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Abstract Sulfur is the oldest and most widely used fungicide in the vineyards of Cali

fornia, where it is used for control of powdery mildew (Uncinula necator [Schw.] Burr). 

For decades, sulfur use has been associated with outbreaks of Tetranychus pacificus 
McGregor (Acari: Tetranychidae) on cultivated grapes in the San Joaquin Valley. I 

undertook large-scale field studies to test this association, to evaluate the impact of sulfur 

on Galendromus occidentalis (Nesbit) (Acari: Phytoseiidae), a major predator of T. pac
ificus, and to determine if timing of sulfur applications with respect to grape bloom has an 

impact on T. pacificus density. The studies took place in a 32 ha vineyard in Fresno 

County, and all fungicide applications were made with commercial-scale equipment. In 

1998 a ‘high sulfur’ treatment, a combination of wettable sulfur and sulfur dust, was 

compared to ‘low sulfur,’ in which demethylation inhibitor (DMI) fungicides partially 

substituted for sulfur. In 1999 treatments were ‘sulfur,’ ‘DMI,’ ‘sulfur pre-bloom’ (here 

sulfur was applied prior to grape bloom, in late May, and then DMIs were applied until 

mid-season) and ‘sulfur post-bloom’ (the reverse of ‘sulfur pre-bloom’). In each year, the 

T. pacificus population increase came after the end of fungicide applications, and results 

clearly show a relationship between sulfur use and T. pacificus density. In 1998, mean T. 
pacificus density was 2.7 times higher and mean G. occidentalis density 2.5 times higher in 

‘high sulfur’ compared to ‘low sulfur.’ In 1999, the highest T. pacificus counts were in the 

‘sulfur’ and ‘sulfur pre-bloom’ treatments, 4.8 times higher than ‘sulfur post-bloom’ and 

2 times higher than ‘DMIs.’ Density of G. occidentalis was 2.3 times as high in ‘sulfur’ or 

‘sulfur pre-bloom’ than ‘DMIs.’ The predator/prey ratio was not significantly different 

among treatments in 1998, but in 1999 it was highest in the ‘sulfur pre-bloom’ treatment. 

In 1999, density of Homeopronematus anconai (Baker) (Acari: Tydeidae) was 2.7 times 



higher in ‘sulfur pre-bloom’ compared to ‘sulfur,’ and higher by 2.7 times in ‘DMI’ 

compared to ‘sulfur post-bloom,’ suggesting a negative effect of sulfur on this tydeid. 

These results do not support the hypotheses that the cause of the increase in T. pacificus 
density is due to negative effects of sulfur on phytoseiids or tydeids. Rather, it appears that 

a plant-based explanation is likely, first, because of the differences in pre-bloom versus 

post-bloom sulfuring, and second, because of the long lag time between the end of the 

sulfur applications and the corresponding increase in spider mite density. 
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Introduction 

Spider mites (Tetranychidae) are one of the most significant arthropod pest groups of 

grapes in California. In any given year, some 20–25% of commercial acreage is treated 

with miticides for either Pacific spider mite (Tetranychus pacificus McGregor) or Wil

lamette spider mite (Eotetranychus willametti [McGregor]). In 2005 an estimated 

89,285 ha-applications were made with miticides (California Department of Pesticide 

Regulation 2006). 

It is well known that spider mite population density can be influenced by various 

environmental conditions, including plant water status (English-Loeb 1989), plant nitrogen 

status (Wood and Reilly 2000), dust, or poor soil conditions such as compaction, extremes 

of pH and shallow soil (Flaherty et al. 1992). Another factor that has been associated with 

outbreaks of T. pacificus is sulfur (Smith 1950; English-Loeb et al. 1986; Hanna et al. 

1997; James et al. 2002). Sulfur is used for control of grape powdery mildew or oidium 

(Uncinula necator [Schw.] Burr), the most important fungal disease of grapes in Cali

fornia, and one of the most significant grape diseases worldwide. Sulfur has been used on 

grapes in the state for about as long as grapes have been commercially cultivated (ca. 

