
Page 1

Myrrrrr’s Dice Game

Android Application

A Senior Project

presented to

the Faculty of the Computer Engineering

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science

By

Craig Leitterman

June 2011

© 2011 Craig Leitterman

Page 2

Table of Contents

I. Abstract. 3

II. Background. 4

a. Why an Android Smartphone. 4

b. Proposals, Changes, and Some Development Advice.5

III. Design. 6

a. Look and Feel. 6

b. Color Scheme and Experimentation. 8

c. XML, Navigation, and Activities. .10

d. Game Layout and Gameplay. .11

IV. Features. 15

a. Animation and Threading. 15

b. Artificial Intelligence. .16

c. Accelerometer and Shake to Roll. 17

d. Statistics: SQLite Database. 18

V. Testing. 19

VI. Conclusion. .20

Page 3

I. Abstract

Smartphone’s are one the newest and fastest growing hardware platforms in

recent years. The number of users playing and downloading games on the Android

and iPhone application markets are growing rapidly. A majority of users including

myself have been known to play common retro games such as solitaire as well as

newer flash games like Angry Birds. These titles are usually “pick up and play” and

provide quick entertainment while you’re waiting for the bus or in between a work

break. Given the huge popularity of these applications I decided to create a dice game

that I used to play with my high school friends. The overall goal was to take part in

this new platform, utilize my course programming experience, and create a fun quick

game that can be played with a friend on a single phone or by oneself.

The objective of the game is simple; get the best score possible while still

qualifying. To qualify a player must, after all their rolls, have at least a one “2” and

one 4. Their score total is tallied by summing the remaining three dice. If the player

fails to qualify, their score is zero. The first player begins by rolling five dice. After

each roll they must set aside at least one or more dice towards their score. They then

re-roll the remaining dice and once again set aside at least one or more dice until they

have no more dice to roll. After the first player finishes, the second player follows the

same rules above and the winner is the player with the highest score.

Although the game is simple, the application has numerous features. Some of the

features are statistics tracking, accelerometer utilization for rolling, single and

multiplayer support, sleek/simple user interface, and good look/feel.

Page 4

II. Background

A. Why an Android Smartphone?

There are a number of reasons why I chose a Smartphone for a design platform as

well as specifically the Android API. First off, for the game I was designing you’d

normally need to carry around five dice in your pocket which isn’t all that practical

unless you’re a table-top game professional. On the flip side, the application wouldn’t

work well on something that is also large like a desktop or laptop which is much

larger than carrying around the required materials to play. As such the mobile

Smartphone platform is ideal because of its size, intuitive touch/sensor control

systems, and shear number of people that carry them. Smartphone’s are also one of

the hardware platforms I hadn’t been able to design for in my computer courses at Cal

Poly (Note: Recently they have added Android and iPhone technical electives in the

past year or so). Although I wasn’t creating a cutting-edge application, I was making

one that would utilize all my previous coursework, critical thinking skills, and it

would be created for an extremely useful and popular hardware set.

I specifically chose the Android platform because of its simplicity and low cost

structure. There is no fee for development tools unlike the iPhone and there are

numerous tutorials, examples, and forums for utilizing all of its powerful features and

class libraries. Installing the Eclipse integrated development environment (IDE) and

the android plug-in takes less than an hour and creating projects is relatively

straightforward. I will admit it was a bit disorienting at first. Understanding how all

the code works together in the tutorial takes time as well as becoming comfortable

with it. I would have preferably wanted to take a course about developing for it to

Page 5

learn some of the basics. However, once I was comfortable with the platform and

figured out how to upload, test and run the application; development became a joy.

