATO

Mathematics Department, California Polytechnic State University San Luis Obispo, California 93407, U.S.A.

Dedicated to Professor SAUL LUBKIN.

ABSTRACT. For a cochain complex one can have the cohomology functor. In this paper we introduce the notion of precohomology for a cochain that is not a complex, i. e., $d^{q+1} \circ d^q$ may not be zero. Such a cochain, with objects and morphisms of an abelian category A, is called a cochain precomplex whose category is denoted by Pco (A). If a cochain precomplex is actually a cochain complex, then the notion of precohomology coincides with that of cohomology, i. e., precohomology is a generalization of cohomology. For a left exact functor F from an abelian category A to an abelian category B, the hyperprecohomology of F is defined, and some properties are given. In the last section, a generalization of an inverse limit, called a preinverse limit, is introduced. We discuss some of the links between precohomology and preinverse limit.

Introduction

Let \mathbf{Z} be the ring of integers and let A be an abelian category. Suppose a sequence of objects and morphisms in A is given

which may not satisfy $d^{q} \circ d^{q-1} = 0$ for certain $q \in \mathbb{Z}$. Then one may not be able to take the cohomology at C^q. We will introduce a functor

Received September 4, 1984. Revised November 28, 1984.

^{*} AMS Subject Classification (1980): Primary 18G40, 18G35; Secondary 18E25.

Key Words and Phrases: Precohomology, Hyperprecohomology of a left exact functor, Preinverse limit.

GORO KATO

for such a cochain by initially complexifying the cochain to a cochain complex, then taking the cohomology of the complex. For diagram (or element) chasing, we use an exact imbedding of A into the category of abelian groups. It should be noted that precohomology is a self-dual construction and that it is not an exact connected sequence of functors. Furthermore, for each $n \in \mathbb{Z}$, Phⁿ is half exact. Hence, they are not derived functors, see §1.

1. Precohomology

Let A be an abelian category, and let Co(A) and $Co^+(A)$ be the categories of cochain complexes and positive cochain complexes of objects in A, respectively.

DEFINITION 1.1. A sequence of objects and morphisms of A,

 $\xrightarrow{dq-1} \overset{dq}{\longrightarrow} \overset{dq}{Cq+1} \overset{dq}{\longrightarrow} \overset{dq}{\longrightarrow} \cdots$

is said to be a cochain precomplex, whose category is denoted by Pco (A), and Pco⁺ (A) denotes the category of positive cochain precomplexes. A morphism $(f_q)_{q \in \mathbb{Z}} : (C^q, d^q)_{q \in \mathbb{Z}} \to (D^q, e^q)_{q \in \mathbb{Z}}$ in Pco (A) is a sequence of morphisms $f_q : C_q \to D_q$ such that the diagram

commutes, i.e., $f_{q+1} \circ d^q = e^q \circ f_q$ for $q \in \mathbb{Z}$.

NOTE. A cochain precomplex $(C^q, d^q)_{q \in \mathbb{Z}}$ is a cochain complex if $d^{q+1} \circ d^q = 0$ for $q \in \mathbb{Z}$.

LEMMA 1.2. Let $(C^q, d^q)_{q \in \mathbb{Z}}$ be an object in Pco (A). Then $(C^q/Im d^{q-1} \circ d^{q-2}, "d^{q''})_{q \in \mathbb{Z}}$, abbreviated as $("C^{q''})_{q \in \mathbb{Z}}$, is an object in Co (A), where " $d^{q''}$ is the morphism induced by d^q as will be described below in the proof.

308

Proof. Let.

be a cochain precomplex in Pco (A). Then the morphism ''dq'' is defined as the morphism

$$C^{q}/Im d^{q-1} \circ d^{q-2} \xrightarrow{ \ \ \, } C^{q+1}/Im d^{q} \circ d^{q-1}$$

such that $''d^{q''}([c^q]) = [d^qc^q]$ in $C^{q+1}/\text{Im} d^q \circ d^{q-1}$ for $[c^q] \in C^q/\text{Im} d^{q-1} \circ d^{q-2}$. Note $''d^{q''}$ is well-defined. It remains to demonstrate that $''d^{q+1''} \circ ''d^{q''}([c^q]) = 0$. By the above definition, $''d^{q+1''} \circ ''d^{q''}([c^q]) = [d^{q+1} \circ d^q (c^q)] = 0$ holds in $C^{q+2}/\text{Im} d^{q+1} \circ d^q$.