1840), and is still the fungicide of choice for U. necator because of its ease of application 

and low cost, and because the fungus has never developed resistance. It is the most 

widespread and commonly used fungicide on grapes in California, with over 20 million kg 

used in 2005 (California Department of Pesticide Regulation 2006). Sulfur dust is the most 

common formulation, and it is used primarily from late spring till mid-summer. Sulfur in 

wettable powder form (wettable sulfur) is also used, but typically in early spring when the 

canopy is light. California Department of Pesticide Regulation statistics do not distinguish 

between the two formulations, so the amount of each used cannot be estimated. In the 

warm climate of the San Joaquin Valley, sulfur applications cease in mid-season (late June 

or early July), partly because increased sugar accumulation increases berry resistance to 

new fungal infections, and partly because fungal development is arrested with temperatures 

over 358C, which are typical during July and August. 

Sulfur use on grapevines has been associated with T. pacificus outbreaks in the central 

San Joaquin Valley for many decades. It was first reported as an observed pattern in which 

the beginning of major increases in T. pacificus density corresponded to the end of the 

season for U. necator (Smith 1950), and, correspondingly, the cessation of sulfur appli

cation. More recently, the pattern has been noted in Washington State (James et al. 2002), 

and two California studies showed that substituting synthetic fungicides (e.g., sterol 



demethylation inhibitors [DMIs]) for sulfur can dramatically lower T. pacificus density 

(English-Loeb et al. 1986; Hanna et al. 1997). In addition, one of these (Hanna et al. 1997) 

found that sulfur decreased density of the western predatory mite (Galendromus 
[=Metaseiulus] occidentalis [Nesbit]) and suggested that this was the cause for increased 

density of T. pacificus. However, earlier laboratory studies had found a fair amount of 

resistance to sulfur in G. occidentalis collected from commercial vineyards versus com

mercial orchards or native plants (Hoy and Standow 1982). Still, the hypothesis that sulfur 

is detrimental to phytoseiids has been generally accepted by practitioners. 

Other studies have found that sulfur decreases populations of Tydeidae (English-Loeb 

et al. 1999). One hypothesis is that, because phytoseiids may feed on tydeids as an 

alternative prey, its low density may correspond to a dearth of predatory mites. The most 

common tydeid in central California vineyards is Homeopronematus anconai (Baker), an 

omnivore which feeds on pollen, fungal spores, eriophyiids and spider mite eggs. 

Another possible explanation for the relation between sulfur and T. pacificus density is 

that sulfur suppresses a fungal pathogen of the mite; however, this seems unlikely given the 

high humidity requirements of arthropod-invading fungi and the dry summer condition in 

the San Joaquin Valley. 

I undertook field studies to follow up on previous work involving sulfur, T. pacificus 
and G. occidentalis, on a commercial-size scale. In year one the questions to be answered 

were straightforward: does substitution of synthetic fungicides for sulfur decrease T. 
pacificus density, and does reliance on sulfur as a fungicide decrease density of G. occi
dentalis? In year two of the studies I added one more question: is there a difference in T. 
pacificus density when sulfur is applied exclusively before the bloom period (i.e., from 

budbreak to early bloom, typically early-April to mid/late-May) versus post-bloom 

(i.e., from berry set to veraison [increase in berry sugar], typically late-May/early June to 

early July)? 

Materials and methods 

The field study site was a 32-ha block of grapes cultivated for raisin production, cv. 

‘Thompson Seedless’ (aka ‘Sultana’), approximately 12 km south of Kerman, in Fresno 

County. In-row vine spacing was 2.1 m, with 3.6 m between rows. Soil type at the site was 

a Hanford fine sandy loam. 

In 1998 I compared spider mite and phytoseiid mite density on vines treated almost 

exclusively with either wettable sulfur or sulfur dust (‘high sulfur’ treatment) to vines 

treated with a combination of sulfur in wettable powder form and DMIs (‘low sulfur’ 

treatment). The experiment was designed as a randomized complete block, with four 

replications. Plot size was 2.6 ha (402 · 64.8 m2, or 190 vines · 18 rows). 

