

American Institute of Aeronautics and Astronautics

1

Hot Air Balloon Navigation

A Senior Project

presented to

the Faculty of the Aerospace Department

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science

by

Dustin Blackwell

December, 2010

© 2010 Dustin Blackwell

American Institute of Aeronautics and Astronautics

2

Hot Air Balloon Navigation

Dustin Blackwell

California Polytechnic State University, San Luis Obispo, Ca, 93401

This report describes a program used for navigating a hot air balloon. The program,

Balloon_Trip, was written using MATLAB and gives a flight path to follow from a start

position to an end position. Balloon_Trip calculates the flight path by taking in wind

conditions and then flying through these different winds so as steer the hot air balloon. The

program calculates the flight path by taking into consideration at all times how the wind will

propel the balloon while it is rising or falling in elevation. It then takes the most direct and

least complicated, if not fastest, route from the starting location to the ending location. All of

the flight paths chosen are segmented into five parts, two segments that move the hot air

balloon strictly horizontal and three in which the balloon ascends or descends to the specific

elevations in which the horizontal movement segments occur.

I. Introduction

ot air balloons were first used to take to the sky’s in 1780 (Briggs, 1986). Since then, both a better

understanding of how hot Air Balloons fly and newer technology have brought about advances in ballooning.

 Hot Air balloons fly because of the heated air that is trapped in the Envelope, the “balloon” part of the Hot Air

Balloon that allows the craft to take flight. (Owen, 1999) Air that is heated up expands, causing it’s density to

lower. When this happens, the hot air (low density) rises above that of the cold air (higher density). When greater

thought and design was put into making the Envelope lighter, it allowed the balloon to fly higher on the same

amount of fuel simply because now it didn’t have to carry as much of a payload attached to it.

Hot air balloons were first flown using smoke to power their flight: or at least that was what those flying

thought was powering the balloon (Briggs, 1986). It wasn’t until the 1960s that the smoky fuels used to power the

balloon were replaced with a propane burner. Propane was a far less expense way to power the balloon, but it

wasn’t until progress was made on the Envelope of the balloon as well that Ballooning became as popular as it did.

Making the Envelope using better and lighter materials allowed easier and less expensive flights.

 The Envelope of a Balloon is composed of a number of sections that are held together with a series of horizontal

and vertical reinforcing tape (Owen, 1999). This helps greatly to alleviate the stress that the balloon holds and

instead transfers it to the lines of tape running along the balloon, which allows the fabric to be designed under less

intense conditions to make it lighter and more durable.

 The standard shape of the balloon, that of an inverted teardrop, was found by studying the effects that a payload

would have on a spherical gas balloon. By seeing how the balloon would distort by having a payload connected to

the underside of, it was seen that the balloon would naturally want to take this inverted teardrop shape. This also

helped the placement of the burners, as it gave them an adequate opening in which to heat up the air inside the

envelope.

Hot air balloons are flown using only the burners to control the flight elevation. The balloon travels by

being pushed around by the wind blowing. If the wind is blowing to the north, then the hot air balloon riding in that

wind will be blown north. The only manner in which a hot air balloon controls its direction of travel is by rising or

falling in elevation until it comes upon a different wind blowing. And it is this that forms the basis of my navigation

code.

 My navigation program is built on the basis that a hot-air balloon can only directly control its elevation. By

changing its elevation, it will encounter different winds that blow in different directions and at different speeds. By

flying through these winds, the hot air balloon can be ultimately steered to go in the desired direction. If knowledge

of the weather is known beforehand, it is possible to completely map out a trajectory to follow to get from a starting

location to an ending location. My MATLAB program, Balloon_Trip, does just that.

H

American Institute of Aeronautics and Astronautics

3

II. Program Procedure

 My program has gone through three stages. The first stage was mainly for getting the program set-up correctly,

but also to get the structure of the program built. The second stage added most of the complexity to the program,

mainly in the form of accounting for the wind blowing the balloon around as it rose or fell in the air during the first

and last elevation changes in the trip. The third stage added the finishing touches, as well as the movement from the

wind during the 2
nd

 elevation change.

 There are 8 inputs for Balloon_Trip. The first 4 are control values that turn on or off different settings. The next

4 are the true function inputs that the code uses to calculate possible trip trajectories. Details on the program’s 8

inputs can be found in Table 1. Details on the 6 outputs can be found in Table 2.

Table 1: List of the Input Variables used in Balloon_Trip.

Input Matrix Size Description

Graph 1x1 Turns graphing on or off

Fig_Num 1x5 Labels the 5 graphs according to the inputted values

Display 1x1 Turns various display settings on or off

Random 4x3 Matrix used to create random data within the program

Wind Nx3
Variable Sized Matrix that contains Wind Speed, Wind Direction, and Wind

Elevation

Start 1x3 Matrix containing the start location in 3-Dimensions

End 1x3 Matrix containing the end location in 3-Dimensions

a 1x2 Matrix containing the rising and falling acceleration of the hot-air balloon

Table 2: List of Variables outputted from Balloon_Trip.

Output Description

Total_Distance The total Distance traveled by the hot-air balloon during the trip

Coordinates Matrix containing all the coordinates of the trip

Wind
Matrix containing the Wind Specifications used in the program; Identical to the Wind input,

except when using the Random data generator

Start
Matrix containing the Start Specifications used in the program; Identical to the Start input,

except when using the Random data generator

End
Matrix containing the Wind Specifications used in the program; Identical to the End input,

except when using the Random data generator

a
Matrix containing the A Specifications used in the program; Identical to the A input, except

when using the Random data generator

 Balloon_Trip calculates a trip from the Start location to the End location by splitting the trajectory into 5

sections: the 1
st
 Elevation Change, the 1

st
 Horizontal Movement, the 2

nd
 Elevation Change, the 2

nd
 Horizontal

Movement, and the 3
rd

 Elevation Change. However, the trip is calculated in a different order: the 1
st
 Elevation

Change, the 2
nd

 Elevation Change, the 3rd Elevation Change, the 1
st
 Horizontal Movement, and then the 2

nd

Horizontal Movement.

 The reason that the sections are computed in this order is because of how Balloon_Trip ultimately decides what

trajectory to take. The decision making hinges on the two horizontal sections travelled. For the 1
st
 Horizontal

section the program will choose a wind to follow based on how closely it will lead the balloon straight to the Ending

location from the Starting location, and it will then choose the 2
nd

 Horizontal section based on how far it will need to

travel after the 2
nd

 Elevation change, which is based on how far the balloon travels during the 1
st
 Horizontal section.

But it cannot choose this without first finding where the balloon would be located when it first starts the 1
st

Horizontal section and where it would end after the 2
nd

 Horizontal section.

 This means that every option for the 1
st
 Elevation Change needs to be calculated before anything else. With this

completed, the most direct route from the end of the 1
st
 Elevation change to the End location can be found. This is

the trajectory that will be traveled along for the 1
st
 Horizontal Movement.

Now, possible options for the 2
nd

 and 3
rd

 Elevation Change must be calculated. This means that the way in

which the wind blows the balloon needs to be found as it travels from the elevation chosen for the 1
st
 Horizontal

Movement to any other elevation and for how the balloon will be blown around during its decent from any possible

American Institute of Aeronautics and Astronautics

4

elevation. Then the elevation that the balloon will travel along during the 2
nd

 Horizontal movement can be chosen,

which also chooses which trajectory to follow for the 3
rd

 Elevation change.

Now the actual trajectory for the balloon to travel along has been completed. At this point, there are only a

few details left to complete: correctly recording the coordinates traveled to and outputting the data in tables and

graphs. There are two tables: one for outputting the distance covered in flight and the other for displaying the six

main coordinates from the flight trajectory. The six coordinates are shown in Table 3. There are a total of 5

possible graphs that can be outputted from the program. Details on these graphs can be seen in Table 4.

Table 3: The Six Coordinates that define the Flight Path.

Coordinate Description

Coordinate 1 Start location

Coordinate 2 Location after 1
st
 Elevation Change

Coordinate 3 Location after 1
st
 Horizontal Movement

Coordinate 4 Location after 2
nd

 Elevation Change

Coordinate 5 Location after 2
nd

 Horizontal Movement

Coordinate 6 End location, location after 3
rd

 Elevation Change

Table 4: Descriptions of each of the 5 different graphs generated by Balloon_Trip.

Graph Description

Graph 1 3-D Graph; displaying the entre flight path, with a Wind representation in the center of the graph

Graph 2 2-D Graph; displays the flight path in the X-Y coordinate plane, with a Wind representation in the

center of the graph

Graph 3 2-D Graph; displays the flight path in 3 subplots: X-Y, X-Z, and Y-Z coordinate planes, with the

prominent view being the X-Y coordinate plane

Graph 4 2-D Graph; displays the flight path in 3 subplots: X-Y, X-Z, and Y-Z coordinate planes, with the

prominent view being the X-Z coordinate plane

Graph 5 2-D Graph; displays the flight path in 3 subplots: X-Y, X-Z, and Y-Z coordinate planes, with the

prominent view being the Y-Z coordinate plane

III. Program Overview

This section of the report will describe each of the programs inputs, outputs, tables, and graphs in detail.

Each will be described in the order as they appear in the program.

A. Inputs

 The Graph input is used to control whether or not any of the graphs are displayed at the end of the program. It

uses a value of “1” for on, and a value of “0” for off.

 Fig_Num is a matrix that contains all the figure numbers used when creating the 5 graphs. Each graph can be

set to any figure number, but if the value of “0” is used for a particular graph, then that graph only will not be

shown. As an example, [1 0 2 0 3] will display the 1
st
, 3

rd
, and 5

th
 graphs with figure numbers of 1, 2, and 3

respectively; the 2
nd

 and 4
th

 graphs will not be displayed because values of “0” where used for their figure numbers.