B. Proposals, Changes, and Some Development Advice

Going into any large project a designer needs to be flexible about their project and

concept. I had a number of ideas and features that didn’t make it from my proposal

into the final project. My original development schedule ended up being quite

different from what actually happened because it was my first application of this sort

and the way you develop/implement features varies depending on importance,

whether you can implement them simultaneously, complexity, and user testing. I

ended up having to cut the 3D computer graphics interface because it would have

taken too much time to interface properly as well as would require a physics engine to

look/feel great. I also scrapped the messaging system for single player, i.e. send a

message to your friend of what score you got. Instead I implemented an AI to play

against, something I hadn’t done before in my previous courses or electives. At the

core I needed to interface with at least one of the onboard sensors and the typical

choice for rolling was the accelerometer which I had some experience using in my

capstone course. I also wanted to implement a stat tracking system and utilized my

database technical elective knowledge for that task.

Page 6

III. Design

A. Look and Feel

Before starting the project, my advisor, professor Lupo, pointed out that I should

focus a lot on the look and feel of the application. The application market is quite

fierce and if you release an unfinished and unpolished product, users are going to rate

it poorly. Once this happens, it pushes your application down the ladder and away

from being seen by other users. Since this is the case, it is good practice to create

something that looks good, feels intuitive, and is as complete as possible.

I began by looking at the UI of other popular games that I had installed from the

Android Market and thought about what made their main menu’s so great. Most

applications have a title at the top of the screen with textured buttons, arranged

vertically in column(s) for navigating the menu. The color scheme of the screen was

indicative of what you were about to experience/play, especially the font, textures,

and background. The concept of feel comes into play when the user selects a button.

One game had the button expand and light up while others used opposite shading too

make it look as though the button was depressed. Below, in Figure 3.1 shows the

main menu from Unblock Me free and Figure 3.2 shows the menu from Find It:

Disney.

Page 7

 Figure 3.1 Figure 3.1

These very simple observations played an important role in designing my

application main menu layout which I explain in more detail in the next section.

The look and feel also plays a part in playing the game and not just navigating the

menu system. Does the user need to drag their finger? Do they just tap the screen?

Can they shake the phone to roll? If so how, much force is right to trigger the event?

How do they select and remove dice? There are a number of ways to implement

gameplay, navigation, and features for the phone but you want all the concepts to

work well together and have an overall theme that makes the application unique yet

familiar and easy to use.

Page 8

B. Color Scheme and Experimentation

Before I even started writing code for my application, I began by conjuring up a

menu screen. Being the less than artsy individual that I am, I started my

brainstorming and experimentation of color schemes in Microsoft Power Point 03’.

Now most people wouldn’t ever think of using Power Point for designing anything

but presentations. However, I had created a number of title pages, project figures, and

reports using Power Point all the way back in middle school and even up to college.

I’ll admit it’s a bit unorthodox especially in an era of Photoshop and tons of image

editing software. But I am comfortable with it, and I was able to glean some nice clip

art images for the title, background, and win screen. Everything else was designed

using the AutoShapes and WordArt features. Most people were incredibly surprised

that all the textures were created in PowerPoint and didn’t know until I told them.

Another reason PowerPoint was useful was because it allowed me to create custom

images without worrying about copyright issues for utilizing ones from the Internet. I

could also easily layer an object such as a button, save it, and immediately test it in

my application to see if it looked good.

I had originally aimed for a green, sort of felt, concept for the dice to rest on, but I

couldn’t find a good texture or color green that worked well. I eventually found a

really nice dice image with a sharp/clean blue background. The whole image would

end up being my background screen for the application’s main menu. I felt that it fit

so well, that I designed the color scheme for the title and buttons around the

background.

Page 9

The buttons also have a different image when they are pressed and by inverting

the text color and shading it a different color, I was able to display a distinct button

press that fits well with the theme. Below in figure 3.3 you can see the un-pressed

button on the left and the pressed image on the right. It was important for the change

to be distinct so you can tell when you pressed a button even if it was just a tap. I also

chose to have the button shaded differently from the un-pressed one to give the

impression that the button was three dimensionally pressed down.