Applications of sulfur dust were done with a commercial vineyard duster, and appli

cations of copper hydroxide, wettable sulfur or DMIs were done with an air-blast sprayer 

using cone-shaped nozzles. Both machines were pulled by a commercial tractor. 

In each of the study years, the entire field site received an application of copper 

hydroxide (Champ21) at 2.3 l/ha and wettable sulfur (Microthiol1 80DF) at 3.4 kg/ha in 

4.7 hl of water shortly after budbreak (first week of April) to aid in control of U. necator. 
Also, the bloomtime application for the entire study site included 6.7 kg/ha of sodium 

fluoroaluminate (Kryocide1) for control of Platynota stultana Walsingham (Lepidoptera: 

Tortricidae) and 2.3 l/ha of 6% zinc solution. 



In 1998, in the ‘high sulfur’ treatment, sulfur dust was applied at a rate of 11.2 kg/ha in 

4.7 hl of water on 17 and 24 April; 9 and 18 May; and 18 and 24 June. For the bloomtime 

spray on 8 June a combination of wettable sulfur at 3.4 kg/ha and myclobutanil (Rally1 

40WSP) at 0.37 l/ha in 9.3 hl of water was applied. 

In the ‘low sulfur’ treatment, wettable sulfur (Microthiol1 80DF) was applied at 3.4 kg/ 

ha in 4.7 hl of water on 17 April; 8 and 18 June; and 3 July. The same formulation was 

applied at 4.5 kg/ha in 4.7 hl of water on 30 April, and at 5.6 kg/ha in 7.0 hl of water on 9 

and 18 May. For the bloomtime spray of 8 June, myclobutanil (Rally1 40W) was applied 

at 0.37 l/ha in 9.3 hl of water, and on 18 June and 3 July fenarimol (Rubigan1 EC) was 

applied at 0.44 l/ha in 9.3 hl of water. 

In 1999 I repeated the study, but with the addition of timing relative to the grape bloom 

period as a variable, for a total of four treatments. Treatments were: ‘sulfur,’ ‘DMIs,’ 

‘sulfur pre-bloom’ and ‘sulfur post-bloom.’ The experiment was designed as a randomized 

complete block, with four replications. Plot size was 2.6 ha (402 · 64.8 m2, or 190 

vines · 18 rows). 

In the ‘sulfur’ treatment, sulfur dust was applied at a rate of 11.2 kg/ha on 15, 22 and 29 

April; 8 and 15 May; and 2, 10, 21 and 30 June. In addition, wettable sulfur (Microthiol1 

80DF) was applied at 3.4 kg/ha in 9.3 hl of water for the bloomtime spray on 24 May. 

In the ‘DMI’ treatment, triflumizole (Procure1 50WS) was applied at 0.35 kg/ha in 

4.7 hl of water on 13 and 28 April; and in 7.0 hl of water on 12 May. Fenarimol (Rubi

gan 1EC) was applied at 0.44 l/ha in 9.3 hl of water for the bloomtime spray on 24 May; 

and on 8 and 22 June. 

In the ‘sulfur pre-bloom’ treatment, sulfur was applied at the same rates and on the same 

dates as in ‘sulfur’ until after the bloom spray, and then DMIs were applied at the same 

rates and on the same dates as in the ‘DMI’ treatment. 

In the ‘sulfur post-bloom treatment,’ DMIs were applied at the same rates and on the 

same dates as in the ‘DMI’ treatment until after the bloom spray, then sulfur was applied at 

the same rates and on the same dates as in the ‘sulfur’ treatment. 

A summary of sulfur applications for each of the study years is in Table 1. 