 The Display input is another control variable. It controls whether or not the tables or messages will display in

MATLAB’s Command Window. It uses a value of “1” for on, and a value of “0” for off.

 The Random variable is used to control the built-in random data generator. Using the values in this matrix,

Balloon_Trip will create values for the Wind, Start, End and a inputs. This input has three settings, depending on

what values it is set to and if the remaining four inputs are defined or not. If it is set to a value of “0” with the next

four inputs defined, then it is set to off and will not generate any data. If it is set to a value of “0” with the next four

inputs not defined, then it will create random data based on default parameters built into the program. If it is defined

as a full 4x3 matrix with the next four inputs not defined then it will generate random data based on the defined

parameters. There are a total of 12 parameters used to define the Random matrix. Table 5 shows these parameters

describing what index they hold and what they represent.

American Institute of Aeronautics and Astronautics

5

Table 5: Parameters used when generating random data, units are in feet unless otherwise stated.

Index Description

Random(1,1) The total number of winds that will be in the Wind matrix, no units

Random(1,2) Minimum speed that can be used in the Wind matrix, in feet per minute

Random(1,3) Maximum acceleration that can be used in the Wind matrix, in feet per minute

Random(2,1) Maximum elevation that can be used the Wind matrix

Random(2,2) Minimum acceleration that can be used in the a matrix, in feet per square second

Random(2,3) Maximum acceleration that can be used in the a matrix, in feet per square second

Random(3,1) Minimum value that the Start and End location can be located in the X -direction

Random(3,2) Minimum value that the Start and End location can be located in the Y -direction

Random(3,3) Minimum value that the Start and End location can be located in the Z-direction

Random(4,1) Maximum value that the Start and End location can be located in the X -direction

Random(4,2) Maximum value that the Start and End location can be located in the Y -direction

Random(4,3) Maximum value that the Start and End location can be located in the Z -direction

 The Wind matrix contains all the weather data used. It is an Nx3 sized matrix, where N represents the total

number of different winds. The 1st column represents the speeds of the different winds in feet per minute, the 2nd

column represents the direction that the wind is blowing in degrees, and the 3rd column represents the elevation that

the winds are defined at in feet. Each row of this matrix represents one specific wind. The speeds defined must all

be values above Zero. The directions that the winds blow are defined as an angle with 0 degrees representing east,

90 degrees representing north, and so on. While values of equal and above 360 and below 0 can used when defining

the wind directions, the program will automatically change these numbers to be within the values of 0 and 360. The

elevations must be defined in increasing order, from lowest elevation to highest, with no value being below Zero.

Each wind is defined in the matrix as how the wind is behaving at and below the defining elevation. For example, [

30 45 1000; 90 73 2000] defines two winds, one blowing at 30 feet per minute and another at 90 feet per minute.

The first wind is defined as blowing between the elevation of 0 and 1000 feet, with the second wind blowing from

above 1000 feet up to and including an elevation of 2000 feet.

 The Start and End matrices define where the Starting and Ending locations are. They are defined in the

Cartesian coordinate system so each input has three values, one for each axis of X, Y, and Z. The X-axis travels in

the positive direction straight east and the Y-axis travels in the positive direction straight north, with the Z-axis

being the Elevation axis.

 The last input variable, a, is the acceleration matrix. It contains the value for the acceleration that the balloon

travels at while rising or falling. Both values are inputted as positive values.

B. Outputs

The Total_Distance output is defined as the total distance that the hot air balloon would travel over the

course of the entire flight. This is not a ground path value which would be just distance travelled in 2-dimensions,

but instead the distance travelled in all 3-dimension while the balloon travels horizontally and vertically.

The Coordinates matrix defines every coordinate that the balloon travels to. A coordinate is defined as a

point in space where the balloon changes direction because of the wind or where the balloon stops rising or falling in

elevation. This output is enables the user to be able to re-create any graphs that they wish without having to re-run

the program.

The next four outputs, Wind, Start, End and a, are the input values when running the code. The reason

they can be outputted as separate variables is because this is the only way that the user can gather any data created

by the random data generator. That way, if there is an interesting set of data that the user wants to look at later on in

the future, they can use these output variables to save this generated data.

American Institute of Aeronautics and Astronautics

6

C. Tables

 Balloon Trip Outputs is the name of the 1
st
 of two

tables outputted by the program. It shows the output

variable Total_Distance in the table. Coordinates is

the name of the 2
nd

 table, and it shows the 6 main

defining coordinate points. These 6 points are define

the boundaries of the 5 mission segments: 1
st
 Elevation

Change (Take-off), the 1
st
 Horizontal Movement, the

2
nd

 Elevation Change, the 2
nd

 Horizontal Movement,

and the 3
rd

 Elevation Change (Landing).

 Each table is outputted in MATLAB’s Command

Window. Figure 1 shows an example of the Balloon

Trip Outputs table, and Figure 2 shows an example of

the Coordinates table.

D. Graphs

 There are a total of 5 possible graphs that be

outputted from Balloon_Trip. The first two graphs are

unique, while the last three graphs are just different

versions of the same graph. There are also another 2

graphs that will only show in the event that program

determines that there is no path available to travel from

Start to End.

 The first graph is a 3-Dimensional graph that shows the entire flight path taken. It also has an overlay

representation of the winds placed in the center of the plot in the form of blue arrows. While the sizes of the arrows

have no relationship to the size of the flight path, they are scaled according to each other so that the largest arrow is

the fastest wind and the smallest arrow is the slowest wind. They are placed in the center of the figure, and are

shown oriented according to the direction that that wind is blowing. The Start and End locations are also labeled,

along with their coordinates. Each of the five flight path segments also have their respective travelled distance

labeled on the graph next to the corresponding segment. Figure 3 is an example of what this first graph looks like.

Figure 3: Graph 1 Example

Figure 1: Balloon Trip Output Table Example

Figure 2: Coordinates Table Example

American Institute of Aeronautics and Astronautics

7

 The second graph is a 2-Dimensional view of the flight path, as seen from above and looking down the Z-axis

(an X-Y view). This graph also has the wind representation overlay and labels for the Start and End locations. It

does not, however, have the distance labels. Figure 4 shows an example of this graph.

Figure 4: Graph 2 Example

The third, fourth, and fifth graphs all show 3 different 2-Dimensional views of the flight path, but each

graph focuses on a different particular view: the third graph focuses on the top-down X-Y view, the fourth graph

focuses on the side X-Z view, and the fifth focuses on the side Y-Z view. Each of these three graphs shows the

other 2 views in half the space of the focus. Figures 5 – 7 show examples of these graphs.

Figure 5: Graph 3 Example

American Institute of Aeronautics and Astronautics

8

Figure 6: Graph 4 Example

Figure 7: Graph 5 Example

The last two graphs are special graphs that will only show when there is no path to travel along from Start

to End. They are essentially the first two normal graphs, the 3-D graph and the 2-D top-down view, except that they

show no flight path as there is no path to travel along. Figures 8-9 show examples of these graphs.

American Institute of Aeronautics and Astronautics

9

Figure 8: No Path Graph 1 Example

Figure 9: No Path Graph 2 Example

IV. Program Analysis

 When first writing Balloon_Trip, I created a small set of data that could be easily followed by hand so as to test

the logic of how the program chooses the final trajectory. By the time that I had completed the program, I could test

it instead by continuously generating random data to input and then following the flight path to double check that the

program was still working as intended.

 Figure 10 shows the initial data being used and the resulting flight path chosen to follow. The data consisted of

four very slow winds and simple Start and End locations. The slow winds are there so as to disturb the climb and

descents in elevation as little as possible.

American Institute of Aeronautics and Astronautics

10

Figure 10: 3-D Graph showing data initially used to create the path finding code.

 One of the more interesting sets of data that I came upon while testing was one where all the winds blew in

nearly the same direction. But, since the start location was positioned upwind, there still existed a path to travel

along to the end. Figure 11 shows the X-Y view of this path, so that the wind directions can be better seen.

Figure 11: Data with no North-Eastern blowing wind.

American Institute of Aeronautics and Astronautics

11

This next set of data shows an interesting oddity: two very different rising and falling accelerations. In this

case, the rising acceleration of the hot air balloon is very slow, just crawling upwards at a value of .0290 feet per

square second. The falling acceleration is almost 142 times greater, at a value of 4.1174 feet per square second.

This causes the wind to push the balloon around much more while moving upward, then it does when moving down.

Figure 12 shows this in a 3-Dimensional graph of the flight path.

Figure 12: Flight Path of a slow rising and fast falling balloon.