Figure 3.3

This all helps the user understand what they’ve pressed, make it enjoyable to

press the buttons, and adds polish to the application as a whole. After putting all the

elements together the final main menu can be seen in Figure 3.4.

Figure 3.4

Page 10

C. XML, Navigation, and Activities

 Once you have a color scheme, concept, and theme you need to write the XML

code to place all your buttons, pictures, and widgets. The XML coding is essentially

your front end development and allows you to place objects either linearly or relative

to one another. These objects can be text, buttons, image buttons, images, input

screens and more. In Figure 3.4 (above) I ended up using and ImageView and four

ImageButtons. As you would guess, ImageView’s are for images and ImageButtons’s

are textured buttons. I can then specify attributes for each object in order to place it.

Below I have given an example of a button used in my main menu.

 <Button
 android:layout_width="180dp"
 android:layout_height="50dp"
 android:layout_centerHorizontal="true"
 android:padding="20dp"
 android:id="@+id/singlePlayer"
 android:background="@drawable/singleplayer_button"

 android:onClick="singlePlayer"/>

As a developer I can specify a number of things including the width, height,

placement, padding between objects, id of the object, a texture, and even a method

associated with the item when it has been pressed. The background attribute in this

case is linked to another xml file that specifies specifically what image is shown when

the button is being held down, focused, or not touched at all. This is the feature that

allowed me to create buttons that effectively animate or change when pressed. The id

attribute is also powerful because it allows the developer to access this UI space

within the java code. Also of note is the onClick attribute which is another way of

setting up a listener for the button that simply runs the method whose name is

specified by the attribute. This only works if the method is “void” and has a single

“view” as an input. In my main menu, the onClick runs a method that starts another

Page 11

activity. Activities allow you to separate you application into modular components.

For my application I have four activities total, one for the main menu, one for

gameplay (both single and multiplayer), one for displaying how to play, and one for

displaying game statistics. Each of these activities only controls the functions

described by their name, each is only reachable from the main menu, and each returns

back to the main menu (except the main menu which returns out of the application).

Figure 3.5 below shows how the activities are linked together.

 Figure 3.5

D. Game Layout and Gameplay

 Selecting either single player or two players starts the same activity in the

application. This activity is aware of which button was pressed from the main menu

and runs a few different methods accordingly. Since there was a lot of the same

variables and methods used between single player and multiplayer, I chose not to split

them into separate activities. The one trick with this was creating heavily variable UI

on the fly. This was easier than I thought because all I had to do was hide the objects

that weren’t going to be used and update images and game values accordingly.

Upon starting up the game activity the user sees five slots that hold the dice

towards their score, two text views of scores, and a roll button at the bottom. The user

Page 12

can also roll by shaking the phone; please see section IV part C “Accelerometer and

Shake to Roll” for more detail. Figure 3.6 shows the initial screen and Figure 3.7

shows the screen after the user has chosen to roll and the animation is finished. To

learn more about the animation and threading please see section IV part A “Threading

and Animation.”

 Figure 3.6 Figure 3.7

After completing a roll, the user selects the dice he wants to keep by simply

taping a die. I chose to make the dice “Image Buttons” to allow quick and easy

de/selection of dice. After the user selects a die the application moves it to the next

open slot at the top. The image button is then removed from the remaining rolled

dice. This is done in order to prevent the user from selecting it again. The player can

also remove a die from a filled socket by simply tapping it. This will then return the

die back to the bottom. The player can only perform this action for dice that they have

Page 13

rolled on this turn. This is because once the player rolls again, the dice in the final

slots at the top become locked and can no longer be removed. Once the user has

selected at least one or more dice on this roll, they can continue their turn by rolling

again via the roll button or shaking the phone. The roll button is only visible if you

can roll. Figure 3.8 shows what happens when the user selects a die. The text in this

figure also indicates the players score is DNQ (“did not qualify”). This text updates

telling the user their current score based on the dice they are holding. Once the player

has at least one “2” and one “4” it then begins to tally their score from the remaining

currently held dice. Figure 3.9 demonstrates this transition.

