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ABSTRACT. For a cochain complex one can have the cohomology functor. 
In this paper we introduce the notion of precohomology for a cochain that is not a 
complex, i, e" dq+l 0 d q may not be zero, Such a cochain, with obJects and morphisms 
of an abelian category A, is called a cochain precomplex whose category is denoted by 
Pco (A). If a cochain precomplex is actually a cochain complex, then the notion 
of precohomology coincides with that of cohomology, i. e., precohomology is a gene
ralization of cohomology, For a left exact functor F from an abelian category A to 
an abelian category B, the hyperprecohomology of F is defined, and some properties 
are given. In the last section, a generalization of an inverse limzt, called a prein
verse limit, is introduced, We discuss some of the links between precohomology and 
preinverse limit. 

Introduction 

Let Z be the ring of integers and let A be an abelian category. 
Suppose a sequence of objects and morphisms in A is given 

dq-1 dq dq+l 
- - -~ Cq-l -~-~ Cq -~ Cq+l --~ 

which may not satisfy dq 0 dq-l = 0 for certain q E Z. Then one may 
not be able to take the cohomology at Cq. We will introduce a functor 
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for such a cochain by initially complexifying the cochain to a cochain 
complex, then taking the cohomology of the complex. For diagram 
(or element) chasing, we use an exact imbedding of A into the category 
of abelian groups. It should be mted that precohomology is a self
-dual con~truction and that it is not an exact connected sequence of 
functors. Furthermore, for each nEZ, Phn is half exact. Hence, they 
are not derived functors, see § 1. 

1. Precohomology 

Let A be an abelian category, and let Co (A) and Co+ (A) be the 
categories of cochain complexes and positive cochain complexes of 
objects in A, respectively. 

DEFINITION 1.1. A sequence of objects and morphisms of A, 

dq-l dq dq 
- - - --4- Cq-l ~ cq ---4- cq+l ---4- - - 

is said to be a cochain precomplex, whose category is denoted by Pco (A), 
and Pco+ (A) denotes the category of positive cochain precomplexes. 
A morphism (fq)qEz: (Cq, dq)qEZ -7 (Dq, eq)qEZ in Pco (A) is a sequence 
of morphisms fq : Cq -7 Dq such that the diagram 

dq 
- - - --4- Cq ----4- Cq+l --4- - -

commutes, i e., fq+l 0 dq = eq
0 fq for q E Z. 

NOTE. A cochain precomplex (cq, dq)qEZ IS a cochain complex 
if dq+lo dq = 0 for q E Z. 

LEMMA 1.2. Let (cq, dq)q EZ be an object i.n Pco (A). Then (Cq/lm 
2dq-1o dq- , "dq")qEz, abbreviated as ("Cq")qEZ, is an object in Co (A), 

where "dq" is the morphism induced by dq as will be described below 
in the proof. 
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Proof. Let.
 
dq-2 dq-l dq
 

- - - -+ Cq-2 --+ Cq-l --+ Cq --+ - - 

be a cochain precomplex in Pco (A). Then the morphism "dq" is defined 
as the morphism 

" dq" 
Cqjlm dq-l 0 dq-2 --+ Cq+ljlm dq 0 dq-l 

such that "dq" ([cqJ) = [dqcqJ in Cq+ljlm dq 0 dq-l for [cqJ E Cqjlm 
dq-1o dq-2. Note "dq" is well-defined. It remains to demonstrate that 
"dq+l" 0 "dq" ([cqJ) = O. By the above definition, "dq+l" 0 "dq" ([cqJ) = 

= [dq+1o dq (cq)J = 0 holds in Cq+2jlm dq+l 0 dq. 

REMARK. The assigment of an object (Cq, dq)qEZ in Pco (A) to 
the object (Cqjlm dq-1o dq- 2, "dq")qEZ is a right exact functor. 