Sampling began in May of each year. Using a binomial method, we conducted weekly 

visual inspections, recording the percentage of leaves with mite colonies. When this value 

reached about 5%, we collected leaf samples (30 leaves per plot in 1998 and 20 leaves per 

plot in 1999) and took them to the laboratory for processing. There we processed them 

through a mite brushing machine (Leedom Industries, Mi-Wok Village, CA) onto a glass 

plate coated with a thin solution of glycerol, corn syrup and detergent. We processed ten 

leaves at a time, and 10% of the plate was counted in a cross-grid, for a final estimate of 

mites/leaf. We recorded numbers of T. pacificus and G. occidentalis (adults and juveniles 

combined), and, in 1999, numbers of the tydeid H. anconai. 
Cumulative mite-days (CMD) were calculated for T. pacificus, using the formula: 

Rðmean mites/leaf week X + mean mites/leaf week X + 1)/2*7: 

Predator–prey ratio was calculated as: 

Mites=leaf G: occidentalis 


Mites/leaf T : pacificus 


and was averaged for each treatment on each sampling date. 



1998 

Table 1 Summary of sulfur 
applications, 1998 and 1999 

Sulfur applications 

1998 Treatment 

‘High sulfur’ Six sulfur dust 

Two wettable sulfur 

Total = 73 kg/ha 

‘Low sulfur’ Eight wettable sulfur 

Total = 26 kg/ha 

1999 Treatment 

‘Sulfur’ Ninesulfur dust 

Two wettable sulfur 

Total = 108 kg/ha 

‘Sulfur pre-bloom’ Five sulfur dust 

Four wettable sulfur 

Total = 62.8 kg/ha 

‘Sulfur post-bloom’ Four sulfur dust 

Five wettable sulfur 

Total = 48.2 kg/ha 

‘DMI’ One wettable sulfur 

Total = 3.4 kg/ha 

Spider mite, phytoseiid and tydeid density, and predator/prey ratios, were analyzed by 

repeated measures analysis of variance. In 1999, treatment means were separated by 

orthogonal contrasts, contrasting ‘sulfur’ + ‘sulfur pre-bloom’ versus ‘DMI’ + ‘sulfur post-

bloom,’ ‘sulfur’ versus ‘sulfur pre-bloom’ and ‘DMI’ versus ‘sulfur post-bloom’ (PROC 

GLM, SAS Institute 2001). Cumulative mite days were analyzed by analysis of variance 

(PROC GLM, SAS Institute 2001), using Tukey’s HSD for mean separation (SAS Institute 

2001). 

Results 

In 1998, mite-brush sampling began on 25 June, but T. pacificus numbers remained rel

atively low until 16 July, when density began to increase dramatically, i.e., by eightfold in 

the ‘high sulfur’ treatment between 9 July and 16 July (Fig. 1). From this point on until the 

end of the sampling period, density was consistently higher in the ‘high sulfur’ treatment 

compared to ‘low sulfur.’ Density peaked at 65.8 ± 10.8 mites/leaf on 19 August in the 

‘high sulfur’ treatment, and at 25.1 ± 4.6 mites/leaf on 6 August in the ‘low sulfur’ 

treatment (Fig. 1). Over all sampling dates, mean T. pacificus density was 2.7 times higher 

in the ‘high sulfur’ treatment than in the ‘low sulfur’ treatment (Table 2). Similarly, mean 

cumulative mite days were 2.5 times higher under ‘high sulfur’ compared to ‘low sulfur’ 

(Table 3). 

Density of G. occidentalis was higher in 1998 on most dates under ‘high sulfur’ versus 

‘low sulfur,’ peaking at 4.16 ± 2.16/leaf on 6 August in the ‘high sulfur’ treatment, and at 



Fig. 1 Density of T. pacificus and G. occidentalis (mean mites per leaf ± standard error) under ‘high-’ and 
‘low sulfur’ treatments, 1998 season. Overall, in ‘high sulfur,’ density of T. pacificus was more than two and 
a half times greater (P < 0.0001) and G. occidentalis density two times greater (P = 0.0008), than ‘low 
sulfur’ 

Table 2 Mean seasonal T. pacificus and G. occidentalis densities (mites/leaf) and repeated measures 
analysis of variance in ‘high sulfur’ and ‘low sulfur’ treatments, 1998 

Mean T. pacificus ± standard error Mean G. occidentalis ± standard error 

High sulfur 24.3 ± 3.5 1.31 ± 0.22 

Low sulfur 9.1 ± 1.5 0.63 ± 0.10 

Repeated measures ANOVA F = 10.14, df = 1,194, P = 0.0049 F = 10.57, df = 1,19, P = 0.0042 

