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The NASA Galileo mission was mapped out using a patched conics approximation.
Galileo launched from Earth, underwent a gravity assist from Venus back to Earth for
another gravity assist. Galileo then came back to Earth for one more gravity assist to
propel it to Jupiter. A simulation ignoring all perturbations (i.e. third body effects, zonal
harmonics, solar wind, drag) was carried out. The simulation was able to make it to the
final Earth flyby before diverging from the actual trajectory. The simulated and actual
flyby dates all differed by less than 5 hours, and the simulated and actual flyby altitudes
differed by less than 2,000 km.

Nomenclature

A Parameter used to determine Lambert trajectory
C(·), S(·) Stumpff functions
e Eccentricity
F (·) Function used for Newton’s method

f, ḟ , g, ġ Lagrange coefficients
h Specific angular momentum, km2/s
i Inclination, rad
M Amount to move position vector for course correction, km
Q Transformation matrix
r Position vector, km
r Magnitude of position vector, km
û Unit vector giving direction of course correction
u∗ Rotated vector giving magnitude and direction of position change, km
û∗ Rotated unit vector giving direction of course correction
v Velocity vector, km/s
v̂ Unit vector giving direction of velocity vector
v Magnitude of velocity vector, km/s
ŵ Unit vector orthogonal to orbital plane
y(·) Parameter function used to determine Lambert trajectory
z Parameter used to determine Lambert trajectory and universal variable
α Reciprocal of semimajor axis, km-1

β Angle to rotate û counterclockwise, rad
∆t Change in time, s
∆θ Change in true anomaly, rad
θ True anomaly, rad
µ Gravitational parameter, km3/s2

χ Universal variable, km1/2

Ω Right ascension of the ascending node, rad
ω Argument of periapse, rad
$ Absolute angular velocity vector, rad/s

∗Undergraduate Student, Aerospace Engineering Department, 1 Grand Avenue, mwoods255@gmail.com.
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Subscripts
0 Initial guess for Newton’s method
1 Starting index for Lambert trajectory
2 Ending index for Lambert trajectory
G Galileo
G/P Galileo relative to a planet
i inclination
P Planet
p Perifocal frame
r Radial
S Sun
Ω Right ascension of the ascending node
ω Argument of periapse

I. Introduction

Galileo was a NASA spacecraft sent to Jupiter. It’s objectives were to investigate the chemical com-
position and physical nature of Jupiter’s atmosphere and its satellites as well as study the structure and
dynamics of Jupiter’s magnetosphere.1 The purpose of this project was to accurately map out the trajectory
from Earth to Jupiter.

Originally, Galileo was scheduled for a 2.5 year direct inject transfer, but this plan was cancelled due to
the Space Shuttle Challenger accident.2 As a result, the Centaur upper stage rocket was replaced with the
less powerful Inertial Upper Stage (IUS) rocket. Trajectory engineers at NASA’s Jet Propulsion Laboratory
(JPL) concluded that the best way to reach Jupiter was a Venus-Earth-Earth Gravity Assist (VEEGA)
trajectory.

A VEEGA trajectory is one in which a spacecraft uses a gravity assist from Venus, followed by two
Earth gravity assists before arriving at the destination. This trajectory was chosen for a number of reasons.
One reason is that Galileo’s VEEGA trajectory only requires a small amount of fuel for course corrections
(∆v ≈ 125 m/s). In addition, the VEEGA trajectory allowed Galileo to pass two asteroids, 951 Gaspra
and 243 Ida. These were the first close encounters of an asteroid by a spacecraft.3 Another reason for the
VEEGA trajectory was that it allowed a launch window of 41 days.1

In this report, the methodology for mapping the orbits is discussed followed by the results of doing so.
After this, a discussion of the results is presented as well as a conclusion and plan for future work. In the
appendix, a list of relevant algorithms are given.

II. Methodology

The goal of this senior project was to map the Galileo trajectory to Jupiter as accurately as possible
by treating every orbit as a two-body problem. This is called the method of patched conics.4 Only the
strongest gravitational force is considered at any point in the trajectory. That is, within the Earth’s sphere
of influence, only the gravity of the Earth is taken into account. The same is true for Venus. Outside the
sphere of influence of Earth and Venus, only the gravity of the Sun is taken into account. It is called the
method of patched conics because different conic sections are being patched together. Within the Earth’s
and Venus’ sphere of influence, the conic section is a hyperbola. Otherwise the conic section is an ellipse.
The goal is to produce a picture that looks like Fig. 1.

