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ABSTRACT. For a cochain complex ome can have the cohomology functor.
In this paper we introduce the notion of precohomology for a cochain that is not a
complex, i. e., d4F o A4 may not be zevo. Such a cochain, with objects and movphisms
of an abelian category A, is called a cochain precomplex whose category is denoted by
Peo (4). If a cochain precomplex is actually a cochain complex, then the notion
of precohomology coincides with that of cohomology, i.e., precohomology is a gene-
ralization of cohomology. For a left exact functor F from an abelian category A to
an abelian categovy B, the hyperprecohomology of F is defined, and some properties
ave given. In the last section, a genevalization of an iwmverse limt, called a prein-
verse limit, is introduced. We discuss some of the links between precohomology and
preinverse limit.

Introduction

Let Z be the ring of integers and let A be an abelian category.
Suppose a sequence of objects and morphisms in A is given

det da da+t
- o Ca Cat

which may not satisfy dd4.da-! = 0 for certain q € Z. Then one may
not be able to take the cohomology at C4. We will introduce a functor
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for such a cochain by initially complexifying the cochain to a cochain
complex, then taking the cohomology of the complex. For diagram
(or element) chasing, we use an exact imbedding of A into the category
of abelian groups. It should be noted that precohomology is a self-
-dual construction and that it is not an exact connected sequence of
functors. Furthermore, for each n € Z, Phn is half exact. Hence, they
are not derived functors, see § 1.

1. Precohomology

Let A be an abelian category, and let Co (A) and Co+ (A) be the
categories of cochain complexes and positive cochain complexes of
objects in A, respectively.

DeFiNiTION 1.1. A sequence of objects and morphisms of A,

da— da da

~ee—> (O > CO— s Catl

is said to be a cochain precomplex, whose category is denoted by Pco (A),
and Pco™ (A) denotes the category of positive cochain precomplexes.
A morphism (fg)qez: (Ce, d9)gez — (D, el)qez in Pco (A) is a sequence
of morphisms f; : Cq — Dg such that the diagram

---— Ca — Catl 5 ..
i K
+
| y | T
----——> Dua — Datl . ___

commutes, ie., f;°de = edo{, for q € Z.

NoTE. A cochain precomplex (C4, d9)qez is a cochain complex
if datlodd =0 for qe Z.

LEmma 1.2. Let (C4, d9)qez be an objectin Pco (A). Then (Ce/Im
da—1o da-2 "da")qez, abbreviated as ("C4")qez, is an object in Co (A),
where "’da” is the morphism induced by dd as will be described below
in the proof.
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Proof. Let.
da-2 da-1 da

> (U2 5 Cal 5 (4 > -

be a cochain precomplex in Pco (A). Then the morphism “dq” is defined
as the morphism

/qull
Ca/Im da-to a2 —— CaH/Im dao da-t

such that ""d9” ([c4]) = [dacq] in Ca*!/Im d%ode? for [cq] € Ce/Im
da—1. da-2, Note d?” is well-defined. It remains to demonstrate that
"datl”" o "da’ ([c4]) = 0. By the above definition, “da**"" o "da"’ ([cq]) =
= [d9*10 da (c®)] = 0 holds in Ca+2?/Im da+l.da,

ReEMARK. The assigment of an object (C9,d%)qez in Pco (A) to
the object (Co/Im da-1.da—2 da”)ecz is a right exact functor.

NotE. We call this process (functor) (C4, d9) «~— ("C8”, "d¥")qcz
qeZ

the complexifying functor of the precomplex (C9, d%)4cz.

Derinrrion 1.3. For an object (C4, d%)qez in Pco (A), define the
g-th precohomology of (C4, d9)q¢z, denoted as Phd (C*), by

) /qu/l
Pha (C*) = H4 (- —> C/Im da-1 o d4=2 ——> ---)

— Ker IlquI/Im /qu_ll/’

i. e., by the g-th cohomology of the cochain complex derived from the
cochain precomplex (C4, d%;¢z.

Note. We have Ker "da"’ = {[ct] € C¢/Im da—toda-2|da (cq —
—da1lcal) =0 for some c¢'eCal} and Im "da" = {{c4] e Cq/
[Im da-teda—2|cd = da~* (ce~?) for some ca-e Ca-1}.

From this note, we plainly have the following proposition.

PRropPOSITION. 1.4. Precohomology is a.geaneralization of cohomo-
logy in the sense that precohomology coincides with cohomology in
the case when a cochain precomplex is a cochain complex.
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DErFINITION 1.5, Let (C4, d4' e z be a cochain precomplex in Peo (A),
then the duval-complexifying functor of the precomplex (C4, dd) ez is
defined as (Ker da*' e dq, 'dd')cz, where 'd®’ is the restriction of dd on
the subobject Ker da+!edd of C4. The object which was obtained above
1s a cochain complex, denoted by ('C%’, ‘d%’)qcz or simply by ('Ct)qez.
Define the q-th dual-precohomology 'Phd (C*) cf o precomplex C* as

"Pha (C*) = Ker 'd?’ [ Im 'da-7’,

TuEOREM 1.6. (Self-Duality of Precohomology). The canonical
map from ‘C¢ to “C4"” induces an isomorphism from ’Pha (C*) to
Pha (C*) for each qe Z.