NOTE. We call this pTocess (functor) (Cq, dq) ~--+ ("Cq", "dq")qEZ
qEZ 

the complexifying functor of the precomplex (Cq, dq)q EZ, 

DEFINITION 1.3. For an object (Cq, dq;qEZ in Pco (A), define the 
q-th pioecohomology of (Cq, dq)qEZ, denoted as PM (C*), by 

" dq" 
PM (C*) = Hq (----+ Cqjlm dq-l 0 dq-2 --+ ---) 

= Ker "dq"lIm "dq-l", 

i. e., by the q-th cohomology of the cochain complex derived from the 
cochain precomplex (cq, dq\qEZ, 

NOTE. We have Ker "dq" = {[eqJ E Cqjlm dq-l 0 dq- 2 
1 dq (cq 

- dq-l cq- 1) = 0 for some cq- 1 E Cq- 1} and 1m "dq-l" = {[cqJ E Cqj 
lIm dq-1o dq-2 I cq = dq-l (cq- 1) for some cq-l E Cq-l}. 

From this note. we plainly have the following proposition. 

PROPOSITION 1.4. Precohomology is a ge"leralization of cohomo
logy in the sense that precohomobgy coincides with cohomology in 
the case when a cochain precomplex is a cochain complex. 
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DEFINITION 1.5. Let (eq, dq;qEZ be acoeh1in precomplexin Pea (A), 
then the dual-complexifying functor of the precomplex (Cq, dq)qEZ is 
defined as (Ker dq+l 0 dq, 'dq')qEZ, where 'dq' is the restriction of dq on 
the subobject Ker dq+l 0 dq of Cq. The object which was obtained above 
is a cochain complex, denoted by ('cq', 'dq')qEZ or simply by ('Cq')qEZ, 
Define the q-th dual-precohomology 'Phq (C*) of 2. prec8mplex C* as 

'Phq (C*) = Ker 'dq' / 1m 'dq-11. 

THEOREM 1.6. (Self-Duality of Precohomology). The canonical 
map from 'Cq' to "Cq" induces an isomorphism from 'PM (C*) to 
PM (C*) for each q E Z. 

Proof. We will give a proof using [4]. Let us denote the canonical 
map 'PM (C*) ~ Phq (C*) by <P, i. e., for the cohomologous class x 

--~ 

of x E Ker 'dq' <P (x) = 7tq (iqx), where i is the monomorphism Ker 
dq+l 0 dq ~ Cq and 7tq denotes the projection Cq ~ Cq / 1m dq-l 0 dq-2. 

Notice 7tq (iqx) = [x], ,,,here [x] E "Cq" = Cq / 1m dq-l 0 dq-2. This map 
is well-defined since "dq" ([x]) = 0 holds in "Cq+l". This is because 
x E Ker 'dq', i. e., 'dq' (x) = dq (x) = 0 in 'Cq+ll. First we will show 
that <P is monomorphic. Suppose [x] = 0, then [x] Elm "dq-l". 
Hence x = dq-l (xq- 1) as in the note after Def 1.3. We need to check 
xq- 1 E Ker dq 0 dq-l = 'Cq-l'. dqdq-l (xq- 1) = dqx = 0 holds from the 
above. Secondly, we will prove <I> is epimorphic. Let [x] E Phq (C*). 
Then, since [x] E Ker "dq", dq (x - dq-1x' ) = 0 holds for some x' E Cq-l. 

.--_._- -

Then <P (x-dq-1x') = [x-dq - 1x']=[x] holds since -dq-1x' =dq-l (-x'). 
Notice also x - dq-l x' E Ker dq+l 0 dq = 'cq'. 

rx* ~* 
PROPOSITION 1.7. (Half-Exacteness). Let 0 -) ct ---+ Ci' ---+ ct ~O 

be a short exact sequence ill Pco (A). Then, for each q E Z, the sequence 

rxq ~q 
PM (Cn ----+ PM (Ci) ----+ PM (cr) 

IS exact at PM (C;). 