A. Initializing Galileo’s Trajectory

Galileo launched on October 18, 1989 on the Space Shuttle Atlantis at 16:54 universal time coordinated
(UTC). It arrived at Venus at a closest approach altitude of 16,123 km on February 10, 1990 at 5:59 UTC.1

To model this, Earth’s position on the launch date was determined as well as Venus’ position on the arrival
date using the available ephemeris data. From this, Lambert’s method was used to find the appropriate
starting velocity vector for Galileo. Lambert’s method finds the starting and ending velocity vectors given
two position vectors and the time separating them. The algorithm for Lambert’s method is given in appendix
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Figure 1. This is Galileo’s trajectory as mapped out by NASA.1

A. This trajectory ensured that Galileo would hit Venus’ sphere of influence.
Although the Lambert’s trajectory was used between Earth and Venus, if Galileo’s orbit is propagated,

it will not hit Venus. This is due to the patched conics approximation. The Lambert’s trajectory assumes
that for an interplanetary orbit, the only gravitational force is from the Sun. Once Galileo enters the sphere
of influence, the orbit changes to a hyperbola, and the only gravitational force is from Venus. It turns out
that if uncorrected, Galileo will have a closest approach altitude of about 6,000 km, 10,000 km too close.
Thus, something must be done to correct the trajectory.

B. Correcting Galileo’s Position

Correcting a trajectory in a three dimensional space is non-trivial. Galileo’s trajectory is defined by the
gravitational force it is in, it’s position vector at a specific time, and it’s velocity vector at a specific time.
The gravitational force cannot be changed, so there are seven parameters for changing Galileo’s trajectory,
the three components of the position, the three components of the velocity, and the time at which to change
them.

In an effort to simplify this, the time at which Galileo enters Venus’ sphere of influence was arbitrarily
chosen to make corrections. For subsequent flybys, this will be when Galileo enters Earth’s sphere of influence.
The velocity of Galileo with respect to Venus when entering the sphere of influence is known (at least to
one decimal place).1 It turns out that the Lambert trajectory matches this relative velocity. Thus, it was
decided to keep the velocity vector the same. This leaves three parameters to vary.

This can be reduced to two parameters. Freeze the simulation the moment Galileo enters a sphere of
influence and imagine looking in the direction of Galileo’s velocity vector. Now attach a polar coordinate
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frame to the tail end of the velocity vector with the vertical axis orthogonal to the orbital plane. Galileo’s
position vector (not velocity vector) can be moved to a point on this plane (the plane orthogonal to Galileo’s
velocity vector). This is shown in Fig. 2. The point that the position vector was moved to is characterized
by only two parameters: an angle and a magnitude.

Figure 2. Attach a polar coordinate system to the tail of Galileo’s velocity vector vG, and move Galileo to a
new point specified by an angle β and a magnitude M .

This can be done through the use of a quaternion.4,5 An algorithm for the above method is given in
appendix B. To determine the optimal angle and amount to move the position vector, a brute force method
was used. The two parameters were varied, and the pair that put Galileo closest to the subsequent flyby
altitude was used.

C. Determining Galileo’s Trajectory

The position correction described above must be carried out for each flyby. Otherwise, determining the rest
of the trajectory is done by propagating Galileo’s orbit. A straight forward way of orbit propagation is the
universal variable approach. This algorithm is given in appendix C. It is a good idea to not only propagate
Galileo’s orbit, but Earth’s, Venus’, and Jupiter’s orbits as well. This way, all bodies are kept at the same
moment in time, and the ephemeris data only needs to be used to initialize the orbits. This is important
because the simulated flybys (and planetary arrival in Jupiter’s case) will not occur at the time recorded by
NASA. They will vary by a few hours. By propagating Earth’s, Venus’, and Jupiter’s orbits, the Julian date
does not need to be tracked. This saves some headache in converting the Julian date to the Gregorian date.