2.25 ± 0.74/leaf on 28 August in ‘low sulfur’ (Fig. 1). Over all sampling dates, mean G. 
occidentalis density was twofold higher in the ‘high sulfur’ treatment than the ‘low sulfur’ 

treatment (F = 11.6, df = 1,280, P = 0.0008). However, the predator/prey ratio was not 

much different over the course of the season (Fig. 2), averaging (±standard error) 

0.255 ± 0.032 in the ‘high sulfur’ treatment and 0.246 ± 0.044 in the ‘low sulfur’ treatment, 

and was not significantly different overall (repeated measures ANOVA F = 1.26, df = 1,19, 

P = 0.2762). 



Table 3 Cumulative mite-days 
for T. pacificus and analysis of 
variance in high sulfur versus 
low sulfur treatments, 1998 and 
1999 seasons 

Means followed by different 
letters are significantly different 
at P < 0.05 

1998 Mean mite-days ± standard error 

High sulfur 2587 ± 305 

Low sulfur 1041 ± 68 

ANOVA F = 83.6, df = 1,112, P < 0.0001 

1999 Mite-days 

Sulfur 3578 ± 601a 

Sulfur pre-bloom 2680 ± 390a 

Sulfur post-bloom 1006 ± 285b 

DMI 321 ± 64c 

ANOVA F = 93.05, df = 3,16, P < 0.0001 

Fig. 2 Ratio of G. occidentalis density to T. pacificus density (predator–prey ratio) over the course of the 
1998 and 1999 seasons. There was no significant overall difference in the predator–prey ratio in 1998, but in 
1999 ‘sulfur pre-bloom’ was significantly higher than ‘sulfur’ (P = 0.0118) 

In 1999 sampling for mite brushing began on 16 July, followed by a steep rate of increase 

in T. pacificus density (by six-fold from 16 July to 27 July in the ‘sulfur’ treatment). From 

27 July to the end of the study, there was a clear separation in density between ‘sulfur’ and 

‘sulfur pre-bloom’ on one hand, and ‘DMI’ and ‘sulfur post-bloom’ on the other, with the 

former consistently higher (Fig. 3). Tetranychus pacificus density in the ‘sulfur’ treatment 

peaked at 72.5 ± 15.6/leaf on 24 July, and at 63.4 ± 8.4 on 16 July in the ‘sulfur pre-bloom’ 

1999 



Fig. 3 Density of T. pacificus and G. occidentalis (mean mites per leaf ± standard error) under ‘sulfur,’ 
‘sulfur pre-bloom,’ ‘sulfur post-bloom,’ and ‘DMI’ treatments, 1999 season. Overall, there was a more than 
fourfold difference between T. pacificus density in the ‘sulfur’ or ‘sulfur pre-bloom’ treatments compared to 
the ‘DMI’ and ‘sulfur post-bloom’ treatments (P < 0.0001). Density of G. occidentalis was more than twice 
as high ‘sulfur,’ and ‘sulfur pre-bloom’ versus ‘DMI’ and ‘sulfur post-bloom’ treatments ‘DMI’ 
(P < 0.0001) 

Table 4 Mean seasonal T. pacificus and G. occidentalis densities (mites/leaf) in ‘sulfur,’ ‘sulfur pre-
bloom,’ ‘sulfur post-bloom,’ and ‘DMI’ treatments, plus repeated measures analysis of variance and 
orthogonal contrasts, 1999 

Mean T. pacificus (mites/ Mean G. occidentalis (mites/ 
leaf) ± standard error leaf) ± standard error 

Sulfur 39.5 ± 4.9 1.98 ± 0.32 

Sulfur pre-bloom 28.2 ± 4.0 1.89 ± 0.26 

Sulfur post-bloom 10.8 ± 2.1 1.06 ± 0.21 

DMI 3.4 ± 0.8 0.64 ± 0.13 

Repeated measures ANOVA F = 35.84, df = 3,67, 
P < 0.0001 

F = 3.21, df = 3,67, 
P = 0.0286 

Contrast: ‘sulfur’ and ‘sulfur pre-bloom’ 
versus ‘DMI’ and ‘sulfur post-bloom’ 