REMARK. The assignment of an object $(C^q, d^q)_{q \in \mathbb{Z}}$ in Pco (A) to the object $(C^q/\text{Im } d^{q-1} \circ d^{q-2}, "d^{q"})_{q \in \mathbb{Z}}$ is a right exact functor.

NOTE. We call this process (functor) $(C^q, d^q) \xrightarrow[q \in \mathbf{Z}]{} (''C^{q''}, ''d^{q''})_{q \in \mathbf{Z}}$ the complexifying functor of the precomplex $(C^q, d^q)_{q \in \mathbf{Z}}$.

DEFINITION 1.3. For an object $(C^q, d^q)_{q \in \mathbb{Z}}$ in Pco (A), define the q-th precohomology of $(C^q, d^q)_{q \in \mathbb{Z}}$, denoted as Ph^q (C^{*}), by

$$Ph^{q} (C^{*}) = H^{q} (--- \rightarrow C^{q}/Im \ d^{q-1} \circ d^{q-2} \xrightarrow{'' d^{q''}} ---)$$
$$= Ker \ '' d^{q''}/Im \ '' d^{q-1''},$$

i. e., by the q-th cohomology of the cochain complex derived from the cochain precomplex $(C^q, d^q)_{q \in \mathbb{Z}}$.

NOTE. We have Ker $''d^{q''} = \{ [c^q] \in C^q / \text{Im } d^{q-1} \circ d^{q-2} | d^q (c^q - d^{q-1}c^{q-1}) = 0 \text{ for some } c^{q-1} \in C^{q-1} \}$ and Im $''d^{q-1''} = \{ [c^q] \in C^q / | \text{Im } d^{q-1} \circ d^{q-2} | c^q = d^{q-1} (c^{q-1}) \text{ for some } c^{q-1} \in C^{q-1} \}.$

From this note, we plainly have the following proposition.

PROPOSITION 1.4. Precohomology is a generalization of cohomology in the sense that precohomology coincides with cohomology in the case when a cochain precomplex is a cochain complex.

GORO KATO

DEFINITION 1.5. Let $(C^q, d^q)_{q \in \mathbb{Z}}$ be a cochain precomplex in Pco (A), then the dual-complexifying functor of the precomplex $(C^q, d^q)_{q \in \mathbb{Z}}$ is defined as $(\text{Ker } d^{q+1} \circ d^q, 'd^{q'})_{q \in \mathbb{Z}}$, where 'dq' is the restriction of dq on the subobject Ker $d^{q+1} \circ d^q$ of Cq. The object which was obtained above is a cochain complex, denoted by $('C^{q'}, 'd^{q'})_{q \in \mathbb{Z}}$ or simply by $('C^{q'})_{q \in \mathbb{Z}}$. Define the q-th dual-precohomology 'Phq (C*) of a precomplex C* as

$$Ph^{q}(C^{*}) = \text{Ker} \ 'd^{q'} / \text{Im} \ 'd^{q-1'}.$$

THEOREM 1.6. (Self-Duality of Precohomology). The canonical map from 'Cq' to ''Cq'' induces an isomorphism from 'Phq (C*) to Phq (C*) for each $q \in \mathbb{Z}$.