Since this is a patched conics problem, Galileo’s orbit is an ellipse when outside a planet’s sphere of
influence and a hyperbola when inside a planet’s sphere of influence. In terms of propagating Galileo’s orbit,
this requires that its state vector be converted to a relative frame while inside a planet’s sphere of influence.
An algorithm for doing this is in appendix D.

III. Results

In this section, the results of the simulation of Galileo’s trajectory is presented. The simulation followed
the procedure described in the methodology section above.
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Figure 3. This is the simulated trajectory of Galileo using the procedure outlined in the methodology.
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Figure 4. The upper left plot shows the transfer from Earth at launch to Venus. The upper right plot shows
the transfer from the Venus flyby to Earth. The bottom left plot shows the transfer from the first Earth flyby
back to Earth. The bottom right plot shows the transfer from the second Earth flyby to the end. The legend
from Fig. 3 applies to these plots as well.
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The simulated trajectory is shown in Fig. 3. Although Fig. 3 is useful as a comparison to Fig. 1, it is
difficult to see each individual transfer. For this reason, Fig. 4 was included to show each leg of the mission.
Begin with the top left plot of Fig. 4. The trajectory starts at the black circle. Galileo travels to the black
diamond for the Venus flyby. Immediately before entry into the sphere of influence, Galileo’s trajectory was
corrected. The position vector was moved 21,500 km at an angle of 249 degrees (all angles are measured
counterclockwise for this project – see Fig. 2). This correction ensured that Galileo would enter Earth’s
sphere of influence for the subsequent flyby. In the simulation, closest approach occurred on 2/10/90 at 4:38
UTC at an altitude of 14,591 km. The actual date was 2/10/90 at 5:59 UTC. This is a difference of about
1.35 hours. The actual altitude at closest approach was 16,123 km, for a difference of 1,532 km.

After the Venus flyby, Galileo continued toward Earth. Referencing the top right of Fig. 4, the trajectory
moves to the black square. Before entering the sphere of influence, the trajectory was corrected again to
ensure the next flyby. This correction moved the position vector 866,200 km at an angle of 170.5 degrees.
For the simulation, closest approach was on 12/9/90 at 1:10 UTC at an altitude of 2,619 km. The actual
flyby was on 12/8/90 at 20:35 UTC. The simulated date is off by about 4.58 hours. The actual flyby altitude
was 960 km, so the simulation differed by 1,659 km.

After the first Earth flyby, Galileo continues on its trajectory. After about two years, it returned to Earth
for the second and final Earth flyby. This is shown in the bottom left plot of Fig. 4. Before entry into the
sphere of influence, the trajectory was corrected for the final time. The position vector was moved 42,840
km at an angle of 359 degrees. The simulated second Earth flyby occurred on 12/8/92 at 14:06 UTC. The
actual date was 12/8/1992 at 15:35, about a 1.48 hour difference. The simulated flyby altitude was −1,440
km (i.e. below the surface of the Earth), and the actual was 300 km. This is a difference of 1,740 km.

As seen in Fig. 3 and the bottom right of Fig. 4, Galileo did not make it to Jupiter for the simulation.
This is because the course correction for the second Earth flyby was not sufficient. This is discussed in the
next section. The results of the simulation are summarized in Table 1.

Table 1. These are the Galileo trajectory simulation results.

Venus Flyby First Earth Flyby Second Earth Flyby

Simulated Date 2/10/90 at 4:38 UTC 12/9/90 at 1:10 UTC 12/8/92 at 14:06 UTC

Actual Date 2/10/90 at 5:59 UTC 12/8/90 at 20:35 UTC 12/8/92 at 15:35 UTC

Date Difference 1.35 hours 4.58 hours 1.48 hours

Simulated Altitude 14,591 km 2,619 km −1,440 km

Actual Altitude 16,123 km 960 km 300 km

Altitude Difference 1,532 km 1,659 km 1,740 km

IV. Discussion

As stated above, the simulation never made it to Jupiter. Before entry into the Earth’s sphere of influence
for the second flyby, a course correction was attempted again, but there was no correction that would send
Galileo to Jupiter. This is clear from the flyby altitude. The best course correction gives a trajectory below
the surface of the Earth. This means that the magnitude of the velocity vector was not large enough. The
velocity could only be increased more by making the altitude more negative, but this also does not get
Galileo to Jupiter. One possible explanation for this is the accumulated error over the trajectory. The error
in velocity starts small, but increases as time continues. Also, the influence of the moon could affect Galileo
during the Earth flybys. Galileo passes the moon at an altitude of about 111,000 km for the second flyby.1