 Balloon_Trip can even choose a path to travel along regardless of the number of different winds. Figure 13

shows an example of this when there are 1000 winds to travel within. Perhaps unsurprising, this flight path is

actually not otherwise interesting except for the large number of winds to travel through

American Institute of Aeronautics and Astronautics

12

Figure 13: 1000 Winds with a flight path through almost all of them

 My program Balloon_Trip is capable of handling most weather conditions to find a suitable flight path to travel

along. It does, however, have some difficulty with some specific cases. While testing the program, I had come

across one case where technically someone flying a hot air balloon could have found a path from the starting

location to the end location, but the program didn’t allow it to happen because of the manner in which the Horizontal

Movement segments are calculated. They are always handled by having the balloon flying at the maximum height

for that specific wind condition, even if the balloon was only going to descend at the end of it. Because of this, there

may be cases where a balloon could be navigated to only barely within the wind it wants to travel along before then

descending out of it and continuing along its path, but Balloon_Trip won’t allow this because it wants to have the

balloon ascend higher than is truly needed. Because of this, the balloon will be blown farther by the wind it is in,

and by the time it reaches the maximum elevation for that wind it has been blown to far of course to be capable of

finding a path to the end location. This was something that I noticed near to the end of writing the program. And

while it could be “fixed” by decreasing the speeds of the winds or increasing the rising or falling acceleration which

would then make the balloon be blown around less, it is not a true correction to the problem. The true correction

would be to allow the program to choose if it needs to fly at the maximum or minimum elevation for a wind, not

always at its maximum. But doing this would have required more major changes to the program than I deemed

necessary, as I would have needed to make changes to core parts of the entirety of the program to change this one

detail. So for now, Balloon_Trip will incorrectly state that there is no path when in some perfectly make cases, there

actually is a path that can be followed. In almost every other set of weather conditions Balloon_Trip will work

correctly. And while I have shown it can handle a very large set of weather conditions in most practical applications

it would probably never need to use such a large number of data conditions.

 Another drawback to my program is that it does require a rather detailed set of data, not only for the wind

conditions, but also for how the balloon handles in rising and descending. The program always assumes that the

balloon is either rising or falling at its maximum acceleration for that direction of travel. It does the same for the

horizontal speed of the balloon, assuming that it is always travelling at the speed of the wind it is in, regardless of

the nature of the wind that the balloon just exited.

V. Conclusion

In conclusion, my navigation program Balloon_Trip is not perfectly refined. It has a few built in assumptions

that make it a rough navigation tool. But it could still easily be used as a guide for navigating a hot air balloon

through the air from one location to another. By following its chosen flight path, you are guaranteed to come close

to the correct landing site. How close would depend entirely on the specific conditions on hand. Very fast winds or

a very large number of them would lead to being pushed more off course. But that means that the opposite is true as

well: calm winds with a fewer number of them to navigate through would lessen any error to landing at the desired

location.

American Institute of Aeronautics and Astronautics

13

References
1Briggs, C. S. (1986). Ballooning. Minneapolis, Minnesota: Lerner Publications Company.

2Owen, D. (1999). Lighter Than Air. Edison, New Jersey: Chartwell Books.

Appendix

Program MATLAB Code
function [Total_Distance, Coordinates, Wind, Start, End, a] =...

 Balloon_Trip(Graph, Fig_Num, Display, Random,...

 Wind, Start, End, a)

%[Total_Distance, Coordinates, Wind, Start, End, a] =...

% Balloon_Trip(Graph, Fig_Num, Display, Random,...

% Wind, Start, End, a)

%

%Balloon Trip Function Final Version

%Senior Project

%Navigation program used to Travel from some Start location to some End

% location while in a Hot-Air Balloon

%By Dustin Blackwell

%

%%

%%%%%%%%%%%%%

%INPUTS

%Graph = on / off switch for graphing

% = 1 for on

% = 0 for off

%Fig_Num = Maxtrix of Figure Numbers for the 5 graphs

% If one of the Values is set to "0" then that graph will not

% display, and will output a message saying so

% EX: [5 9 0 14 99]

%Display = on / off switch for displaying outputs,tables,

% and other various messages

% = 1 for on

% = 0 for off

%Random = Controls the built in Random Data Generator

% can only be used if "Wind," "Start," "End," and "a"

% variables are not defined

% = 0 for off

% = 0 for Default random paramaters with "Wind," "Start,"

% "End," and "a" variables not defined

% = [(Number of Elevations) (Min WindSpeed) (Max WindSpeed);

% (Max Elevation) (Min Accerleration) (Max Acceleration);

% (Min X) (Min Y) (Min Z); {for Start and End Locations}

% (Max X) (Max Y) (Max Z);] {for Start and End Locations}

% with "Wind," "Start," "End," and "a" variables not defined

% (Number of Elevations) must be geater than 0

% (Min WindSpeed), (Min Z), (Min_a) can be defined as lower

% than Zero but will be reset as Zero within the program

% Default: [50 0 30; 50000 0 10; 0 0 0; 7000 6000 9000;]

%Wind = Wind Matrix

% Contains the neccessary Atmospheric Conditions

% [Wind_Speed, Direction, Elevation]

%>Wind_Speed= Matrix that contains all the didfferent Wind Speed Values

% in the atmosphere

% All values should be positive

% EX: [WS_1; WS_2; WS_3...etc]

% Units: Feet per Minute

%>Direction = Matrix that contains all the different Wind Direction

% Values in the atmosphere

% EX: [WD_1; WD_2; WD_3...etc]

% Units: Degrees, based off...

American Institute of Aeronautics and Astronautics

14

% East = 0, 360 Degrees

% North = 90 Degrees

% West = 180 Degrees

% South = 270 Degrees

%>Elevation = Matrix that contains all the different Maximum Wind

% Elevation Values in the atmosphere

% All values should be positive

% EX: [WE_1; WE_2; WE_3...etc]

% Units: Feet

%Start = Start Position (on Ground)

% Matrix that contains the Start Position for the Balloon

% [X_S, Y_S, Z_S]

% Units: Feet, from Origin (0,0,0)

%End = End Position (on Ground)

% Matrix that contains the End Position for the Balloon

% [X_E, Y_E, Z_E]

% Units: Feet, from Origin (0,0,0)

%>>Orientation= In terms of the compass:

% North = + Y Direction

% South = - Y Direction

% East = + X Direction

% West = - X Direction

%a = Acceleration Matrix

% Matrix that contains the Rising and Falling Acceleration

% that the Balloon travels at

% Both values should be inputted as positive numbers

% [a_rise, a_fall]

%>a_rise = Acceleration for the Balloon when Rising in Elevation

% Units: Feet per Second Squared

%>a_fall = Acceleration for the Balloon when Falling in Elevation

% Units: Feet per Second Squared

%

%%

%%%%%%%%%%%%%

%OUTPUTS

%Total_Distance = Total Distance that is travelled from Start

% Location to End Location

%Coordinates = Coordinates used to travel from Start to End

%Wind, Start, End, a = Input Matricies used, User or randomly generated

%

warning('off', 'MATLAB:divideByZero');%Turns OFF divide by Zero Warnings

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%nargin's

%if too many or too few variables

if nargin < 4 || nargin > 8

 error('Incorrect Number of Input Variables')

end

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Random Data Creation

American Institute of Aeronautics and Astronautics

15

%using default random parameters

if nargin < 5

 if Random == 0

 Random = [50 0 30;...

 50000 0 10;...

 0 0 0;...

 7000 6000 9000;];

 end

 [R_Wind, R_Start, R_End, R_a] = SUB_Random_Balloon_Trip(Random);

 Wind = R_Wind;

 Start = R_Start;

 End = R_End;

 a = R_a;

end

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Errors

%Graph variable set to an incorrect value

if Graph ~= 1 && Graph ~= 0

 error('Choose either 1 or 0 for ''Graph'' Variable only');

end

%Fig_Num Matrix does not have exactly 5 Values

if length(Fig_Num) ~= 5

 error('''Fig_Num'' Variable must ALWAYS contain exactly 4 Values');

end

%Display variable set to an incorrect value

if Display ~= 1 && Display ~= 0

 error('Choose either 1 or 0 for ''Display'' Variable only');

end

%Wind Matrix is not a N x 3 Matrix

if size(Wind) ~= 3

 E1 = '''Wind'' Matrix must ALWAYS be a N x 3 Matrix';

 E2 = ', where N can be any non-negative integer';

 E = [E1 E2];

 error(E);

end

%Start variable does not have exactly 3 values

if length(Start) ~= 3

 error('''Start'' Variable must ALWAYS contain exactly 3 Values');

end

%End variable does not have exactly 3 values

if length(End) ~= 3

 error('''End'' Variable must ALWAYS contain exactly 3 Values');

end

%a Variable does not have 2 values

if length(a) ~= 2

 error('''a'' Variable must ALWAYS contain exactly 2 Values');

end

%End of Section

American Institute of Aeronautics and Astronautics

16

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Inputs

Wind_Speed = Wind(:,1)*60/1;%Speed matrix for Wind, in seconds

Direction = Wind(:,2);%Directional Matrix for Wind

Elevation = Wind(:,3);%Elevation for Wind

[Wind_C] = size(Wind);%Number of Columns and Rows in Wind

%%

%%%%%%%%%%%%%

X_S = Start(1,1);%Starting X Location

Y_S = Start(1,2);%Starting Y Location

Z_S = Start(1,3);%Starting Z Location

%%

%%%%%%%%%%%%%

X_E = End(1,1);%End X Location

Y_E = End(1,2);%End Y Location

Z_E = End(1,3);%End Z Location

%%

%%%%%%%%%%%%%

a_rise = a(1,1);%Rising Acceleration

a_fall = a(1,2);%Falling Acceleration

%%

%%%%%%%%%%%%%

%Re-stating Direction so that each Direction value is between

% +360 and 0

while max(Direction) >= 360 || min(Direction) < 0

 for i = 1:Wind_C

 if Direction(i,1) >= 360

 Direction(i,1) = Direction(i,1) - 360;

 elseif Direction(i,1) < 0

 Direction(i,1) = Direction(i,1) + 360;

 end

 end

end

for i = 1:Wind_C

 if Direction(i,1) == 90 || Direction(i,1) == 270

 Direction(i,1) = Direction(i,1) + .0001;

 end

end

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Constants and Variables Directly based on Inputs

X = [X_S];%x component of the Location Variable (North / South)