F = 96.05, df = 1,67, 
P < 0.0001 

F = 4.15, df = 1,67, 
P = 0.0456 

Contrast: ‘sulfur’ versus ‘sulfur pre-bloom’ F = 27.91, df = 1,67, 
P < 0.0001 

F = 0.17, df = 1,67, 
P = 0.6810 

Contrast: ‘sulfur post- bloom’ versus ‘DMI’ F = 0.67, df = 1,67, 
P = 0.417 

F = 5.20, df = 1,67, 
P = 0.0258 



treatment. On the other end, peak T. pacificus density was 26.1 ± 11.7 on 9 July in the 

‘sulfur post-bloom’ treatment and just 8.8 ± 3.1 in the ‘DMI’ treatment. There was a 

significant difference in season-wide spider mite density among treatments, with mean 

density highest in the ‘sulfur’ and ‘sulfur pre-bloom’ treatments, together 4.8 times higher 

than combined ‘DMI’ and ‘sulfur-post bloom’ (Table 4). Density under ‘sulfur’ was 

slightly but significantly higher (by 39.8%) than ‘sulfur pre-bloom’ but ‘sulfur post-bloom’ 

did not differ significantly from ‘DMI’ (Table 4). 

Mean cumulative mite days showed similar results to mean overall spider mite density: 

the overall ANOVA was significant (F = 93.05, df = 3,16, P < 0.0001), with ‘sulfur’ and 

‘sulfur pre-bloom’ totals twice as high as ‘sulfur post-bloom’ and 8.7 times as high than 

‘DMI’ (P < 0.05, Tukey’s HSD) (Table 3). There was no significant difference between 

‘sulfur’ and ‘sulfur pre-bloom,’ but ‘sulfur post-bloom’ was 2.1 times as high as ‘DMI’ 

(P < 0.05, Tukey’s HSD) (Table 3). 

Galendromus occidentalis density in 1999 also showed a clear separation between 

‘sulfur’ and ‘sulfur pre-bloom’ on one hand, and ‘DMI’ and ‘sulfur post-bloom’ on the 

other, a pattern which was similar to that of T. pacificus (Fig. 3). Galendromus occidentalis 
density peaked at 4.1/leaf on 3 Sept. in the ‘sulfur’ treatment, and at 4.0/leaf on 27 Aug. in 

the ‘sulfur pre-bloom’ treatment, and 2.6/leaf on 13 Aug. in ‘sulfur post-bloom’ and 1.8/ 

leaf on 13 Aug. in ‘DMI’ (Fig. 3). Over the season, G. occidentalis density in the ‘sulfur’ 

plus ‘sulfur pre-bloom’ treatments was 2.3 times higher than ‘DMI’ and ‘sulfur post-

bloom’ (Table 4). Density was 65% higher in ‘sulfur post-bloom’ than ‘DMI’ but did not 

differ significantly between ‘sulfur’ and ‘sulfur pre-bloom’ (Table 4). And, in 1999 the 

predator–prey ratio was similar among treatments for most of the season, increasing 

somewhat in the ‘sulfur pre-bloom’ treatment at the end of the season (Fig. 2). Overall, the 

ratio differed significantly (repeated measures ANOVA F = 3.10, df = 3,25, P = 0.0447), 

but the contrast of the mean ratio (±standard error) in ‘sulfur’ (0.295 ± 0.04) and ‘sulfur 

pre-bloom’ (0.429 ± 0.07) versus ‘DMI’ (0.323 ± 0.07) and ‘sulfur-post bloom’ 

Fig. 4 Density of H. anconai (mean mites per leaf ± standard error) over the course of the 1999 season. 
Density in the ‘sulfur pre-bloom’ treatment was 2.2 times higher than ‘sulfur’ and ‘DMI’ was 2.7 times 
higher than ‘sulfur post-bloom’ (P = 0.0016) 



(0.303 ± 0.054) was not significant (F = 1.91, df = 3,25, P = 0.178), nor was the contrast of 

‘DMI’ versus ‘sulfur post-bloom’ (F = 0.01, df = 3,25, P = 0.933). However, the overall 

‘sulfur pre-bloom’ ratio was 1.5 times higher than ‘sulfur’ (contrast F = 7.39, df = 3,25, 

P = 0.0118). 