Aside from that, though, the simulation was fairly close. The time differences are within a few hours
and the altitudes are within 2,000 km. In terms of astronomical distances, these are very small. The course
corrections themselves may seem large, but those are also small in terms of astronomical distances. One
astronomical unit (AU) is about 149,598,000 km. The largest course correction is roughly 0.6% of 1 AU,
and from Fig. 3, the course corrections are not visible to the eye.

Although the course corrections are relatively small, they still need to be present. The course corrections
show that error accumulates during the simulation. Third body effects are the main source of error. In
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particular, the Sun’s gravity no doubt is a factor during flybys. For the patched conics approximation, it
was ignored, which caused error. Also, a planet’s gravity would have an appreciable effect when Galileo is
close to, but outside its sphere of influence. Obviously, these perturbations contribute to trajectory error
over time. Other perturbations include solar wind, drag, and zonal harmonics, particularly J2.

Another source of error are the burns that Galileo made during the mission. Information on how large
the burns were is readily available on the internet, but that is not the full story. The moments the burns
were initiated is only given approximately, and the burn direction is not given. For the simulation, these
burns were taken into account, but not at the actual time and direction. For the simulation, the burns were
done after Galileo exits a planet’s sphere of influence. They were modeled as instantaneous burns tangential
to the velocity vector. This uncertainty also contributed to trajectory error.

V. Conclusion and Future Work

Using strictly Keplerian orbits for mapping Galileo’s trajectory was mostly successful. An approximate
mapping was obtained from launch to the second Earth flyby. The only piece that is missing is the transfer
to Jupiter. The perturbations in Galileo’s trajectory made this not possible for the simulation. The main
perturbations were third body effects and uncertainty in course correction maneuvers. Smaller perturbations
such as solar wind, drag, and zonal harmonics also introduced error.

Future work for this is to include third body effects. If the above claim is correct, then including the
third body effects should make the trajectory much more accurate. This should give a better indication of
its effect on an interplanetary trajectory.

Appendix

Here, the algorithms necessary to determine Galileo’s trajectory are presented. These are not derivations.
First, the solution to Lambert’s problem is shown followed by a method for correcting Galileo’s trajectory.
Subsequently, an algorithm for propagating an orbit using the universal variable is given. Finally, an algo-
rithm for converting Galileo’s state vector from a heliocentric frame to a planetocentric frame is given. The
MATLAB code that was used for the Galileo simulation is available upon request from Dr. Abercromby.

Before beginning, some notes on notation are in order. Scalars are always in non-bolded italics. They
can be either upper or lower case. Vectors are always bolded lower case. Whenever a vector norm is shown,
it is referring to the Euclidean norm (L2 norm). All vectors are column vectors. These algorithms will not
work if they are row vectors. Lastly, matrices are always bolded upper case.

A. Lambert Trajectory

The inputs to obtaining Lambert’s trajectory are the starting position vector r1, the ending position vector
r2, and the the time to get from the beginning to the end ∆t. The outputs are the starting velocity vector
v1 and the ending velocity vector v2.

Begin by finding the magnitudes of the position vectors.

r1 = ||r1|| (1)

r2 = ||r2|| (2)

If the Z-component of r1 × r2 ≥ 0, then the change in true anomaly is

∆θ = arccos

(
rT1 r2

r1r2

)
. (3)

Otherwise, the change in true anomaly is

∆θ = 2π − arccos

(
rT1 r2

r1r2

)
. (4)

Define a parameter

A = sin(∆θ)

√
r1r2

1− cos(∆θ)
(5)
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to be used throughout the algorithm.
The Stumpff functions will be used periodically. They are given as

S(z) =


√
z−sin

√
z

(
√
z)3

z > 0
sinh
√
−z−

√
−z

(
√
−z)3 z < 0

1
6 z = 0

(6)