Proof. We will give a proof using [4]. Let us denote the canonical map 'Ph^q(C*) \rightarrow Ph^q(C*) by Φ , i. e., for the cohomologous class $\overline{\mathbf{x}}$ of $\mathbf{x} \in \operatorname{Ker} '\operatorname{dq'} \Phi(\overline{\mathbf{x}}) = \overline{\pi_q}(\operatorname{i_q \mathbf{x}})$, where i is the monomorphism Ker $\operatorname{dq^{+1} \circ dq} \rightarrow \operatorname{Cq}$ and π_q denotes the projection $\operatorname{Cq} \rightarrow \operatorname{Cq} / \operatorname{Im} \operatorname{dq^{-1} \circ dq^{-2}}$. Notice $\overline{\pi_q}(\operatorname{i_q \mathbf{x}}) = [\overline{\mathbf{x}}]$, where $[\mathbf{x}] \in "\operatorname{Cq''} = \operatorname{Cq} / \operatorname{Im} \operatorname{dq^{-1} \circ dq^{-2}}$. This map is well-defined since "'dq" ($[\mathbf{x}]$) = 0 holds in "'Cq^{+1''}. This is because $\mathbf{x} \in \operatorname{Ker} '\operatorname{dq'}$, i. e., 'dq' (\mathbf{x}) = dq (\mathbf{x}) = 0 in 'Cq^{+1'}. First we will show that Φ is monomorphic. Suppose $[\overline{\mathbf{x}}] = 0$, then $[\mathbf{x}] \in \operatorname{Im} "\operatorname{dq^{-1}''}$. Hence $\mathbf{x} = \operatorname{dq^{-1}}(\mathbf{x}^{q-1})$ as in the note after Def 1.3. We need to check $\mathbf{x}^{q-1} \in \operatorname{Ker} \operatorname{dq^{-1} = 'Cq^{-1'}}$. $\operatorname{dqdq^{-1}}(\mathbf{x}^{q-1}) = \operatorname{dqx} = 0$ holds from the above. Secondly, we will prove Φ is epimorphic. Let $[\overline{\mathbf{x}}] \in \operatorname{Phq}(\operatorname{C}^*)$. Then, since $[\mathbf{x}] \in \operatorname{Ker} "\operatorname{dq''}, \operatorname{dq}(\mathbf{x} - \operatorname{dq^{-1} \mathbf{x'}}) = 0$ holds for some $\mathbf{x'} \in \operatorname{Cq^{-1}}$. Then $\Phi(\overline{\mathbf{x} - \operatorname{dq^{-1} \mathbf{x'}}) = [\overline{\mathbf{x} - \operatorname{dq^{-1} \mathbf{x'}}] = [\overline{\mathbf{x}}]$ holds since $-\operatorname{dq^{-1} \mathbf{x'} = \operatorname{dq^{-1}}(-\mathbf{x'})$. Notice also $\mathbf{x} - \operatorname{dq^{-1} \mathbf{x'} \in \operatorname{Ker} \operatorname{dq^{+1} \circ dq} = 'Cq'}$.

PROPOSITION 1.7. (Half-Exacteness). Let $0 \to C_1^* \xrightarrow{\alpha^*} C_2^* \xrightarrow{\beta^*} C_3^* \to 0$ be a short exact sequence in Pco (A). Then, for each $q \in \mathbb{Z}$, the sequence

$$\operatorname{Ph}^{q}(\operatorname{C}_{1}^{*}) \xrightarrow{\overline{\alpha}^{q}} \operatorname{Ph}^{q}(\operatorname{C}_{2}^{*}) \xrightarrow{\overline{\beta}^{q}} \operatorname{Ph}^{q}(\operatorname{C}_{3}^{*})$$

is exact at $Ph^{q}(C_{2}^{*})$.

Proof. Suppose $\overline{\beta}^{q}([\overline{\mathbf{x}}]) = [\beta^{q}(\mathbf{x})] = 0$ holds in Ph^q(C₃^{*}). That is, $[\beta^{q}(\mathbf{x})] \in \operatorname{Im} "d_{3}^{q-1}"$ holds, which implies $\beta^{q}(\mathbf{x}) = d_{3}^{q-1}(\mathbf{y})$ for some $\mathbf{y} \in C_{3}^{q-1}$. Since β_{3}^{q-1} is an epimorphism, there exists $\mathbf{x}' \in C_{2}^{q-1}$ such