Proof. We will give a proof using [4]. Let us denote the canonical
map 'Phe (C*) — Phe (C*) by ®, i.e, for the cohomolsgous class X
of xeKer 'd? © (x) :;q@, where 1 is the monomorphism Ker
datledd — Ca and =y denotes the projection Ca — Ca/Im da-1oda-2,
Notice 7 (igx) = [x], where [x] € "C0”" = C4 | Im da-1° da-2 This map
is well-defined since ""d9’ ([x]) = 0 holds in ""Ca+’, This is because
xeKer 'd?, i e, 'd¥ (x) =de(x) =0 in 'Ca¥. First we will show
that @ 1is monomorphic. Suppose [x] =0, then [x]eIm "da-1",
Hence x = d4-1 (xa71) as in the note after Def 1.3. We need to check
x4 e Ker daoda-?t = 'Ca~¥.  dade (x4-1) = ddx = 0 holds from the
above. Secondly, we will prove ® is epimorphic. Let [x]e Phd (C¥).
Then, since [x] € Ker ""da”, d¢ (x — d9-'x’) =0 holds for some x’ e Ca-1,
Then @ (x—d%'x') = [x—da~! x']=[x] holds since —dda-1x’=dd* (—x).
Notice also x—de1x" e Ker datlodd = 'Ce’,

o* *
ProposITION 1.7.  (Half-Exacteness). Let 0 — C¥ — CF — €¥ -0
be a short exact sequence in Pco (A). Then, for each q e Z, the sequence

P Eq
Pha (Cf) ——— Pht (CF) —— Phd CH

is exact at Pha (C¥).
Proof. Suppose B4 ([X]) = [84 (x)] = 0 holds in Pha (C¥). That is,

[BY (x)] € Im ”d§~'" holds, which implies B4 (x) = di-!(y) for some
y € C§~L. Since B3 is an epimorphism, there exists x’ e C3-! such
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that pa—t (x') =y. Let x"”"=di'x’. We obtain B4 (x" —x) = 0 since
BU(x" — x) = Badi! x" - B4 (x) = dg~* BI (x') — B4 (x) = dj~! (y) —
Ba(x) = 0. Therefore one can find zeC§ such that od(z) = %" —x
by the exactness. We need to prove "d}”’ [z] =0, i. e,

diz—d¥di{1z =0 holds for some z' € C{-1.
We have that
wttldiz — 01 dfditz = adt diz — didjterlz =
=dj (¢* (z) — df e tz).

Therefore, it is sufficient to prove [04 (z)] € Ker ""d}”, i. e., to show
[x""—x] e Ker "d¥’. Choose x" — x° € C§~!, where x°is chosen such that
dix — did§1x%=0 for [x] € Ker "d}” above. Then

di (x" —x —df ' (x' — x%) = dix" — d'x —didit (x' — x)

=dj{ditx —x -4t (x' —x9) =0

holds. Hence Phd is a half-exact functor.

Remark 1.8, Consider the following short exact sequence of
precomplexes, denoted as 0 —2Z —3Z —1Z -0, of Pcot (A):

ot
0—->0—->0—>0->90

Pl 1

2) 0 —>Z—>Z—>0->0
P et

1) 0—>Z—>Z—>0->0
ot

0) 0—-0—>Z->Z >0

o

0—>0—->0—>0—->90

(N
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rrorr

Then the complexifying functor applied to the above implies

the diagram

(O
0—->0—->0—->0—>0

()

2) Z—>0—>0—0
ta bt 1

1) 0—>Z—>Z—>0—->0
bt

0) 0—>0—->Z>Z—>0

trt

From this sequence of complexes, if Ph* were an exact conuected
sequence of functors, one would obtain

0 — PhO (2Z) — Ph9 (3Z) — Pho (1Z) — Ph! (2Z) — ...

1 I I I
0 0 z 0

Hence, Ph?, n € Z, is not an exact connected sequence of functors.

ReEMARK 1.9. The right derived functors of Ph? on Pco* (A) are
given by
Ph® = Ker (d%, n =0
Coker (d9), n=1

0, n =2

2. Hyperprecohomology of a left exact functor

Let A and B be abelian categories and let F: A~—— B be a
left exact additive functor.

Derintrion 2.1, Let (C9, d9)qez € Pcot (A). By the complexi-
fying functor, denoted by ” " in the previous section, one has
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(Ca/Imda-teda? "d1") ez as an object Cot(A). We will abbre-
viate the above associated cochain complex as "C*”’. Then F'C*”
is an object of Cot (B). The g-th hyperprecohomology of F evalua-
ted at C*, denoted as PhdF (C*), is defined as the g-th hyperderived
functor of F evaluated at ""C*”.