 Figure 3.8 Figure 3.9

The player then continues to roll, taking at least one dice before rolling again.

Once they have selected their last dice the user is then shown a finish button to

complete their turn. At this point, the program will prepare for a new round and start

Page 14

the AI (if single player mode) or allow player two to start clean like in Figure 3.6. For

more information about the AI, see section IV part B “Artificial Intelligence.” After

completing the game and comparing both scores, Figure 3.10 shows an example of

one “win” screen with a button to end the game. Touching this button returns the user

to the main menu.

 Figure 3.9 Figure 3.10

After completing a game, statistics are recorded for both player 1 and player 2’s

score. It also tallies the AI’s score (if single player) as well as who won. More detail

on the statistics is explained in section IV part D “Statistics: SQLite Database.”

During development there was a lot of testing of edge cases to prevent the user from

accidently break the application. See the testing section of this report for more

information.

Page 15

III. Features

A. Animation and Threading

I knew from the beginning of the project I wanted some sort of roll animation.

After deciding not to go the three dimensional graphics route, I came up with two

alternatives. The first was to have the dice randomly move around the screen through

a number of set places and change value to give the impression they were being

tossed around. The other option was to opt for a more slot machine like animation.

Where the dice stand still and change value every fraction of a second. Both

animations provided a sense of drama between rolls as the user would hope the roll

animation would stop on the dice they want. In the end the slot machine option was

chosen due to time constraints.

To get the animation to work was quite interesting. At first I created a regular

method to perform this animation. However, this didn’t work because the UI is

running in a separate thread from the activity calling the method. What ends up

happening is that the program only updates the UI only after the method is complete.

To work around this I created an Asynchronous task that performs the roll animation

and publishes its progress every 1/5
th
 of a second. This thread is started when the user

rolls either via the accelerometer or button. As it updates the UI, the regular roll

method is creating the actual/final values that are used by the player after the

animation. Checks are also set in place to prevent the user from selecting or removing

dice during this animation.

Page 16

B. Artificial Intelligence

When the project was first proposed this was not one of the features. Originally I

was going to have the application setup a messaging system to allow you to text your

friend your score. However I found this a bit lame and of course your friend could

totally make up a score and such. As I thought more about it, the AI seemed like a fun

idea. I hadn’t done any AI programming yet (i.e. hadn’t taken the Cal Poly course), so

I thought I might learn here. It was a good first start because the game isn’t overly

complex. In the brainstorming phase I realized you can play the game conservatively

or aggressively. I started implementation on the conservative option and it turned out

to win quite a lot of times which is why I ended up with a single AI option.

When it was the AI’s turn, I wanted it to show the player exactly what moves the

computer was making. This of course is a type of animation and as such the AI is

actually run as a separate thread even though it appears to take its turn sequentially

after the user. Each turn the AI prioritizes getting a single “2” and a single “4” first. If

it has those, it takes all the 5’s and 6’s. Otherwise it grabs the highest single value. A

lot of the play testers, including myself really enjoyed the single player experience,

the feedback and speed (9/10
ths
 second) at which it animates. Moving forward I want

to make the UI more robust and possibly add in the option for a more aggressive AI

that takes extra 6’s even when it hasn’t finished qualifying yet.

Page 17

C. Accelerometer and Shake to Roll

From the beginning I wanted to implement a shake to roll feature for the project.

Although it’s a very obvious feature to have for any sort of dice game, I felt that my

experience with accelerometers from my capstone project would prove useful in

integrating this feature. I was pleasantly surprised that the accelerometer was a lot

easier to interface with when compared to my previous projects. The Android

libraries have easy to use classes that manage its sensors including the accelerometer.