X_1 = X(length(X));%X1

Y = [Y_S];%y component of the Location Variable (West / East)

Y_1 = Y(length(Y));%Y1

Z = [Z_S];%z component of the Location Variable (Elevation)

Z_1 = Z(length(Z));%Z1

X_bar = [X_E - X_S];%Distance between X Start and End locations

Y_bar = [Y_E - Y_S];%Distance between Y Start and End locations

American Institute of Aeronautics and Astronautics

17

Z_bar = [Z_E - Z_S];%Distance between Z Start and End locations

Q = atand(Y_bar / X_bar);%Angle to x/y End location from Start location

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Trip Calculator

%Step 1, Possible Horizontal movement during the 1st Elevation Change

%Step 2, Initial Direction Chooser

%Step 3, Calculate 2nd Elevation Change Movement

%Step 4, Possible Horizontal movement during the Final Elevation Change

%Step 5, Final Direction Chooser

%Step 6, Remaining Coordinate Variables

%%

%%%%%%%%%%%%%

%Step 1

%Possible Horizontal movement during the 1st Elevation Change

for i = 1:Wind_C

 if i == 1

 if Elevation(i,1) < Z_S

 %set values to NaN if the elevation is lower that start

 %elevation

 X2(i,i) = NaN;

 Y2(i,i) = NaN;

 Z2(i,i) = NaN;

 Time2(i) = NaN;

 H2(i) = NaN;

 Q2(i) = NaN;

 else

 %Calculate values for i=1

 [D2, C2, S2] = SUB_Direction(Direction(i,1));

 a2 = a_rise;

 Time2(i) = ((Elevation(i,1) - Z_S) / a2)^.5;

 X2(i,i) = X_S + C2 * Wind_Speed(i,1) * Time2(i);

 Y2(i,i) = Y_S + S2 * Wind_Speed(i,1) * Time2(i);

 Z2(i,i) = Elevation(i,1);

 H2(i) = ((Wind_Speed(i,1) * Time2(i))^2 +...

 (Elevation(i,1) - Z_S)^2)^.5;

 Q2(i) = [atand((abs(Y_E - Y2(i))) /...

 (abs(X_E - X2(i))))];

 %make sure that Q2 is in the correct direction

 if X2(i,i) > X_E

 if Y2(i,i) > Y_E

 Q2(i) = Q2(i) + 180;

 elseif Y2(i,i) <= Y_E

 Q2(i) = 180 - Q2(i);

 end

 elseif X2(i,i) <= X_E

 if Y2(i,i) > Y_E

 Q2(i) = 360 - Q2(i);

 elseif Y2(i,i) <= Y_E

 Q2(i) = Q2(i);

 end

 end

American Institute of Aeronautics and Astronautics

18

 end%end i=1

 %set k for use in Elevation values above Z_E

 k = i;%[k=1]

 elseif i ~=1

 if Elevation(i,1) < Z_S

 %set values to NaN if the elevation is lower that start

 %elevation

 X2(i,i) = NaN;

 Y2(i,i) = NaN;

 Z2(i,i) = NaN;

 Time2(i) = NaN;

 H2(i) = NaN;

 Q2(i) = NaN;

 %set k for use in Elevation values above Z_E

 k = i;

 else

 %Calculate values for i>1

 for j = k+1:i

 %calculate various values for each elevation change up to

 %to the "final elevation" of (i)

 if Elevation(j-1,1) < Z_S

 Elevationj(j-1) = Z_S;

 else

 Elevationj(j-1) = Elevation(j-1,1);

 end

 if j == k+1 && isnan(X2(1,1)) ~= 1 && isnan(Y2(1,1)) ~= 1

 Xj(j-1) = X2(1,1);

 Yj(j-1) = Y2(1,1);

 elseif j == k+1

 Xj(j-1) = X_S;

 Yj(j-1) = Y_S;

 else

 Xj(j-1) = Xj(j-1);

 Yj(j-1) = Yj(j-1);

 end

 [D2,C2,S2] = SUB_Direction(Direction(j,1));

 a2 = a_rise;

 Timej(j) = ((Elevation(j,1) - Elevationj(j-1)) / a2)^.5;

 Xj(j)= Xj(j-1) + C2 * Wind_Speed(j,1) * Timej(j);

 Yj(j)= Yj(j-1) + S2 * Wind_Speed(j,1) * Timej(j);

 Hj(j) = ((Wind_Speed(j,1) * Timej(j))^2 +...

 (Elevation(j,1) - Elevationj(j-1))^2)^.5;

 X2(i,j) = [Xj(j)];%final value in Xj

 Y2(i,j) = [Yj(j)];%final value in Yj

 Z2(i,j) = Elevation(j,1);

 end

 %end calculated values

 Time2(i) = [sum(Timej)];%sum of time it took to get from

 %start to Elevation(i)

 H2(i) = [sum(Hj)];%sume of distance traveled

 Q2(i) = [atand((abs(Y_E - Y2(i,i))) /...

 (abs(X_E - X2(i,i))))];

 %direction from (X2(i),Y2(i)) to (X_E,Y_E)

 %make sure that Q2 is in the correct direction

 if X2(i,i) > X_E

American Institute of Aeronautics and Astronautics

19

 if Y2(i,i) > Y_E

 Q2(i) = Q2(i) + 180;

 elseif Y2(i,i) <= Y_E

 Q2(i) = 180 - Q2(i);

 end

 elseif X2(i,i) <= X_E

 if Y2(i,i) > Y_E

 Q2(i) = 360 - Q2(i);

 elseif Y2(i,i) <= Y_E

 Q2(i) = Q2(i);

 end

 end

 %Clear "j" variables for use in next "i" Value

 clear Timej Xj Yj Hj

 end%end i~=1

 end%end if i

end%end for i

%Step 1 "Outputs"

X2;%Starting location after 1st Elevation change in X

Y2;%"New" Starting location after 1st Elevation change in Y

Z2;%"New" Starting location after 1st Elevation change in Z

H2;%Distances from (X_S,Y_S,Z_S) to (X2,Y2,Z2)

Q2;%Directions from (X2,Y2) to (X_E,Y_E)

clear D2;%clears D2 Variable for so that it can be used in the next step

%%

%%%%%%%%%%%%%

%Step 2

%Initial Direction Chooser

for i = 1:Wind_C

 for j = 1:Wind_C

 D2(i) = Direction(i,1);

 %Find the difference between the Wind directions and the direction

 %between the start and end location

 ID(i,j) = abs(D2(i) - Q2(j));

 %makes sure that the Initial_Elevation is above the start location

 if Elevation(i) < Z_S

 ID(i,j) = NaN;

 end

 end%end for j

end%end for i

%Find the angle direction closest to that of the angle

%between Start and End Locations

[ID_V1, ID_I1] = min(ID);

[ID_V2, ID_I2] = min(ID_V1);

ID_I = ID_I2;

ID_V = ID_V2;

Initial_Direction = Direction(ID_I1(ID_I2),1);

%Initial Horizontal Direction chosen to travel

Initial_Wind_Speed = Wind_Speed(ID_I1(ID_I2),1);

American Institute of Aeronautics and Astronautics

20

%Initial Horizontal Wind Speed

Initial_Elevation = Elevation(ID_I1(ID_I2),1);

%Initial Horizontal Wind Speed Elevation

if isnan(X2(1,1)) == 1

 I=0;

else

 if isnan(Y2(1,1)) == 1

 I=0;

 else

 I = 1;

 X(2) = X2(1,1);

 Y(2) = Y2(1,1);

 Z(2) = Z2(1,1);

 end

end

for i = k+1:ID_I1(ID_I2)

 if ID_I1(ID_I2) == 1

 else

 X(i+I-k+1) = [X2(ID_I1(ID_I2),i)];

 %Initial Horizontal Movement start in X

 Y(i+I-k+1) = [Y2(ID_I1(ID_I2),i)];

 %Initial Horizontal Movement start in Y

 Z(i+I-k+1) = [Z2(ID_I1(ID_I2),i)];

 %Initial Horizontal Movement start in Z

 end

end

%get rid of incorrectly added NaNs and Zeros

for i = 1:length(X)

 if X(i) == 0 && Y(i) == 0 && Z(i) == 0 && i ~= 1

 ii(i) = i;

 else

 ii(i) = 0;

 end

end

XYZ = 0;

for i = 1:length(X)

 if ii(i) == i

 XYZ = XYZ + 1;

 XX(i) = X(i+XYZ);

 YY(i) = Y(i+XYZ);

 ZZ(i) = Z(i+XYZ);

 elseif i+XYZ <= length(X)

 XX(i) = X(i+XYZ);

 YY(i) = Y(i+XYZ);

 ZZ(i) = Z(i+XYZ);

 end

end

clear X Y Z

X = XX;

Y = YY;

Z = ZZ;

clear XX YY ZZ i j

X_2 = X(length(X));%X2

Y_2 = Y(length(Y));%Y2

Z_2 = Z(length(Z));%Z2

Distance(1) = [H2(ID_I1(ID_I2))];

%Distance from Start to Initial Horizontal start

American Institute of Aeronautics and Astronautics

21

%%

%%%%%%%%%%%%%

%Step 3

%Calculate 2nd Elevation Change Movement

for iii = 1:Wind_C

 if Initial_Elevation >= Elevation(iii,1)

 %higher elevation to lower

 a2P = a_fall;

 count = 0;

 for i = 1:Wind_C

 if Elevation(i,1) == Initial_Elevation

 j = i;

 jj = i;

 end

 end

 for i = 1:Wind_C

 if Elevation(i,1) < Elevation(iii,1)

 %do nothing

 count = count;

 elseif Elevation(i,1) > Initial_Elevation

 %do nothing

 count = count;

 else

 %Stuff happens here

 count = count +1;

 if count == 1

 [D2P, C2P, S2P] = SUB_Direction(Direction(j,1));

 Time2P(count,iii) = ((Elevation(j,1) - Z(length(Z)))...

