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Abstract 

An investigation of Rafael Guastavino's arches has been conducted by means of 
finite element modeling and laboratory experimentation. A novel method of 
modeling laminated masonry tile construction via the finite element method has 
been devised. This technique takes advantage of the layered shell element 
features found in commercially available finite element programs. Historical 
Guastavino tiles have been tested to obtain material properties. These modem 
techniques have been employed in conjunction with Guastavino's original 
empirical design criteria to provide a better understanding of these historically 
significant structures. 

1 Introduction 

Rafael Guastavino, born in 1842, emigrated to the United States to establish the 
Guastavino Fireproof Construction Company. The fascinating architectural 
legacy of Guastavino and his son (also Rafael Guastavino) has received 
scholarly attention [1],[2] but the mechanics of his designs have not garnered 
similar attention from structural engineers. The thin laminated tile construction 
that the elder Guastavino used in hundreds of structures in the Eastern United 
States had its roots in his native Catalan's indigenous vaulting badition. Before 
emigrating to the United States, Rafael Guastavino designed such laminated 
vaulting in Barcelona [3]. While it has been suggested that Guastavino came to 
the United States to utilize superior cements in his mortars [4], others claim it is 
more feasible to say that he emigrated because of his faith in the American 
construction industry and its ability to produce consistent and high quality 
materials [5]. 
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Previous to t h s  study, the engineering material properties of Guastavino tiles 
have not been quantitatively analyzed, although Lane has performed chemical 
analyses of the mortars [ 5 ] .  Much mystery surrounds the formulation of the 
mortar since many Guastavino vaults were erected without centering or 
scaffolding. Lane [5] found that many mortars were traditional, simple mixtures 
of Portland cement and sand, and Parks and Neumann report one part Portland 
cement to two and one half parts sharp clean sand (specifically Cow Bay sand, a 
sharp angular sand quarried in Long Island New York [2]. In fact, although 
Guastavino filed a number of U.S. patents for his fireproof "cohesive" laminated 
tile construction, none of the patents describe the properties of the mortar, which 
gives firther credence to the theory that the mortar was completely traditional. 

Even more mystery surrounds the design methods that Guastavino used in his 
vaults, arches, domes and stairs. Guastavino claimed that his arches and vaults 
produced little lateral thrust under gravity loading, and he produced very few 
design formula in his largely promotional book "Cohesive Construction" [6]. 
Throughout the history of the Guastavino Company, there appears to have been 
only one engineer responsible for all design calculations, and his records were 
lost after the closing of the company in 1962. During the early 190OYs, structural 
engineers were just beginning to understand the mechanics of thm shell 
structures, and theories were available only for simple geometries such as 
hemispheres in the 1930's. Guastavino combined intuition with empiricism to 
design spectacular spaces of extreme thinness, doing so with common materials. 
T h ~ s  paper will analyze some typical designs by means of the finite element 
method. 

2 Mechanical testing of tiles 

2.1 Description of recovered tiles 

A total of fifteen Guastavino tile fragments were obtained, ranging in size from 
about 5160 mm2,up to 29030 mm2,each with a nominal thickness of 2.54 mm. 
As shown in Figure 1, the tiles were not all the same. In particular, there 
appeared to be three different groove patterns manufactured in the tiles' surfaces, 
varying from small (165 grooves per meter) to medium (138 grooves per meter) 
to large (106 grooves per meter) grooves. Hence, the first objective of the 
mechanical testing program was to determine if there were significant 
differences in mechanical properties, from tile to tile. 
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Figure 1: Recovered Tile Specimens. 

2.2 Samples and testing 

A total of five tiles were tested. Due to the small amount of available tile 
specimens, it was decided that greatest use would be made from non-destructive 
testing, which generally requires smaller specimen sizes. 

Each of the tested tiles was ground smooth using a diamond abrasive wheel. 
Then, a water-cooled tile saw was used to cut mechanical testing samples from 
each tile fragment. Samples were cut in two perpendicular directions, for the 
purpose of evaluating the anisotropic elastic properties of the tiles. As indicated 
in Figure 2, the direction of the surface grooves is designated as the X-direction, 
the direction perpendicular to the grooves is designated as the Y-drection, and 
the direction through the tile thickness is designated as the Z-direction. 

Figure 2: Tile Coordinate System. 
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2.3 Methods 

Mechanical testing consisted of; longitudinal and transverse dynamic elastic 
modulus testing, monotonic compression testing to determine the ultimate 
cornpressive strength, and monotonic flexure testing to determine the ultimate 
tensile strength. 