There is in fact a method that checks when the accelerometer data is changed. I ended

up doing a check to see if the net force in any direction exceeded three g’s of

acceleration. If this was the case it would initiate the roll sequence animation as well

as the roll method. I had to put in flags to prevent the user from spamming the roll as

well as rolling when they weren’t supposed to be able to. I felt breaking the net force

was the easiest way to interface with my current roll animation and methods. I settled

on 3g’s after testing because I didn’t want the user to accidentally roll and I didn’t

want it to be to difficult to shake. I also decided not to enforce continual shaking in

order to allow the user to see the animation and to prevent over zealous shaking that

could cause the phone to fly out of their hand.

Page 18

D. Statistics: SQLite Database

One of the core features outlined in the proposal was the implementation of

statistics for the game. I wanted to do this for a couple of reasons. I was curious as to

what the most common roll, average score, and whether or not the person who rolls

first or second has an advantage over the other. When I was first implementing the

statistics I fiddled around with two different solutions, one way using files and the

other using a database. For a while I was struggling with both but decided on the

database because it’s a much better solution. I had taken the introduction to database

course but I didn’t understand the abstraction used to interface with the Android

database. A few tutorials and examples later, I implemented a simple solution to store

information in the rows of a three column table. I also initially ran into problems

accessing the table because the database persists even if a new version of the program

is uploaded. This is obviously done to keep data across multiple versions but gave me

a few problems when trying to install on a new machine where the table hadn’t been

created or populated. I ended up adding a check at the beginning of the program to

see if the table exists and if it doesn’t, it creates it and populates the table with zeros.

Page 19

V. Testing

Testing code and programs on the Android is incredible powerful and relatively

easy. I was able to run both on the virtual machine as well as the phone itself. If any

segmentation faults arise there is a debugger that provides a back trace built into

Eclipse. I was able to test my program very often and in a “hands on” manner. This

allowed me to focus a lot on placement, look and feel, and gameplay. The platform

encourages a modular design full of separate activities and methods. I was glad my

courses at Cal Poly stressed testing and designing this way; it really saved me a lot of

time debugging my application. Working on this platform with its robust tools

ensured that I was never stuck because of a bug for too long.

Armed with the Androids many tools I was able to self test the application and

beta test with my friends very often. There were a lot of edge cases to catch and I

thought about them in advance. On numerous occasions I tried to break the

application whenever I could. I even encouraged my beta testers to try and mash all

the on screen buttons and shake it to see if they could find any problems. The other

great part of being able to test my application often with my classmates was because

it allowed me to get immediate feedback about features. I could ask them about

certain design choices and get their opinion. All the feedback was great during

development because it made changes and implementing new features easier and

ensured there wasn’t too much backtracking or erasing. I also wanted to make sure

the product was very polished because once it’s released on the Android Market, its

ratings will determine if it gets seen or downloaded.

Page 20

VI. Conclusion

This project was very enjoyable and a great experience for a number of reasons.

First, I set out and met my goals of becoming reoriented with Java as well as designing

for a platform I hadn’t yet tried. Second I was able to utilize a lot of the experience and

knowledge that I had learned from my previous courses at Cal Poly. Third, the project

has encouraged me to make newer better programs for this platform in the future and it

gives me confidence in creating personal applications that can be used for controlling

things at home.

It was also a great project of discovery and exploration. I had always wanted to

know what it was like to create an Android application because Smartphone’s are so

dynamic and useful. I had no experience of how to design or make this type of

application. As a solo project it is a great choice because there is a lot of easily

accessible information about how to utilize and understand the Android. There is a

strong community that helps new developers create fantastic projects.

As for future work on the project there is always room for improvement. I can

always improve the AI, add more statistics, improve the roll animation, and add sounds

and graphics. Like all projects and industry there is always plenty of room for

improvement; with time usually being the limited factor. In closing, I encourage others

to try making an application of their own and revel in the power of computers and

computer programming.