 / a2P)^.5;

 WS2P(count,iii) = Wind_Speed(j,1);

 X2_PRIME(count,iii) = X(length(X)) +...

 C2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Y2_PRIME(count,iii) = Y(length(Y)) +...

 S2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Z2_PRIME(count,iii) = Z(length(Z));

 DeltaX(count,iii) = X2_PRIME(count,iii) - X(length(X));

 DeltaY(count,iii) = Y2_PRIME(count,iii) - Y(length(Y));

 else

 j = j - 1;

 [D2P, C2P, S2P] = SUB_Direction(Direction(j+1,1));

 Time2P(count,iii) = ((Elevation(j+1,1) -...

 Elevation(j,1))...

 / a2P)^.5;

 WS2P(count,iii) = Wind_Speed(j,1);

 X2_PRIME(count,iii) = X2_PRIME(count-1,iii) +...

 C2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Y2_PRIME(count,iii) = Y2_PRIME(count-1,iii) +...

 S2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Z2_PRIME(count,iii) = Elevation(j,1);

 DeltaX(count,iii) = X2_PRIME(count,iii) - X(length(X));

 DeltaY(count,iii) = Y2_PRIME(count,iii) - Y(length(Y));

 end%End if

 end%End if

 end%End for i

 elseif Initial_Elevation < Elevation(iii,1)

American Institute of Aeronautics and Astronautics

22

 %lower elevation to hogher

 a2P = a_rise;

 count = 0;

 for i = 1:Wind_C

 if Elevation(i,1) < Initial_Elevation

 %do nothing

 count = count;

 elseif Elevation(i,1) > Elevation(iii,1)

 %do nothing

 count = count;

 elseif Elevation (i,1) >= Initial_Elevation

 %Stuff happens here

 count = count +1;

 if count == 1

 [D2P, C2P, S2P] = SUB_Direction(Direction(i,1));

 Time2P(count,iii) = ((Elevation(i,1) - Z(length(Z)))...

 / a2P)^.5;

 WS2P(count,iii) = Wind_Speed(i,1);

 X2_PRIME(count,iii) = X(length(X)) +...

 C2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Y2_PRIME(count,iii) = Y(length(Y)) +...

 S2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Z2_PRIME(count,iii) = Z(length(Z));

 DeltaX(count,iii) = X2_PRIME(count,iii) - X(length(X));

 DeltaY(count,iii) = Y2_PRIME(count,iii) - Y(length(Y));

 else

 [D2P, C2P, S2P] = SUB_Direction(Direction(i,1));

 Time2P(count,iii) = ((Elevation(i,1) -...

 Elevation(i-1,1))...

 / a2P)^.5;

 WS2P(count,iii) = Wind_Speed(i,1);

 X2_PRIME(count,iii) = X2_PRIME(count-1,iii) +...

 C2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Y2_PRIME(count,iii) = Y2_PRIME(count-1,iii) +...

 S2P * WS2P(count,iii) *...

 Time2P(count,iii);

 Z2_PRIME(count,iii) = Elevation(i,1);

 DeltaX(count,iii) = X2_PRIME(count,iii) - X(length(X));

 DeltaY(count,iii) = Y2_PRIME(count,iii) - Y(length(Y));

 end%End if

 end%End if

 end%End for i

 end%End if higher or lower

end%End for iii

%%

%%%%%%%%%%%%%

%Step 4

%Possible Horizontal movement during the Final Elevation Change

for i = 1:Wind_C

 if i == 1

 if Elevation(i,1) < Z_E

 %set values to NaN if the elevation is lower that end

 %elevation

 X5(i,i) = NaN;

 Y5(i,i) = NaN;

American Institute of Aeronautics and Astronautics

23

 Z5(i,i) = NaN;

 Time5(i) = NaN;

 H5(i) = NaN;

 else

 %Calculate values for i=1

 [D3, C3, S3] = SUB_Direction(Direction(i,1)+180);

 a5 = a_fall;

 Time5(i) = ((Elevation(i,1) - Z_E) / a5)^.5;

 X5(i,i) = X_E + C3 * Wind_Speed(i,1) * Time5(i);

 Y5(i,i) = Y_E + S3 * Wind_Speed(i,1) * Time5(i);

 H5(i) = ((Wind_Speed(i,1) * Time5(i))^2 +...

 (Elevation(i,1) - Z_E)^2)^.5;

 Z5(i,i) = Elevation(i,1);

 end%end i=1

 %set k for use in Elevation values above Z_E

 k = i;%[k=1]

 elseif i ~=1

 if Elevation(i,1) < Z_E

 %set values to NaN if the elevation is lower that end

 %elevation

 X5(i,i) = NaN;

 Y5(i,i) = NaN;

 Z5(i,i) = NaN;

 Time5(i) = NaN;

 H5(i) = NaN;

 %set k for use in Elevation values above Z_E

 k = i;

 else

 %Calculate values for i>1

 for f = k+1:i

 %calculate various values for each elevation change up to

 %to the "final elevation" of (i)

 if Elevation(f-1,1) < Z_E%if Elevation(k,1)<Z_E

 Elevationf(f-1) = Z_E;

 else

 Elevationf(f-1) = Elevation(f-1,1);

 end

 if f == k+1 && isnan(X5(1,1)) ~= 1 && isnan(Y5(1,1)) ~= 1

 Xf(f-1) = X5(1,1);

 Yf(f-1) = Y5(1,1);

 elseif f == k+1

 Xf(f-1) = X_E;

 Yf(f-1) = Y_E;

 else

 Xf(f-1) = Xf(f-1);

 Yf(f-1) = Yf(f-1);

 end

 [D3,C3,S3] = SUB_Direction(Direction(f,1)+180);

 a5 = a_fall;

 Timef(f) = ((Elevation(f,1) - Elevationf(f-1)) / a5)^.5;

 Xf(f)= Xf(f-1) + C3 * Wind_Speed(f,1) * Timef(f);

 Yf(f)= Yf(f-1) + S3 * Wind_Speed(f,1) * Timef(f);

 Hf(f) = ((Wind_Speed(f,1) * Timef(f))^2 +...

 (Elevation(f,1) - Elevationf(f-1))^2)^.5;

 X5(i,f) = [Xf(f)];%final value in Xf

 Y5(i,f) = [Yf(f)];%final value in Yf

 Z5(i,f) = Elevation(f,1);

American Institute of Aeronautics and Astronautics

24

 end

 %end calculated values

 Time5(i) = [sum(Timef)];%sum of time it took to get from

 %end to Elevation(i)

 H5(i) = [sum(Hf)];%sum of the distance traveled

 %Clear "f" variables for use in next "i" Value

 clear Timef Xf Yf Hf

 end%end i~=1

 end%end if i

end%end for i

%re-set Complex values to NaNs

for i = 1:length(X5)

 for j = 1:length(X5)

 REAL_X(i,j) = isreal(X5(i,j));

 REAL_Y(i,j) = isreal(Y5(i,j));

 REAL_Z(i,j) = isreal(Z5(i,j));

 if REAL_X(i,j) == 0

 X5(i,j) = NaN;

 end

 if REAL_Y(i,j) == 0

 Y5(i,j) = NaN;

 end

 if REAL_Z(i,j) == 0

 Z5(i,j) = NaN;

 end

 end

 REAL_T(i) = isreal(Time5(1,i));

 REAL_H(i) = isreal(H5(1,i));

 if REAL_T(i) == 0

 Time5(1,i) = NaN;

 end

 if REAL_H(i) == 0

 H5(1,i) = NaN;

 end

end

%Step 3 "Outputs"

X5;%Starting location before Final Elevation change in X

Y5;%Starting location before Final Elevation change in Y

Z5;%Starting location before Final Elevation change in Z

H5;%Distances from (X5,Y5,Z5) to (X_E,Y_E,Z_E)

%%

%%%%%%%%%%%%%

%Step 5

%Final Direction Chooser

for i = 1:Wind_C

 if i == ID_I1(ID_I2)

 %Set A_Bar so that the inital direction is not chossen again.

 LDX(i) = NaN;

 LDY(i) = NaN;

 X_2E(i) = NaN;

 Y_2E(i) = NaN;

 X_F(i) = NaN;

 Y_F(i) = NaN;

 A_Bar(i) = NaN;

 DF(i) = NaN;

 CF(i) = NaN;

 SF(i) = NaN;

American Institute of Aeronautics and Astronautics

25

 TF(i) = NaN;

 Q5(i) = NaN;

 else

 %Find the Distance from the Initial direction line and the Final

 %direction line

 LDX(i) = length(DeltaX(:,i));

 LDY(i) = length(DeltaY(:,i));

 XY0 = 0;

 j = 0;

 while XY0 == 0

 LDX0 = DeltaX(LDX(i)-j,i) - 0;

 LDY0 = DeltaY(LDY(i)-j,i) - 0;

 if LDX0 ~= 0 && LDY0 ~= 0

 XY0 = 1;

% elseif j == LDX(i) && LDX0 ~= 0 && LDY0 ~= 0

%

 else

 j = j + 1;

 end

 end

 LDX(i) = LDX(i) - j;

 LDY(i) = LDY(i) - j;

 X_2E(i) = [X(length(X)) + DeltaX(LDX(i),i)];

 Y_2E(i) = [Y(length(Y)) + DeltaY(LDY(i),i)];

 [DF(i), CF(i), SF(i), TF(i)] = SUB_Direction(Direction(i,1) + 180);

 X_F(i) = ((Y5(i,i) - Y_2E(i)) +...