The longitudinal and transverse dynamic elastic modulus tests were 
conducted in accordance with ASTM C215 [7], which are free vibration tests, 
measured via a bonded accelerometer. Data was acquired by a 100 kHz PC-
based card, with spectrum analysis provided within the Lab View [g] software 
package. Typically, the fundamental frequencies of vibration were determined 
three ways for each sample: the longitudinal (axial) mode, and the transverse 
(bending) modes, evaluated about both principal bending axes. In every case, 
the elastic moduli, evaluated three different ways, were in close agreement with 
one another. 

In the monotonic compression tests, a manually-controlled hydraulic testing 
machine was used to record the ultimate strength of tile samples. For the 
monotonic flexure testing a manual displacement-controlled testing machine 
was used to record the ultimate flexural strength of tile samples, in 3-point 
bending, over spans of 51 mm or 102 mm, where the larger span was used for 
thicker samples (typically equal to the ground tile thickness of about 20 mm), 
while the smaller span was used for thinner specimens (typically, 13 mm). 

2.4 Mechanical testing results 

2.4.1 Dynamic tests for Young's modulus 
A total of 38 free vibration tests were conducted on tile samples in the X-
direction, while 22 tests were conducted in the Y-direction. For individual tiles, 
statistical variation was small, with the coefficient of variation for tests within a 
tile specimen usually less than 10%. This variation tended to be smaller fox 
testing in the X-direction, than in the Y-direction. 

The most notable result was consistent orthotropic properties. On average, 
the dynamic elastic modulus E, was 21520 MPa in the X-direction, but E, was 
only 12000 MPa in the Y-direction. For all tiles, E, exceeded E, by a factor of 
about 1.8. Examining the statistical variation in both directions, it is clear that 
the orthotropic properties are significant throughout all of the tested tiles. 
However, despite the presence of orthotropic properties, it is necessary to use an 
average value for E of about 16548 MPa in structural models, because it is 
assumed that the tiles were randomly oriented in the structure. 

At the onset of testing, it was hypothesized that the hfferences in surface 
appearance, namely the sizes of surface grooves, may correlate with differences 
in properties. Regarding ths hypothesis, Table 1 indicates that the tile-to-tile 
variations are not much larger than the variation of test results within a tile. This 
suggests that surface appearance does not correlate with X-direction properties. 
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Similarly, though there are larger tile-to-tile variations in the Y-direction, these 
variations do not appear to be related to the surface appearance of the tile. 

Table 1. Results of dynamic modulus testing. 

Surface Avg. E Number Coeff. 
Tile # Grooveslm (Mpa) of tests of Variation 

X-Direction 
11 l06 5.3% 
14 106 8.1% 
12 138 4.2% 
13 165 6.5% 
8 l65 7.5% 

Avg X dir, 12.2% 

2.4.2 Compressive and flexural testing 
Due to limits on the available tile specimens, it was not possible to test nearly as 
many samples destructively, as had been conducted non-destructively. Four 
compression tests and four flexure tests were conducted, as summarized in Table 
2. Although the number of samples does not permit true statistical comparisons, 
orthotropic properties were, once again, evident. On average, the X-direction 
compressive and flexural strengths were 34 MPa and 11 MPa, respectively, 
compared with 23 MPa and 5 MPa in the Y-direction. 
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Table 2. Experimental tile strength. 

Surface Avg. Compr. Number of Avg. Flex. Number of 

Tile # Groove 
s/m 

Strength 
( M W  

Compr. 
tests 

Strength 
(MPa) 

Flex tests 

X-Direction 

l l 106 18 1 8 1 
14 106 40 1 12 2 
12 138 39 2 12 1 
13 l65 0 11 1 
8 l65 0 108 1 

Avg X 34 11 
dir. 

Y-Direction 

11 l06 
14 l06 
12 138 
13 l65 
8 l65 

Avg X 
dir. 

3. Finite element modeling of laminated tile arches 

3.1 Finite element input 

The commercially available finite element program ANSYS was used to model 
the tiles and mortar of typical Guastavino arches. An eight-noded isoparametric 
shell element was used to model both the tile and the mortar. Each element has 
four corner nodes and four midside nodes, and each node has three translational 
and three rotational degrees of freedom. The fact that these elements can have 
layers made up of different material properties was beneficial in modeling the 
laminated tile structures. To model the structure, rectangular areas were created 
to match the size of roughly one half of one tile (A1 and A3 in Figure 3). 
Adjacent to these areas, thinner areas the size of a mortar line were created (A2 
and A4 in Figure 3). These areas were meshed as either mortar or tile, so for 
example, Al ,  A2 and A3 would be meshed as tile to form one tile unit, then A4 
would be meshed as mortar. This pattern was then staggered across the width 
and through the thickness of the arch. The resulting pattern is stylized in Figure 
4. 
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Figure 3: Staggered pattern in finite element model. 