that $\beta^{q-1}(x') = y$. Let $x'' = d_2^{q-1}x'$. We obtain $\beta^q(x''-x) = 0$ since $\beta^q(x''-x) = \beta^q d_2^{q-1}x' - \beta^q(x) = d_3^{q-1}\beta^{q-1}(x') - \beta^q(x) = d_3^{q-1}(y) - \beta^q(x) = 0$. Therefore one can find $z \in C_1^q$ such that $\alpha^q(z) = x'' - x$ by the exactness. We need to prove $''d_1^{q''}[z] = 0$, i.e.,

$$d_1^q z - d_1^q d_1^{q-1} z' = 0$$
 holds for some $z' \in C_1^{q-1}$.

We have that

$$\begin{split} \alpha^{q+1} d_1^q z &- \alpha^{q+1} d_1^q d_1^{q-1} z' = \alpha^{q+1} d_1^q z - d_2^q d_2^{q-1} \alpha^{q-1} z' = \\ &= d_2^q \left(\alpha^q (z) - d_2^{q-1} \alpha^{q-1} z' \right). \end{split}$$

Therefore, it is sufficient to prove $[\alpha^q(z)] \in \text{Ker } "d_2^{q''}$, i. e., to show $[x'' - x] \in \text{Ker } "d_2^{q''}$. Choose $x' - x^0 \in C_2^{q-1}$, where x^0 is chosen such that $d_2^q x - d_2^q d_2^{q-1} x^0 = 0$ for $[x] \in \text{Ker } "d_2^{q''}$ above. Then

$$\begin{aligned} d_2^q \left(\mathbf{x}'' - \mathbf{x} - d_2^{q-1} \left(\mathbf{x}' - \mathbf{x}^0 \right) \right) &= d_2^q \mathbf{x}'' - d_1^q \mathbf{x} - d_2^q d_2^{q-1} \left(\mathbf{x}' - \mathbf{x}^0 \right) \\ &= d_2^q \left(d_2^{q-1} \mathbf{x}' - \mathbf{x} - d_2^{q-1} \left(\mathbf{x}' - \mathbf{x}^0 \right) \right) = 0 \end{aligned}$$

holds. Hence Ph^q is a half-exact functor.

REMARK 1.8. Consider the following short exact sequence of precomplexes, denoted as $0 \rightarrow {}^{2}\mathbf{Z} \rightarrow {}^{3}\mathbf{Z} \rightarrow {}^{1}\mathbf{Z} \rightarrow 0$, of Pco⁺(A):

$$\begin{array}{c} \vdots \\ \vdots \\ 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \\ 0 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0 \\ \uparrow & id \\ 1 \end{pmatrix} \\ 0 \rightarrow Z \rightarrow Z \rightarrow 0 \rightarrow 0 \\ \uparrow & id \\ \uparrow & id \\ 1 \end{pmatrix} \\ 0 \rightarrow 0 \rightarrow Z \rightarrow Z \rightarrow 0 \rightarrow 0 \\ \uparrow & \uparrow & id \\ 0 \rightarrow 0 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 0 \\ \uparrow & \uparrow & \uparrow \\ 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \\ \uparrow & \uparrow & \uparrow \\ 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \\ \uparrow & \uparrow & \uparrow \\ 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \\ \uparrow & \uparrow & \uparrow \\ \vdots & \vdots & \vdots \\ \end{array}$$

Then the complexifying functor $^{\prime\prime}$ $^{\prime\prime}$ applied to the above implies the diagram

	↑ ↑ ↑
	$0 \to 0 \to 0 \to 0 \to 0$
	↑ ↑ ↑
2)	$\mathbf{Z} \rightarrow 0 \rightarrow 0 \rightarrow 0$
	↑ id ↑ ↑
1)	$0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Z} \rightarrow 0 \rightarrow 0$
	t d id id id
0)	$0 \to 0 \to \mathbf{Z} \to \mathbf{Z} \to 0$
	: : :

From this sequence of complexes, if Ph^* were an exact connected sequence of functors, one would obtain

$$\begin{array}{cccc} 0 \longrightarrow \operatorname{Ph}^{0}(^{2}\mathbf{Z}) \longrightarrow \operatorname{Ph}^{0}(^{3}\mathbf{Z}) \longrightarrow \operatorname{Ph}^{0}(^{1}\mathbf{Z}) \longrightarrow \operatorname{Ph}^{1}(^{2}\mathbf{Z}) \longrightarrow \dots \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Hence, Ph^n , $n \in \mathbb{Z}$, is not an exact connected sequence of functors.