Proof. Suppose ~q ([x]) = [~q (x)] = 0 holds 1n Phq (Ci). That is, 
[~q (x)] Elm "d§-l" holds, which implies ~q (x) = dj-l (y) for some 
y E q-l. Since ~~-l is an epimorphism, there exists x' E q-I such 
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that ~q~l (x') = y. Let x" = d§-l x'. We obtain ~q (x" - x) = 0 since 
~q (x" - x) = ~q d§-l x' - ~q (x) = d&-l ~q-l (x') - ~q (x) = d&-l (y) 
~q (x) = O. Therefore one can find Z E q such that IXq (z) = x" - x 
by the exactness. We need to prove "di" [zJ = 0, i. e., 

d~ z - di di-1 z' = 0 holds for some Z' E q-l. 

We have that 

Therefore, it is sufficient to prove [lXq (z)J E Ker "d~", i. e., to show 
[x" - xJ E Ker "d;". Choose x' - XO E q-l, where XO is chosen such that 
d§ x - d~ d~-l XO = 0 for [xJ E Ker "d~" above. Then 

holds. Hence Phq is a half-exact functor. 

REMARK 1.8. Consider the following short exact sequence of 
precomplexes, denoted as 0 ~ 2Z ~ az ~ lZ ~ 0, of Pco+ (A) : 

t t t 
0---+0---+0---+0---+0 

t id t t 
2) O---+Z---+Z---+O---+O 

t id tid t 
1) o->- Z ---+ Z ---+ 0 ---+ 0 

t ti~d t 
0) o,--+ 0 ---+ Z ---+ Z ---+ 0 

t t t 
0---+0---+0---+0---+0 

t t t 
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Then the complexifying functor " " applied to the above implies 
the diagram 

t t t 
O~O~O~O~O 

t t t 
2) Z~O~O~O 

t i~d t t 
1) O~Z~Z~O~O 

t t i~d t 
0) O~O~Z~Z~O 

t t t 

From this sequence of complexes, if Ph* were an exact connected 
sequence of functors, one would obtain 

o~ PhD (2Z) ~ PhD (3Z) ~ PhD (lZ) ~ PhI (2Z) ~ ... 

II II II II 
o 0 Z 0 

Hence, Phn, nEZ, is not an exact connected sequence of fUIlctors. 

REMARK 1.9. The right derived functors of PhD on Pco+ (A) are 
given by 

PhD = Ker (dO), n = 0 

Coker (dO), n = 1 
{ 

0, n ~ 2. 

2. Hyperprecohomology of a left exact functor 

Let A and B be abelian categories and let F : A ~~ B be a 
left exact additive functor. 

DEFINITION 2.1. Let (cq, dq)qEZ E Pco+ (A). By the complexi
fying functor, denoted by " " in the previous section, one has 
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(Cq ! 1m dq-1 0 dq- 2, "dq")qEZ as an object Co+ (A). We will abbre

viate the 8.bJve associated cochain complex as "C*". Then F"C*" 
is an object of Co+ (B). The q-th hyperprecohomology of F evalua
ted at C*, denoted as PMF (C*), is defined as the q-th hyperderived 
functol' of F evaluated at "C*". 

NOTE 1. We have the following diagr8.m of categories and fun
ctors 

Pco+ (A) 
" " 
~-__ Co+ (A) 

Co(F) 
~-__ Co+ (B) 

IHO !HO 

t F t 
A ) B, 

" " Co (F) 
where functors (cq, dq)qEZ ~->- "C*" E Co+(A), "C*" ~-__ F"C*" E 

HO 
E Co+(B) and F"C*" ~ Ker F" dO" are defined as in Definition 2.1, 

and HO: Co+ (A) ~__ A is defined by HO ("C*") = Ker "do" = 
= HO (C*) = Ker dO and F : A ~__ B by Ker dO ~->- F (Ker dO). 