 (X_2E(i) * tand(Initial_Direction)) -...

 (X5(i,i) * TF(i))) /...

 (tand(Initial_Direction) - TF(i));

 Y_F(i) = Y5(i,i) + TF(i) * (X_F(i) - X5(i,i));

 A_Bar(i) = ((X5(i,i) - X_F(i))^2 + (Y5(i,i) - Y_F(i))^2)^.5;

 %make sure that Q5 is the correct direction

 if X_F(i)>X5(i,i) && isnan(X_F(i))~=1 && isnan(X5(i,i))~=1....

 && isinf(X_F(i))~=1 && isinf(X5(i,i))~=1

 if Y_F(i)>Y5(i,i) && isnan(Y_F(i))~=1 && isnan(Y5(i,i))~=1....

 && isinf(Y_F(i))~=1 && isinf(Y5(i,i))~=1

 Q5(i) = atand((abs(Y_F(i)-Y5(i,i))) /...

 (abs(X_F(i)-X5(i,i)))) + 180;

 elseif Y_F(i)<=Y5(i,i)&&isnan(Y_F(i))~=1&&isnan(Y5(i,i))~=1....

 && isinf(Y_F(i))~=1 && isinf(Y5(i,i))~=1

 Q5(i) = 180 - atand((abs(Y_F(i)-Y5(i,i))) /...

 (abs(X_F(i)-X5(i,i))));

 end

 elseif X_F(i)<=X5(i,i) && isnan(X_F(i))~=1 && isnan(X5(i,i))~=1....

 && isinf(X_F(i))~=1 && isinf(X5(i,i))~=1

 if Y_F(i)>Y5(i,i) && isnan(Y_F(i))~=1 && isnan(Y5(i,i))~=1....

 && isinf(Y_F(i))~=1 && isinf(Y5(i,i))~=1

 Q5(i) = 360 - atand((abs(Y_F(i)-Y5(i,i))) /...

 (abs(X_F(i)-X5(i,i))));

 elseif Y_F(i)<=Y5(i,i)&&isnan(Y_F(i))~=1&&isnan(Y5(i,i))~=1....

 && isinf(Y_F(i))~=1 && isinf(Y5(i,i))~=1

 Q5(i) = atand((abs(Y_F(i)-Y5(i,i))) /...

 (abs(X_F(i)-X5(i,i))));

 end

 else

 Q5(i) = NaN;

 end

 %check if Q5(i) = Direction(i,1)

American Institute of Aeronautics and Astronautics

26

 if abs(Q5(i) - Direction(i,1)) <= .000001

 A_Bar(i) = A_Bar(i);

 else

 A_Bar(i) = NaN;

 end

 %make sure that the direction between X_F etc and X_2 etc are

 %valid with the Wind Direction

 if X_F(i) > X_2E(i) && isnan(X_F(i)) ~= 1 && isinf(X_F(i)) ~= 1

 if Y_F(i) > Y_2E(i) && isnan(Y_F(i)) ~= 1 && isinf(Y_F(i)) ~= 1

 Q4(i) = atand((abs(Y_F(i)-Y_2E(i))) /...

 (abs(X_F(i)-X_2E(i))));

 elseif Y_F(i)<=Y_2E(i) && isnan(Y_F(i))~=1 && isinf(Y_F(i))~=1

 Q4(i) = 360 - atand((abs(Y_F(i)-Y_2E(i))) /...

 (abs(X_F(i)-X_2E(i))));

 end

 elseif X_F(i) <= X_2E(i) && isnan(X_F(i))~=1 && isinf(X_F(i))~=1

 if Y_F(i) > Y_2E(i) && isnan(Y_F(i)) ~= 1 && isinf(Y_F(i)) ~= 1

 Q4(i) = 180 - atand((abs(Y_F(i)-Y_2E(i))) /...

 (abs(X_F(i)-X_2E(i))));

 elseif Y_F(i)<=Y_2E(i) && isnan(Y_F(i))~=1 && isinf(Y_F(i))~=1

 Q4(i) = atand((abs(Y_F(i)-Y_2E(i))) /...

 (abs(X_F(i)-X_2E(i)))) + 180;

 end

 else

 Q4(i) = NaN;

 end

 %check if Q4(i) = Initial_Direction

 if abs(Q4(i) - Initial_Direction) <= .000001

 A_Bar(i) = A_Bar(i);

 else

 A_Bar(i) = NaN;

 end

 end%end if

end%END for

[FD_V, FD_I] = min(A_Bar);%Find the minimum distance that can be travelled

%from the first wind direction to the end location by chosening the second

%direction

Distance(4) = [FD_V];

%Second Horizontal Location Change

%if there is no answer, set NO_ANSWER to 1 to act as a trigger later

%Value used when no answer is capable

NA = isnan(FD_V);

if NA == 1

 NO_ANSWER = 1;

elseif NA ~= 1

 NA = isinf(FD_V);

 if NA == 1

 NO_ANSWER = 1;

 elseif NA ~= 1

 NO_ANSWER = 0;

 end

end

Final_Direction = Direction(FD_I,1);%Final Direction chosen to travel

Final_Wind_Speed = Wind_Speed(FD_I,1);%Final Wind Speed

Final_Elevation = Elevation(FD_I,1);%Final Wind Speed Elevation

American Institute of Aeronautics and Astronautics

27

%%

%%%%%%%%%%%%%

%Step 6

%Remaining Coordinate Variables

if NO_ANSWER == 0

 X(length(X) + (LDX(FD_I))) = [X_F(FD_I)];%X4

 Y(length(Y) + (LDX(FD_I))) = [Y_F(FD_I)];%Y4

 Z(length(Z) + (LDX(FD_I))) = [Final_Elevation];%Z4

 X_4 = X(length(X));%X4

 L4X = length(X);

 Y_4 = Y(length(Y));%Y4

 L4Y = length(Y);

 Z_4 = Z(length(Z));%Z4

 L4Z = length(Z);

 X(length(X) - (LDX(FD_I)) + 1) =...

 [X(length(X)) - DeltaX(LDX(FD_I),FD_I)];

 Y(length(Y) - (LDX(FD_I)) + 1) =...

 [Y(length(Y)) - DeltaY(LDX(FD_I),FD_I)];

 Z(length(Z) - (LDX(FD_I)) + 1) =...

 [Z2_PRIME(1,FD_I)];

 XX = X(length(X) - (LDX(FD_I)) + 1);

 YY = Y(length(Y) - (LDX(FD_I)) + 1);

 j = 1;

 for i = 1:LDX(FD_I)-1

 X(length(X) - (LDX(FD_I)) + 1 + j) = [XX + DeltaX(i+1,FD_I)];

 Y(length(Y) - (LDX(FD_I)) + 1 + j) = [YY + DeltaY(i+1,FD_I)];

 Z(length(Z) - (LDX(FD_I)) + 1 + j) = [Z2_PRIME(i+1,FD_I)];

 H3(i) = [((WS2P(i+1,FD_I) * Time2P(i+1,FD_I))^2 +...

 (Z(length(Z) - (LDX(FD_I)) + 1 + j) -...

 Z(length(Z) - (LDX(FD_I)) + 1 + j -1))^2)^.5];

 j = j + 1;

 end

 clear XX YY;

 X_3 = X(length(X) - (LDX(FD_I)) + 1);%X3

 Y_3 = Y(length(Y) - (LDX(FD_I)) + 1);%Y3

 Z_3 = Z(length(Z) - (LDX(FD_I)) + 1);%Z3

 Distance(2) = [((X_3 - X_2)^2 +...

 (Y_3 - Y_2)^2)^.5];

 %First Horizontal Location Change

 Distance(3) = [sum(H3)];

 %Second Elevation Change

 j = FD_I;

 for i = length(X)+1:length(X)+FD_I

 if j == 1

 %Initial Horizontal Movement start in X

 X(i) = [X5(j,j)];

 %Initial Horizontal Movement start in Y

 Y(i) = [Y5(j,j)];

 %Initial Horizontal Movement start in Z

 Z(i) = [Z5(j,j)];

 else%if j ~=1

 %Initial Horizontal Movement start in X

 X(i) = [X5(FD_I,j)];

American Institute of Aeronautics and Astronautics

28

 %Initial Horizontal Movement start in Y

 Y(i) = [Y5(FD_I,j)];

 %Initial Horizontal Movement start in Z

 Z(i) = [Z5(FD_I,j)];

 j = j-1;

 end

 end

 %get rid of incorrectly added NaNs and Zeros

 while isnan(X(length(X))) == 1

 for i = 1:length(X)-1

 XX(i) = X(i);

 YY(i) = Y(i);

 ZZ(i) = Z(i);

 end

 clear X Y Z

 X = XX;

 Y = YY;

 Z = ZZ;

 clear XX YY ZZ

 end

 while X(length(X)) == 0 && Y(length(Y)) == 0 && Z(length(Z)) == 0

 for i = 1:length(X)-1

 XX(i) = X(i);

 YY(i) = Y(i);

 ZZ(i) = Z(i);

 end

 clear X Y Z

 X = XX;

 Y = YY;

 Z = ZZ;

 clear XX YY ZZ

 end

 X_5 = X(L4X+1);%X5

 Y_5 = Y(L4Y+1);%Y5

 Z_5 = Z(L4Z+1);%Z5

 Distance(5) = [H5(FD_I)];

 %Third Elevation Change

 X(length(X)+1) = [X_E];%X6

 Y(length(Y)+1) = [Y_E];%Y6

 Z(length(Z)+1) = [Z_E];%Z6

 X_6 = X(length(X));%X6

 Y_6 = Y(length(Y));%Y6

 Z_6 = Z(length(Z));%Z6

end

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Outputs

%Commented out Values are computed earlier, but shown here for reference

%Distance Calculator

%Distance(1) = [H2(ID_I1(ID_I2))];

American Institute of Aeronautics and Astronautics

29

%First Elevation Change

%Distance(2) = [((X_3 - X_2)^2 +...