Density of H. anconai in 1999 was significantly different overall among the treatments 

(repeated measures ANOVA F = 8.43, df = 3,25, P = 0.0005) (Fig. 4). Here the split was 

not between ‘sulfur’ and ‘sulfur pre-bloom’ on one end and ‘DMI’ ‘sulfur post-bloom’ on 

the other, as this contrast was not significantly different (F = 0.78, df = 1,25, P = 0.3863). 

Rather, ‘sulfur pre-bloom’ was 2.2 times higher than ‘sulfur’ (F = 11.93, df = 1,25, 

P = 0.002) and ‘DMI’ was 2.7 times higher than ‘sulfur post-bloom’ (F = 12.60, df = 1,25, 

P = 0.0016). 

Discussion 

These studies clearly show a relationship between increased T. pacificus density and sulfur 

use, confirming previous observations (Smith 1950) and experiments (English Loeb et al. 

1986; Hanna et al. 1997; James et al. 2002). This, however, contrasts with the fact that 

sulfur has been used as a mite control tool for hundreds of years. More recently, Prishmann 

et al. (2005), found that sulfur suppressed density of Tetranychus mcdanieli McGregor in 

an Oregon ‘Reisling’ vineyard, and recent laboratory assays have confirmed the miticidal 

properties of sulfur, with mortality dependent on environmental conditions such as 

temperature and humidity (Auger et al. 2003). However, as earlier studies showed, and the 

present studies confirm, the answer to this paradox is that the increase in spider mite 

density does not begin until after sulfur applications cease (Figs. 1, 3). Therefore, sulfur 

may very well directly suppress T. pacificus density, but there also appears to be an indirect 
effect that begins after sulfur applications cease and persists long afterward, enabling 

spider mite population buildup. Curiously, in the present studies, as well as in English Loeb 

et al. (1986) and Hanna et al. (1997), mite density in the low-sulfur or DMI fungicide 

treatments also did not increase until the end of fungicide applications. Although it is 

possible that DMI fungicides have a negative effect on T. pacificus, this is not likely, given 

that another study found no toxic effects of these materials on a related species, Tetr
anychus urticae (Alston and Thompson 2004). 

These studies provide no evidence for a long term negative effect of sulfur on G. 
occidentalis, although, as with T. pacificus, there may have been a direct but temporary 

suppression of the phytoseiid population, given its very low density until about 4 weeks 

after the cessation of fungicide applications. On the other hand, this low predator density 

may have been largely due to a lack of prey items. In any case, these results provide no 

support for the hypothesis that the increase in spider mite density in the high sulfur 

treatments is explained by lack of predatory mites. In the current study, phytoseiid density 

was highest where spider mite density was highest: in the high sulfur or sulfur pre-bloom 

treatments (Figs. 1, 3). This, of course, makes perfect sense in terms of predator–prey 

dynamics. And, when density of G. occidentalis was adjusted for density of T. pacificus 
(i.e., the predator/prey ratio) there was little difference among treatments, the only sig

nificant effect being a higher ratio in the ‘sulfur pre-bloom’ treatment in 1999, largely due 

to a high increase in the index over the last two sampling dates (Fig. 2). These findings are 

in contrast to those of Hanna et al (1997), who, while also working in a San Joaquin Valley 

vineyard, found overall post-treatment density of G. occidentalis twofold lower under a 



sulfur-only fungicide regime compared to DMIs. However, the current results are almost 

exactly as those of English-Loeb et al. (1986) who found peak post-treatment G. occi
dentalis density about sixfold higher on sulfur-treated versus triadimefon (a triazole fun

gicide) treated vines. 