C(z) =


1−cos

√
z

z z > 0
cosh

√
−z−1
−z z < 0

1
2 z = 0

(7)

Now, Newton’s method is used to minimize a function. That function is given as

F (z) =

(
y(z)

C(z)

) 3
2

S(z) +A
√
y(z)−√µ∆t, (8)

where

y(z) = r1 + r2 +A
zS(z)− 1√

C(z)
(9)

and µ is the gravitational parameter. Newton’s method requires the derivative of F (z). This is given as

F ′(z) =


(
y(z)
C(z)

) 3
2
[

1
2z

(
C(z)− 3

2
S(z)
C(z)

)
+ 3

4
S2(z)
C(z)

]
+ A

8

(
3 S(z)
C(z)

√
y(z) +A

√
C(z)
y(z)

)
z 6= 0

√
2

40 y
3
2 (0) + A

8

(√
y(0) +A

√
1

2y(0)

)
z = 0

(10)

Initialize the parameter z = 0 and update using the Newton step

z ← z − F (z)

F ′(z)
, (11)

where the left arrow means replace. Iterate Eqns. (6) – (11) until the ratio F (z)
F ′(z) is less than or equal to

some tolerance. The smaller the tolerance, the more accurate the solution. However, a smaller tolerance
requires more time to converge.

It is a good idea to set a maximum number of iterations. That way, if convergence is slow, iteration will
not continue for too long. It is also good practice to print a warning to the screen if the maximum number
of iterations is reached because this means convergence to the specified tolerance was not met.

Next, calculate the Lagrange coefficients

f = 1− y(z)

r1
, (12)

g = A

√
y(z)

µ
, (13)

and

ġ = 1− y(z)

r2
. (14)

Finally, calculate the starting and ending velocity vectors.

v1 =
1

g
(r2 − fr1) (15)

v2 =
1

g
(ġr2 − r2) (16)
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B. Trajectory Correction

The inputs for changing changing Galileo’s trajectory via the polar coordinate method are Galileo’s classical
orbital elements in the heliocentric frame, the distance the position vector is being moved M , and the angle
specifying the direction in which to move it β. The output is Galileo’s new position vector rG.

To begin, Galileo’s velocity vector needs to be converted to the perifocal frame. This can be done with

vG,p =
µS
h

 − sin θ

e+ cos θ

0

 (17)

where θ is Galileo’s true anomaly, e is Galileo’s eccentricity, h is Galileo’s specific angular momentum, µS is
the gravitational parameter of the Sun, and the subscript p denotes the perifocal frame. To get the direction
of this vector, divide by the norm.

v̂ =
vG,p
||vG,p||

(18)

The hat on the left hand side of Eqn. (18) signifies that it is a unit vector.

In the perifocal frame, the unit vector orthogonal to the orbital plane is ŵ =
[

0 0 1
]T

. In order to

get the direction to move the position vector, take a cross product

û = v̂ × ŵ. (19)

Using the right hand rule, û is the unit vector pointing at an angle of 0 degrees (see Fig. 2). To rotate û
counterclockwise, the quaternion vector rotation

û∗ = û cosβ + v̂(ûT v̂)(1− cosβ) + (û× v̂) sinβ (20)

can be used where β is the angle through which to rotate û and û∗ is the rotated unit vector. For example,
if β = π

2 , then û∗ would be pointing at an angle of 90 degrees (see Fig. 2). To get the desired magnitude by
which to move the position vector, simply multiply by a scalar

u∗ = M û∗. (21)

The resulting vector is still in the perifocal frame. To convert back to the heliocentric frame, define three
transformation matrices. They are given as

Qω =

 cosω sinω 0

− sinω cosω 0

0 0 1

 , (22)

Qi =

 1 0 0

0 cos i sin i

0 − sin i cos i

 , (23)

and

QΩ =

 cos Ω sin Ω 0

− sin Ω cos Ω 0

0 0 1

 (24)

where ω is Galileo’s argument of perigee, i is Galileo’s inclination, and Ω is Galileo’s right ascension. Multi-
plying these three matrices

Q = QωQiQΩ (25)

gives a transformation matrix from the heliocentric frame to the perifocal frame. In order to convert from
the perifocal frame to the heliocentric frame, the inverse of Eqn. (25) is needed. However, since Q is a
transformation matrix, it is also an orthogonal matrix, so Q−1 = QT .