% (Y_3 - Y_2)^2)^.5];

%First Horizontal Location Change

%Distance(3) = [sum(H3)];

%Second Elevation Change

%Distance(4) = [FD_V];

%Second Horizontal Location Change

%Distance(5) = [H5(FD_I)];

%Third Elevation Change

[Final_Distance] = sum(Distance);%Sum of the Distances Travelled

%if there is no answer, set the Final_Distance to NaN

if NO_ANSWER == 1

 Final_Distance = NaN;

end

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Final Outputs

Total_Distance = [Final_Distance];

%Total Distance Travelled

%if there is no answer, set the Coordinates to NaN

if NO_ANSWER == 1

 X = [X_S X_E];

 Y = [Y_S Y_E];

 Z = [Z_S Z_E];

end

if nargin < 5

 Wind = R_Wind;

 Start = R_Start;

 End = R_End;

 a = R_a;

else

 Wind = Wind;

 Start = Start;

 End = End;

 a = a;

end

%Set of Coordinates for travel

Coordinates = [X; Y; Z]';

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Tables

if Display == 1%Displaying the Outputs in 2 Tables

American Institute of Aeronautics and Astronautics

30

%%

%%%%%%%%%

%%

%%%%%%%%%

 %creating set pieces for creating the displayed tables

 if NO_ANSWER == 0

 %create basic table pieces

 dot1 = '.';

 dot2 = '..';

 dot3 = '...';

 dot4 = '....';

 dot5 = '.....';

 dot6 = '......';

 space = ' ';

 dash = '-';

 plus = '+';

 line = '|';

 TIME_STEP = 'seconds';

 end

%%

%%%%%%%%%

 %create Table1: Distance

 if NO_ANSWER == 0

 %Set up the 2nd Column of Table1

 DOTS = length('Value');

 if length(num2str(Total_Distance)) > DOTS

 DOTS = length(num2str(Total_Distance));

 end

 if DOTS > length('Value')

 dot_Value = DOTS - length('Value');

 else

 dot_Value = 0;

 end

 if DOTS > length(num2str(Total_Distance))

 dot_TD = DOTS - length(num2str(Total_Distance));

 else

 dot_TD = 0;

 end

 Ldot_Value = [dot_Value] + 3;

 Ldot_TD = [dot_TD] + 3;

 clear DOTS dot_Value dot_TD dot_TTT

 for i = 1:Ldot_Value

 dot_Value(i) = dot1;

 end

 for i = 1:Ldot_TD

 dot_TD(i) = dot1;

 end

 clear Ldot_Value Ldot_TD Ldot_TTT

%%

%%%%%

American Institute of Aeronautics and Astronautics

31

 %Set up the 3rd column of Table1

 DOTS = length('Units');

 if length('feet') > DOTS

 DOTS = length('feet');

 end

 if length(TIME_STEP) > DOTS

 DOTS = length(TIME_STEP);

 end

 if DOTS > length('Units')

 dot_Units = DOTS - length('Units');

 else

 dot_Units = 0;

 end

 if DOTS > length('feet')

 dot_feet = DOTS - length('feet');

 else

 dot_feet = 0;

 end

 if DOTS > length(TIME_STEP)

 dot_TS = DOTS - length(TIME_STEP);

 else

 dot_TS = 0;

 end

 Ldot_Units = [dot_Units] + 3;

 Ldot_feet = [dot_feet] + 3;

 Ldot_TS = [dot_TS] + 3;

 clear DOTS dot_Units dot_feet dot_TS

 for i = 1:Ldot_Units

 dot_Units(i) = dot1;

 end

 for i = 1:Ldot_feet

 dot_feet(i) = dot1;

 end

 for i = 1:Ldot_TS

 dot_TS(i) = dot1;

 end

 clear Ldot_Units Ldot_feet Ldot_TS

%%

%%%%%

 %Creation of Table1

 TITLE1 ='Balloon Trip Outputs';

 Title1 = strcat('..........Output...........', [line dot3],...

 'Value', [dot_Value], [line dot3],...

 'Units', [dot_Units]);

 TD = strcat('Total Distance Travelled', '...', [line dot3],...

 num2str(Total_Distance), [dot_TD], [line dot3],...

 'feet', [dot_feet]);

 ALMOST1 = char(TITLE1, Title1, TD);

 [trash S1] = size(ALMOST1);

 for i = 1:S1

 DASH1(i) = dash;

 PLUS1(i) = plus;

 end

American Institute of Aeronautics and Astronautics

32

 Table1 = char(space, PLUS1, space,...

 TITLE1, Title1, DASH1,...

 TD, DASH1,...

 space, PLUS1, space);

 disp(Table1);

 elseif NO_ANSWER == 1

 Table1 = strcat(...

 'There are no Outputs since there is no Path calculated');

 Table1 = char(Table1);

 disp(Table1);

 end

 %End of Table1

%%

%%%%%%%%%

%%

%%%%%%%%%

 %create Table2: Coordinates

 if NO_ANSWER == 0

 %Set up of 1st Column

 DOTS = length('X');

 if length(num2str(X_1)) > DOTS

 DOTS = length(num2str(X_1));

 end

 if length(num2str(X_2)) > DOTS

 DOTS = length(num2str(X_2));

 end

 if length(num2str(X_3)) > DOTS

 DOTS = length(num2str(X_3));

 end

 if length(num2str(X_4)) > DOTS

 DOTS = length(num2str(X_4));

 end

 if length(num2str(X_5)) > DOTS

 DOTS = length(num2str(X_5));

 end

 if length(num2str(X_6)) > DOTS

 DOTS = length(num2str(X_6));

 end

 if DOTS > length('X')

 dot_X = DOTS - length('X');

 else

 dot_X = 0;

 end

 if DOTS > length(num2str(X_1))

 dot_X1 = DOTS - length(num2str(X_1));

 else

 dot_X1 = 0;

 end

 if DOTS > length(num2str(X_2))

 dot_X2 = DOTS - length(num2str(X_2));

 else

 dot_X2 = 0;

 end

 if DOTS > length(num2str(X_3))

 dot_X3 = DOTS - length(num2str(X_3));

 else

American Institute of Aeronautics and Astronautics

33

 dot_X3 = 0;

 end

 if DOTS > length(num2str(X_4))

 dot_X4 = DOTS - length(num2str(X_4));

 else

 dot_X4 = 0;

 end

 if DOTS > length(num2str(X_5))

 dot_X5 = DOTS - length(num2str(X_5));

 else

 dot_X5 = 0;

 end

 if DOTS > length(num2str(X_6))

 dot_X6 = DOTS - length(num2str(X_6));

 else

 dot_X6 = 0;

 end

 if rem(dot_X,2) == 1

 %odd

 Ldot_bX = [(dot_X - 1) / 2];

 Ldot_aX = [(dot_X - 1) / 2 + 1]+3;

 elseif rem(dot_X,2) == 0

 %even

 Ldot_bX = [dot_X / 2];

 Ldot_aX = [dot_X / 2] + 3;

 end

 Ldot_X1 = [dot_X1] + 3;

 Ldot_X2 = [dot_X2] + 3;

 Ldot_X3 = [dot_X3] + 3;

 Ldot_X4 = [dot_X4] + 3;

 Ldot_X5 = [dot_X5] + 3;

 Ldot_X6 = [dot_X6] + 3;

 clear DOTS dot_X dot_X1 dot_X2 dot_X3 dot_X4 dot_X5 dot_X6

 for i = 1:Ldot_bX

 dot_bX(i) = dot1;

 end

 for i = 1:Ldot_aX

 dot_aX(i) = dot1;

 end

 for i = 1:Ldot_X1

 dot_X1(i) = dot1;

 end

 for i = 1:Ldot_X2

 dot_X2(i) = dot1;

 end

 for i = 1:Ldot_X3

 dot_X3(i) = dot1;

 end

 for i = 1:Ldot_X4

 dot_X4(i) = dot1;

 end

 for i = 1:Ldot_X5

 dot_X5(i) = dot1;

 end

 for i = 1:Ldot_X6

 dot_X6(i) = dot1;

 end

 clear Ldot_bX Ldot_aX Ldot_X1 Ldot_X2 Ldot_X3 Ldot_X4 Ldot_X5 Ldot_X6

American Institute of Aeronautics and Astronautics

34

%%

%%%%%

 %Set up of 2nd Column

 DOTS = length('Y');

 if length(num2str(Y_1)) > DOTS

 DOTS = length(num2str(Y_1));

 end

 if length(num2str(Y_2)) > DOTS

 DOTS = length(num2str(Y_2));

 end

 if length(num2str(Y_3)) > DOTS

 DOTS = length(num2str(Y_3));

 end

 if length(num2str(Y_4)) > DOTS

 DOTS = length(num2str(Y_4));

 end

 if length(num2str(Y_5)) > DOTS

 DOTS = length(num2str(Y_5));

 end

 if length(num2str(Y_6)) > DOTS

 DOTS = length(num2str(Y_6));

 end

 if DOTS > length('Y')

 dot_Y = DOTS - length('Y');

 else

 dot_Y = 0;

 end

 if DOTS > length(num2str(Y_1))

 dot_Y1 = DOTS - length(num2str(Y_1));

 else

 dot_Y1 = 0;

 end

 if DOTS > length(num2str(Y_2))

 dot_Y2 = DOTS - length(num2str(Y_2));

 else

 dot_Y2 = 0;

 end

 if DOTS > length(num2str(Y_3))

 dot_Y3 = DOTS - length(num2str(Y_3));

 else

 dot_Y3 = 0;

 end

 if DOTS > length(num2str(Y_4))

 dot_Y4 = DOTS - length(num2str(Y_4));

 else

 dot_Y4 = 0;

 end

 if DOTS > length(num2str(Y_5))

 dot_Y5 = DOTS - length(num2str(Y_5));

 else

 dot_Y5 = 0;

 end

 if DOTS > length(num2str(Y_6))

 dot_Y6 = DOTS - length(num2str(Y_6));

 else

 dot_Y6 = 0;

 end

 if rem(dot_Y,2) == 1

American Institute of Aeronautics and Astronautics

35

 %odd

 Ldot_bY = [(dot_Y - 1) / 2];