It is quite logical that commercial vineyard populations of G. occidentalis in California 

have evolved some resistance to sulfur, for several reasons: first, because sulfur is used 

extensively in the state (virtually every commercial vineyard receives several to many 

sulfur applications per year). Second, two factors increase the selection pressure for 

resistance: the mites are exposed to treated plant material at all life stages, and, because 

they have no wings, they cannot easily emigrate from treated vineyards. Each of these 

factors more quickly eliminates susceptible members of the population, leaving a higher 

proportion with resistant genes. Hoy and Standow (1982), found a high degree of resistance 

to sulfur in G. occidentalis from San Joaquin Valley commercial vineyards compared to 

natural areas. Indeed, there are recent findings of sulfur being detrimental to phytoseiids 

(Prishmann et al. 2005; Teodoro et al. 2005), but these seem to be from populations which 

had not been exposed to sulfur for some time. For example, Prishmann et al. (2005) worked 

in a vineyard which had been abandoned for over 15 years, and Teodoro et al. (2005) used 

specimens from a pesticide-free coffee plantation. 

The possibility that DMI fungicides had a direct negative effect on G. occidentalis 
might be considered, but is highly unlikely given that a recent study (Alston and Thompson 

2004) found no effect of two DMIs, triflumazole and myclobutanil, on this species. 

There is also a possibility that sulfur or the DMI fungides may differentially affect other 

macropredators of spider mites. However, this cannot explain the results of the current 

studies, given that the only other spider mite predator present in this vineyard, Scolothrips 
sexmaculatus (Perande), was not found until late in the season in each of the study years, 

after the population of T. pacificus had begun to decline, and at very low density. 

In 1999 the pattern of H. anconai density suggests that sulfur had a negative effect on 

tydeids, given that the two treatments with late-season applications of sulfur (sulfur or 

sulfur post-bloom) had the lowest tydeid density, on average 2.5-fold lower than the 

treatments with early-season sulfuring (Fig. 4). English Loeb et al.(1999) also found that 

seven applications of wettable sulfur reduced tydeid density to near zero on the vine 

cultivar ‘Aurora.’ However, in the current study the lower density of tydeids in the sulfur 

or sulfur post-bloom treatments obviously had no impact on density of G. occidentalis, 

since these were the treatments with the highest phytoseiid densities. 

Lacking an explanation due to phytoseiids or tydeids suggests that a plant-based factor is 

involved, which is supported by two observed patterns. First, the difference in pre-bloom 

versus post-bloom timing of sulfur, conducted in 1999, a variable which no study had 

previously analyzed. Pre-bloom sulfur produced high densities of spider mites, results 

similar to that of season-wide sulfur dusting, whereas reversing the timing produced low 

spider mite densities, results statistically equivalent to using season-wide synthetic fungi

cides (Table 4). This suggests that whatever effect sulfur is having, it is interacting with the 

phenology of the vine, and has a greater effect on spider mite density when applied earlier in 

the season. Whereas it is true that in the sulfur pre-bloom treatment there was an additional 

sulfur dust and an additional wettable sulfur application (30% more sulfur total than post-

bloom), this would not seem to entirely explain the 2.5-fold difference in spider mite density 

between pre- and post-bloom sulfur treatments. Second, in each year there is a long lag time 

between the end of sulfuring and the spider mite outbreaks. Applications of sulfur dust in 

April and May produced an effect (i.e., high T. pacificus density) that was seen in July, 

August and even September. For this reason it appears that sulfur is suppressing the ability 



of the vine to defend itself against spider mite attack. This is not unlike the phenomenon 

observed by Karban et al. (1997) in which a ‘vaccination’ of grapevines with E. willametti in 

the spring led to lower density of T. pacificus in mid-summer. It is well known that plants 

produce biochemical defenses to attack by arthropods (Karban and Baldwin 1997), and it is 

therefore possible that sulfur may somehow be disallowing the expression of genes needed 

to mount the biochemical defense to spider mite attack. This would explain the long-term 

effect of sulfur on spider mite density. To my knowledge, no work has been published that 

identifies the phytochemicals nor the genes involved in plant defense against spider mites. 
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