Remark 1.9. The right derived functors of $\mathrm{Ph^{0}}$ on $\mathrm{Pco^{+}}\left(\mathrm{A}\right)$ are given by

$Ph^{0} = Ker (d^{0}),$	n = 0
Coker (d ⁰),	n = 1
0,	$n \ge 2$.

2. Hyperprecohomology of a left exact functor

Let A and B be abelian categories and let $F : A \longrightarrow B$ be a left exact additive functor.

DEFINITION 2.1. Let $(C^q, d^q)_{q \in \mathbb{Z}} \in Pco^+(A)$. By the complexifying functor, denoted by "" in the previous section, one has $(C^q / \text{Im } d^{q-1} \circ d^{q-2}, "d^{q''})_{q \in \mathbb{Z}}$ as an object $Co^+(A)$. We will abbreviate the above associated cochain complex as "C*". Then F"C*" is an object of $Co^+(B)$. The q-th hyperprecohomology of F evaluated at C*, denoted as Ph^qF (C*), is defined as the q-th hyperderived functor of F evaluated at "C*".

NOTE 1. We have the following diagram of categories and functors

$$\begin{array}{ccc} & & & & & \\ Pco^+(A) & & & & \\ & & &$$

where functors $(C^q, d^q)_{q \in \mathbb{Z}} \longrightarrow "C^{*''} \in Co^+(A), "C^{*''} \longrightarrow F''C^{*''} \in H^0$ $\in Co^+(B)$ and $F''C^{*''} \longrightarrow Ker F'' d^{0''}$ are defined as in Definition 2.1, and H^0 : $Co^+(A) \longrightarrow A$ is defined by H^0 ("C*") = Ker "d^{0''} = Ker "d^{0''}

 $= H^0(C^*) = \text{Ker } d^0 \text{ and } F : A \longrightarrow B \text{ by Ker } d^0 \longrightarrow F (\text{Ker } d^0).$ Notice F (Ker d^0) $\xrightarrow{\approx}$ Ker F d^0 holds since F is left exact. Then there are induced spectral sequences

$$(2.1.1) \quad E_2^{p. q} = H^p \left(R^q F \left({''C}^{\cdot \prime \prime} \right) \right) =$$
$$= H^p \left(\dots \rightarrow R^q F \left({''C}^{p\prime \prime} \right) \rightarrow R^q F \left({''C}^{p+1\prime \prime} \right) \rightarrow \dots \right)$$
$$(2.1.2) \quad {'E_2^{p. q}} = (R^p F) \left(Ph^q \left(C^* \right) \right)$$

with their abutement the hyperprecohomology $Ph^{n}F(C^{*})$, where $R^{p}F$ denotes the p-th derived functor of F.

Furthermore, (2.1.1) can be extended to

 $(2.1.1'') \quad E_{i}^{p-q} = (R^{q}F) \; (''C^{p''}),$

see [2, pp. 118].

REMARK. We have the commutative diagram of categories and functors:

See Definition 2.1 and the above Note 1 for the description of each functor. The composition of functors leaving $Pco^+(A)$ to B, counterclockwise, defines the zero-th hyperprecohomology $Ph^{0}F(C^{*})$ of F at C^{*} in $Pco^+(A)$. The composition of functors leaving $Pco^+(B)$ to B, clockwise, defines the zero-th precohomology of FC^{*}.