Notice F (Ker dO) -=.. Ker F dO holds since F is left exact. Then there 

are induced spectral sequences 

= Hp (--- ~ Rq F ("CP") ~ Rq F ("CP+1") ~ ---) 

(2.1.2) 'E~' q = (RPF) (PM (C*)) 

with their abutement the hyperprecohomology PhnF (C*), where RpF 

denotes the p-th derived fUllctor of F. 

Furthermore, (2.1.1) can be extended to 

(2.1.1") Ei q = (RqF) ("CP"), 

see [2, pp. 118]. 
21 
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REMARK. We have the commutative diagram of categories and 
functors: 

See Definition 2.1 and the above Note 1 for the description of each 
functor. The composition of functors leaving Pco+ (A) to B, counter
clockwise, defines the zero-th hyperprecohomology PhoF (C*) of F at c* 
in Pco+ (A). The composition of functors leaving Pco+(B) to B, clo
ckwise, defines the zero-th precohomology of FC*. 

3. Preinverse Limit 

Let (cq, dq)qEZ be a cochain precomplex and be regarded as an 
inverse system: 

dq-1 dq 
---~ Cq-1 -~ Cq -~ Cq+1 ~---. 

DEFINITION 3.1. Let A be an abelian category such that denclme
rable direct products of objects exist and such that the denumerable 
direct product functot IS exact. Let Co = C1 = IT Cq and define a 
morphism q EZ 

ao:Co~Cl 

by 7tq+l 0 ao = dq 0 7tq - dqdq-1 0 7tq- l1 where 7tq : IT cq ~ Cq is the pro
qEZ 

jection. Let Cn = 0 for n i=- 0,1 and an = 0 for n i=- O. Then 

ao a1
 

0-+ Co ---)- Cl-~ 0 ~---
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is a cochain complex, denoted by C* Define the preinverse limit, 
denoted as Pim, 

+--

Pim Cq = HO (C*) = Ker ao 
+-
qEZ 

and define the I-st preinverse limit, denoted as Pim!, 
+--

Pim! Cq = H! (C*) = P/ 1m 3°. 
+-
qEZ 

epi 
NOTE. lim Cq c Pim Cq and lim! Cq ----+ Pim! Cq hold, where 

+-- +-- +-- ~-

lim and lim! are the usual inverse limits. 
+-- +-

THEOREM 3.2. Let (cq, dq)qEZ be a cochain precomplex, regarded 
as an inverse system. There exists an isomorphism 

n "Cq" / Pim "cq" ..=. Pim! "Cq" / n PM (C*) 
qEZ ~- ~- qEZ 

where " " is the canonical epimorphism n Cq ---+ n "cq". 

Proof. Consider the following diagram. 

o 

0-- ----,. n"cq"--- ----)oJ n"cq" --- -+ o~ _ 

'1T"~'7f"q-l q~ II q_lll 
" q_l'l d It 

--- ----> C ' cqII 
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From the definition of "dq", one has n Ker "dq" = Ker "ao" and 
II 1m "dq" = Im "ao". Hence, the commutative diagram 

0 --------+ IT 1m "dq- 1" ---> IT Ker "dq" --- IT Ker "dq"/Im "dq- 1" - 0 

L0" II " 0" i 
0 <5 Ker <5 IT Phq(C*)	 , 0-- 1m 

1	 1 

-- 1m 

"1 1t' 0" lI cQ U 1 Ilcqll
0 <5 ----> IT ---,	 Pim , 0 

+--

implies, by a well-known lemma applied to the second and third short 
exact sequences, the following exact sequence, 

o ---7 Ker 7' ---7 Ker 1 ---7 Ker 1" ---7 Coker l' ---7 Coker 1 ---7 Coker 1" ---7 O. 

II II	 II 
o o	 o 

Hence, one obtains the isomorphism 

Coker 1 = II "Cq" IPim "cq" ..; Coker 1" = Pim l "cq" I II Phq (C*). 
qEZ +-~	 +--- qEZ 
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