Finally, to correct the trajectory of Galileo, move the position vector

rG ← rG + QTu∗ (26)

where the left arrow means replace.
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C. Propagating an Orbit

The required inputs for propagating an orbit are the initial position and velocity vectors r0 and v0 and the
time through which to propagate ∆t. The outputs are the final position and velocity vectors r and v.

To start, find the magnitude of the initial state vector.

r0 = ||r0|| (27)

v0 = ||v0|| (28)

Now find the radial component of the velocity

vr0 =
rT0 v0

r0
(29)

and the reciprocal of the semimajor axis

α =
2

r0
− v2

0

µ
(30)

where µ is the gravitation parameter of the body being orbited around. For Galileo, µ = µS when the Sun
is the main body and µ = µP when a planet is the main body. For a planet, µ = µS .

The next step is to use Newton’s method to find the universal variable χ. To do this, start by initializing
the universal variable to

χ0 =
√
µ|α|∆t (31)

where ∆t is the time through which to propagate. Evaluate the function

F (χ) =
r0vr0√
µ
χ2C(z) + (1− αr0)χ3S(z) + r0χ−

√
µ∆t (32)

and its derivative
F ′(χ) =

r0vr0√
µ
χ
[
1− αχ2S(z)

]
+ (1− αr0)χ2C(z) + r0 (33)

where z = αχ2 and S(z) and C(z) are given in Eqns. (6) and (7), respectively. Update the universal variable
with

χ← χ− F (χ)

F ′(χ)
(34)

where the left arrow means replace. Iterate Eqns. (32) – (34) until the ratio F (χ)
F ′(χ) is less than or equal to

some tolerance. The smaller the tolerance, the more accurate the solution. However, a smaller tolerance
requires more time to converge.

It is a good idea to set a maximum number of iterations. That way, if convergence is slow, iteration will
not continue for too long. It is also good practice to print a warning to the screen if the maximum number
of iterations is reached because this means convergence to the specified tolerance was not met.

Next, find the Lagrange coefficients for the position vector.

f = 1− χ2

r0
C(z) (35)

g = ∆t− 1
√
µ
χ3S(z) (36)

These yield the propagated position vector

r = fr0 + gv0. (37)

Now, normalize the position vector.

r =
r

||r||
(38)

This can be used to find the Lagrange coefficients for the velocity vector.

ḟ =

√
µ

rr0

[
αχ3S(z)− χ

]
(39)
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ġ = 1− χ2

r
C(z) (40)

Finally, the propagated velocity vector is found with

v = ḟr0 + ġv0. (41)

D. Heliocentric to Planetocentric Frame

The inputs for converting from a heliocentric frame to a planetocentric frame are the position and velocity
vectors of both Galileo (rG and vG) and the planet (rP and vP ) and the classical orbital elements of the
planet. The outputs are the position and velocity vectors of Galileo relative to the planet rG/P and vG/P .

To begin, find the absolute angular velocity of the planet in the perifocal frame. This is done with

$P,p =

 0

0√
µS

||rP ||3

 (42)

where rP is the position vector of the planet, µS is the gravitational parameter of the Sun, and the subscript
p denotes the perifocal frame. This equation assumes that the planet is in a circular orbit. Although this is
not true, both Venus and Earth have a very small eccentricity, so it is a reasonable approximation.

Next, calculate a transformation matrix. This is done via Eqns. (22) – (25) where the orbital elements
used are the planet’s orbital elements. The matrix Q is the transformation matrix from the heliocentric
frame to the perifocal frame. In order to convert from the perifocal frame to the heliocentric frame, the
inverse of Eqn. (25) is needed. However, since Q is a transformation matrix, it is also an orthogonal matrix,
so Q−1 = QT .

Now convert the planet’s absolute angular velocity to the heliocentric frame. This can be done with

$P = QT$P,p. (43)

All that is left is to find the relative state vector between Galileo and planet. The relative position vector is

rG/P = rG − rP (44)

where the subscript G/P denotes Galileo relative to the planet. Finally, the relative velocity vector is found
with

vG/P = vG − vP −$P × rG/P . (45)
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