3. Preinverse Limit

Let $(C^q, d^q)_{q \in \mathbb{Z}}$ be a cochain precomplex and be regarded as an inverse system:

$$\xrightarrow{dq-1} dq$$

$$\xrightarrow{dq} Cq \xrightarrow{q+1} \xrightarrow{} Cq$$

DEFINITION 3.1. Let A be an abelian category such that denumerable direct products of objects exist and such that the denumerable direct product functor is exact. Let $C^0 = C^1 = \prod_{q \in \mathbb{Z}} C^q$ and define a morphism

$$\delta^0$$
 : $\mathbf{C}^0 \to \mathbf{C}^1$

by $\pi_{q+1} \circ \delta^0 = d^q \circ \pi_q - d^q d^{q-1} \circ \pi_{q-1}$, where $\pi_q : \prod_{q \in \mathbb{Z}} C^q \to C^q$ is the projection. Let $\mathbb{C}^n = 0$ for $n \neq 0,1$ and $\delta^n = 0$ for $n \neq 0$. Then

$$0 \longrightarrow \mathbf{C}^{0} \xrightarrow{\delta^{0}} \mathbf{C}^{1} \xrightarrow{\delta^{1}} 0 \longrightarrow \cdots$$

is a cochain complex, denoted by $C^{\ast}.$ Define the preinverse limit, denoted as Pim,

$$\underset{q \in \mathbf{Z}}{\operatorname{Pim}} \ C^{q} = \operatorname{H}^{0}(\mathbf{C}^{*}) = \operatorname{Ker} \ \delta^{0}$$

and define the 1-st preinverse limit, denoted as Pim¹,

.

$$\operatorname{Pim}^{1} \operatorname{Cq} = \operatorname{H}^{1} (\mathbf{C}^{*}) = \mathbf{C}^{1} / \operatorname{Im} \delta^{0}.$$

NOTE. $\lim_{\leftarrow} C^q \subset Pim C^q$ and $\lim_{\leftarrow} C^q \longrightarrow Pim^1 C^q$ hold, where $\lim_{\leftarrow} and \lim_{\leftarrow} are$ the usual inverse limits.

THEOREM 3.2. Let $(C^q, d^q)_{q \in \mathbb{Z}}$ be a cochain precomplex, regarded as an inverse system. There exists an isomorphism

$$\Pi \ "Cq" / \operatorname{Pim} \ "Cq" \xrightarrow{\sim} \operatorname{Pim} \ "Cq" / \Pi \ \operatorname{Phq} (C^*)$$

$$q \in \mathbb{Z} \qquad \longleftarrow \qquad q \in \mathbb{Z}$$

where "" is the canonical epimorphism $\Pi C^{q} \rightarrow \Pi "C^{q}$ ".

Proof. Consider the following diagram.

GORO KATO

From the definition of "dq", one has Π Ker "dq" = Ker " $\delta^{0"}$ and Π Im "dq" = Im " $\delta^{0"}$. Hence, the commutative diagram

implies, by a well-known lemma applied to the second and third short exact sequences, the following exact sequence,

$$\begin{array}{ccc} 0 \to \operatorname{Ker} l' \to \operatorname{Ker} l \to \operatorname{Ker} l'' \to \operatorname{Coker} l' \to \operatorname{Coker} l \to \operatorname{Coker} l'' \to 0. \\ & \| & \| & \| \\ 0 & 0 & 0 \end{array}$$

Hence, one obtains the isomorphism

$$\operatorname{Coker} l = \prod_{q \in \mathbf{Z}} \operatorname{''Cq''} / \operatorname{Pim} \operatorname{''Cq''} \xrightarrow{\simeq} \operatorname{Coker} l'' = \operatorname{Pim^1} \operatorname{''Cq''} / \prod_{q \in \mathbf{Z}} \operatorname{Phq} (C^*).$$

REFERENCES

- 1. H. CARTAN and S. EILENBERG Homological algebra, Princeton University Press, 1956.
- S. LUBKIN A p-adic proof of Weil's conjectures, Annals of Mathematics 87, Nos. 1-2 (1968), pp. 105-255.
- 3. S. LUBKIN Cohomology of completions, North-Holland, 1980.
- 4. S. LUBKIN Imbedding of abelian categories, Trans. Amer. Math. Soc. 97 (1960), pp. 410-417.

316