Note 1. We have the following diagram of categories and fun-
ctors

ot CO(F)

Pcot (A) ~~—— Co* (A) ~—— Cot (B)
o w
v 3 v
A o~ — B,

o1t CO (F)
where functors (C, d4)gcz ~~~—> "C*’ e Cot(A), "C*’ v F'C*¥" e
HO

g Cot(B) and F"'C*’ ~~> Ker F”" d* are defined asin Definition 2.1,
and H®: Co* (A) ~~—> A is defined by HO® (“C*”) = Ker "d¥ =
= H® (C¥*) = Ker d®* and I : A ~— B by Ker d’ ~— F (Ker d9).
Notice F (Ker d% 5 Ker F d° holds since F is left exact. Then there

are induced spectral sequences
(2.1.1) EY*=Hr(RaF ("C")) =
= HP (--- > RaF ("C»") > RAF ("Co+') —---)
(2.1.2) 'EL 9 = (RPF) (Pha (C*))

with their abutement the hyperprecohomology PhrF (C*), where RPF
denotes the p-th derived fuuctor of F.

Furthermore, (2.1.1) can be extended to
(2.1.1") E} %= (RF) ("Cr"),

see [2, pp. 118].

21
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RemMaRk. We have the commutative diagram of categories and
functors:

Peot(A)

/'“ : wF
’r
+

Pco’ (B)
)

pn0F o l”
Ph
Co+(B
HO

See Definition 2.1 and the above Note 1 for the description of each
tunctor. The composition of functors leaving Pcot (A) to B, counter-
clockwise, defines the zero-th hyperprecohomology PhOF (C*) of F at C*
in Pcot (A). The composition of functors leaving Pco*(B) to B, clo-
ckwise, defines the zero-th precohomology of FC*.

3. Preinverse Limit

Let (C9,d9qez be a cochain precomplex and be regarded as an
inverse system:
da-1 da

e €Ol s (U s CaH

DeFINITION 3.1. Let A be an abelian category such that dename-
rable direct products of objects exist and such that the denumerable
direct product functor is exact. Let €= C'= II Ca and define a
morphism ) . 4€Z

' B o

by mgi,° 8% = d¥ewy — dadate g, where mg @ II Ca — Cais the pro-
. . q€Z .
jection. Let Cr =0 for n # 0,1 and 8 =0 for n £ 0. Then

30 ' 3t

0>C —br O ——> 0 —>---
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is a cochain complex, denoted by C* Define the preinverse limit,

denoted as Pim,
<
Pim C4 = HO (C*) = Ker &°
—
q€EZ

and define the 1-st preiaverse limit, denoted as Pim?!,
—

Pim! Ca = H! (C*) = C! [ Im &,

-
qEZ
epi
NotTe. lim C¢c Pim Cd and lim'! C¢ ——> Pim! C4 hold, whete
<~ < <~ DI
lim and lim! are the usual inverse limits.

<« <~

TueoreM 3.2. Let (CY, d9)qez be a cochain precomplex, regarded
as an inverse system. There exists an isomorphism

Il "Ca” | Pim "”CY’ = Pim! “Ca’ | 11 Pha (C*)

qeZ “«— <«~— qeZ
where " "’ is the canonical epimorphism ITCa— IT1"7Ca".

Proof. Consider the following diagram.

60
0 HCq HCq ——— () T ...
m
Tg-1 d TTq+]
-1
d9 q
—— Cq_qI Cq d Cqﬂ —— .
noa "o
v l60|I b" .
0 I Cq il Cq — > ana
/}_1 \ "‘ﬂq+] "
4 I w +
-'I " 1 3
" " dq " 1] dq " "
_-m— CQ'] Cq — Cqﬂ — -
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From the definition of "/d4”, one has I1 Ker “d9” = Ker 8% and
II Im ”de” = Im "”8"’. Hence, the commutative diagram

> 1 Ker “dq,-—————ﬁ>ﬂ Ker "dq"/Im dq_1 — 0

|

0 —— 1 In ¢ 1"

0 —— Im 6% —— ger " — L mppI(*) —
ll' 11 11”
O —y Im "60" > H “Cq“ > P]'m.l “Cq” —— O

e

implies, by a well-known lemma applied to the second and third short
exact sequences, the following exact sequence,

0 > Ker?” — Ker !l — Kerl” — Coker I’ — Coker I — Coker 7" —> 0.

| I I
0 0 0

Hence, one obtains the isomorphism

Coker = II "Ca”[Pim "Ca" = Coker I” = Pim! “Ca”/ II Pha (C*).

q€EZ L -~ qE€Z

REFERENCES

1. H. CartaN and S. EILENBERG —— Homological algebra, Princeton University
Press, 1956. - ' - ’

2. S. LuBkIN — 4 p-adic proof of Weil's conjectures, Annals of Mathematics 87,

Nos. 1-2 (1968), pp. 105-255,

S. LuBkIN — Cokomology of completions, North-Holland, 1980.

S. LUBKIN — Imbedding of abelian categovies, Trans. Amer. Math. Soc. 97

(1960), pp. 410-417.

-