Figure 4: Results of finite element meshing. 

Each area was meshed with element sizes of approximately 20 mm width. A 
representative 0.305 m arch width was modeled, and various span and rise 
configurations were explored. Three arch spans were studied (13 3  m, 3.66 m 
and 7.32 m) and for each span, four different rises to the crown were studied 
(rise 5% of span, rise 10% of span, 15% and 25%). In all arches, the ends were 
pinned, i.e. fixed against translation but allowed to rotate. This is a conservative 
assumption. 

Tile properties were utilized from the experimental program conducted on the 
historic Guastavino tiles. As statedbefore, it was reasonable to assume isotropic 
material properties for the tile. In this paper, the finite element model used the 
average isotropic modulus of elasticity Eti1616458MPa and a Poisson's ratio of 
0.1. Also studied herein was the effect of varying the mortar modulus of 
elasticity. The results which follow use a very low modulus mortar, 

= = 689 ~ p Each arch was modeled as having constant thickness. ~ . 
J%orror 32 
The thickness of each arch was prescribed by Guastavino's empirical formula [6] 
for thickness at the crown of an arch shown in eqn (1). 
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where 
T = thickness at crown of the arch (inches) 

0 C = compressive strength parameter of tiles (2060 lbf7in2) 
. L = loading on arch (lbf / ft2) 

0 S = span of arch (feet) 

0 r = rise of arch (feet) 


The parameter C (2060 lbflin2 = 14 MPa) is a parameter that Guastavino 
obtained from testing tiles to failure. It is interesting to note that his failure 
stress C falls in between the ranges of our failure strengths previously shown in 
Table 2. A thesis of this paper was that Guastavino's empirical design method 
shown in eqn (l), which took into account the span, the rise and the loading of a 
given arch, would have peak compressive stresses at some safe factor below the 
failure strength C. As seen in Table 3, all peak compressive stresses are at most 
'/4 the failure stress of 14 MPa. A very interesting outcome seen in Table 3 is 
that for all twelve configurations, the peak compressive stress is nearly constant. 
Furthermore the peak vertical deflection of the arch is also consistent from arch 
to arch. This is demonstrated by dividing the peak vertical deflection of an arch 
by the crown thickness of the arch. The surprising result is that the answer is 
practically constant for a wide variety of arch configurations. Thus, 
Guastavino's empirical method was robust and conservative and extremely 
simple to use. 

Table 3. Results of Finite Element Analyses. 

Arch Span Rise Thickness at A Max (a3/E)*1000 Nthick 
Name (m) ("/.) crown (mm) (mm) 

1A 1.83 5 18.5 1.16 
1B 1.83 10 9.2 0.64 
1C 1.83 15 6.2 0.44 
1D 1.83 25 3.7 0.39" 
2A 3.66 5 37.0 2.28 
2B 3.66 10 18.5 1.22 
2C 3.66 15 12.3 0.88 
2D 3.66 25 7.4 0.60 
3A 7.32 5 74.0 4.62 
3B 7.32 10 37.0 2.43 
3C 7.32 15 24.7 1.76 
3D 7.32 25 14.8 1.27 

* This value is A at the crown, which is not A,, for this particular arch. 
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The following figure demonstrates the effect of varying the modulus of 
elasticity of the mortar (E,,,,). Here, Arch 2B is investigated, with 
varying from 689 MPa (the value used in Table 3), to 16548MPa (which equals 
E t d .  

Figure 5: Parametric Study of E,,,,, 

Figure 5 shows that a thirtytwo fold increase in E,,,, has a three fold or less 
effect on peak deflection and principal compressive stress in the arch. This 
corroborates the previously stated argument that the mortar was traditional and 
in fact, does not affect the performance of the arches substantially. 

4. Conclusions 

Guastavino's empirical design method shown in eqn (1) is extremely versatile. 
By prescribing a thickness for a given arch span, rise and load combination, 
Guastavino kept the maximum compressive stress a safe factor below the 
ultimate stress of the tile. Furthermore, the maximum compressive stress 
obtained for a wide variety of such arches was practically a constant value. The 
ratio of maximum deflection 1arch thickness is also a constant for all the arches 
investigated herein. The material property testing conducted here was unique 
and noteworthy, and the values for failure strength correlated very well with 
Guastavino's published strength values. These material properties, as well as the 
finite element method described here could be used by other researchers 
interested in this topic. 
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