 Ldot_aY = [(dot_Y - 1) / 2 + 1]+3;

 elseif rem(dot_Y,2) == 0

 %even

 Ldot_bY = [dot_Y / 2];

 Ldot_aY = [dot_Y / 2] + 3;

 end

 Ldot_Y1 = [dot_Y1] + 3;

 Ldot_Y2 = [dot_Y2] + 3;

 Ldot_Y3 = [dot_Y3] + 3;

 Ldot_Y4 = [dot_Y4] + 3;

 Ldot_Y5 = [dot_Y5] + 3;

 Ldot_Y6 = [dot_Y6] + 3;

 clear DOTS dot_Y dot_Y1 dot_Y2 dot_Y3 dot_Y4 dot_Y5 dot_Y6

 for i = 1:Ldot_bY

 dot_bY(i) = dot1;

 end

 for i = 1:Ldot_aY

 dot_aY(i) = dot1;

 end

 for i = 1:Ldot_Y1

 dot_Y1(i) = dot1;

 end

 for i = 1:Ldot_Y2

 dot_Y2(i) = dot1;

 end

 for i = 1:Ldot_Y3

 dot_Y3(i) = dot1;

 end

 for i = 1:Ldot_Y4

 dot_Y4(i) = dot1;

 end

 for i = 1:Ldot_Y5

 dot_Y5(i) = dot1;

 end

 for i = 1:Ldot_Y6

 dot_Y6(i) = dot1;

 end

 clear Ldot_bY Ldot_aY Ldot_Y1 Ldot_Y2 Ldot_Y3 Ldot_Y4 Ldot_Y5 Ldot_Y6

%%

%%%%%

 %Set up of 3rd Column

 DOTS = length('Z');

 if length(num2str(Z_1)) > DOTS

 DOTS = length(num2str(Z_1));

 end

 if length(num2str(Z_2)) > DOTS

 DOTS = length(num2str(Z_2));

 end

 if length(num2str(Z_3)) > DOTS

 DOTS = length(num2str(Z_3));

 end

 if length(num2str(Z_4)) > DOTS

 DOTS = length(num2str(Z_4));

 end

 if length(num2str(Z_5)) > DOTS

 DOTS = length(num2str(Z_5));

American Institute of Aeronautics and Astronautics

36

 end

 if length(num2str(Z_6)) > DOTS

 DOTS = length(num2str(Z_6));

 end

 if DOTS > length('Z')

 dot_Z = DOTS - length('Z');

 else

 dot_Z = 0;

 end

 if DOTS > length(num2str(Z_1))

 dot_Z1 = DOTS - length(num2str(Z_1));

 else

 dot_Z1 = 0;

 end

 if DOTS > length(num2str(Z_2))

 dot_Z2 = DOTS - length(num2str(Z_2));

 else

 dot_Z2 = 0;

 end

 if DOTS > length(num2str(Z_3))

 dot_Z3 = DOTS - length(num2str(Z_3));

 else

 dot_Z3 = 0;

 end

 if DOTS > length(num2str(Z_4))

 dot_Z4 = DOTS - length(num2str(Z_4));

 else

 dot_Z4 = 0;

 end

 if DOTS > length(num2str(Z_5))

 dot_Z5 = DOTS - length(num2str(Z_5));

 else

 dot_Z5 = 0;

 end

 if DOTS > length(num2str(Z_6))

 dot_Z6 = DOTS - length(num2str(Z_6));

 else

 dot_Z6 = 0;

 end

 if rem(dot_Z,2) == 1

 %odd

 Ldot_bZ = [(dot_Z - 1) / 2];

 Ldot_aZ = [(dot_Z - 1) / 2 + 1] + 3;

 elseif rem(dot_Z,2) == 0

 %even

 Ldot_bZ = [dot_Z / 2];

 Ldot_aZ = [dot_Z / 2] + 3;

 end

 Ldot_Z1 = [dot_Z1] + 3;

 Ldot_Z2 = [dot_Z2] + 3;

 Ldot_Z3 = [dot_Z3] + 3;

 Ldot_Z4 = [dot_Z4] + 3;

 Ldot_Z5 = [dot_Z5] + 3;

 Ldot_Z6 = [dot_Z6] + 3;

 clear DOTS dot_Z dot_Z1 dot_Z2 dot_Z3 dot_Z4 dot_Z5 dot_Z6

 for i = 1:Ldot_bZ

 dot_bZ(i) = dot1;

 end

 for i = 1:Ldot_aZ

American Institute of Aeronautics and Astronautics

37

 dot_aZ(i) = dot1;

 end

 for i = 1:Ldot_Z1

 dot_Z1(i) = dot1;

 end

 for i = 1:Ldot_Z2

 dot_Z2(i) = dot1;

 end

 for i = 1:Ldot_Z3

 dot_Z3(i) = dot1;

 end

 for i = 1:Ldot_Z4

 dot_Z4(i) = dot1;

 end

 for i = 1:Ldot_Z5

 dot_Z5(i) = dot1;

 end

 for i = 1:Ldot_Z6

 dot_Z6(i) = dot1;

 end

 clear Ldot_bZ Ldot_aZ Ldot_Z1 Ldot_Z2 Ldot_Z3 Ldot_Z4 Ldot_Z5 Ldot_Z6

%%

%%%%%

 %creation of Table2

 TITLE2 = 'Coordinates';

 Title2 = strcat(dot3, dot_bX, 'X', dot_aX, [line dot3],...

 dot_bY, 'Y', dot_aY, [line dot3],...

 dot_bZ, 'Z', dot_aZ);

 C1 = strcat(dot3, num2str(X_1), dot_X1, [line dot3],...

 num2str(Y_1), dot_Y1,[line dot3],...

 num2str(Z_1), dot_Z1);

 C2 = strcat(dot3, num2str(X_2), dot_X2, [line dot3],...

 num2str(Y_2), dot_Y2, [line dot3],...

 num2str(Z_2), dot_Z2);

 C3 = strcat(dot3, num2str(X_3), dot_X3, [line dot3],...

 num2str(Y_3), dot_Y3, [line dot3],...

 num2str(Z_3), dot_Z3);

 C4 = strcat(dot3, num2str(X_4), dot_X4, [line dot3],...

 num2str(Y_4), dot_Y4, [line dot3],...

 num2str(Z_4), dot_Z4);

 C5 = strcat(dot3, num2str(X_5), dot_X5, [line dot3],...

 num2str(Y_5), dot_Y5, [line dot3],...

 num2str(Z_5), dot_Z5);

 C6 = strcat(dot3, num2str(X_6), dot_X6, [line dot3],...

 num2str(Y_6), dot_Y6, [line dot3],...

 num2str(Z_6), dot_Z6);

 ALMOST2 = char(TITLE2, Title2, C1, C2, C3 ,C4, C5, C6);

 [trash S2] = size(ALMOST2);

 clear trash

 for i = 1:S2

 DASH2(i) = dash;

 PLUS2(i) = plus;

American Institute of Aeronautics and Astronautics

38

 end

 Table2=char(space, PLUS2, space,...

 TITLE2, Title2, DASH2,...

 C1, C2, C3, C4, C5, C6,...

 space, PLUS2, space);

 disp(Table2);

 elseif NO_ANSWER == 1

 Table2 = strcat('There is no Path calculated to travel along');

 Table2 = char(Table2);

 disp(Table2);

 end%End of Table2

%%

%%%%%%%%%

%%

%%%%%%%%%

%End Displaying the Outputs in 2 Tables

end

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Graphs

if Graph == 1 && NO_ANSWER == 0%Graph switch on

 %creating variables to set the axis limits in the following graphs

 Percent=.075;

 X_MIN = min(X) - Percent * max(abs(X));

 X_MAX = max(X) + Percent * max(abs(X));

 Y_MIN = min(Y) - Percent * max(abs(Y));

 Y_MAX = max(Y) + Percent * max(abs(Y));

 Z_MIN = min(Z) - Percent * max(Z);

 if Z_MIN > Elevation(1,1)

 %check if Z_MIN is less than Least Elevation

 Z_MIN = Elevation(1,1) - Percent * Elevation(1,1);

 end

 Z_MAX = max(Z) + Percent*max(Z);

 if Z_MAX < Elevation(length(Elevation),1)

 %check if Z_MIN is more than Max Elevation

 Z_MAX = Elevation(length(Elevation),1) +...

 Percent * Elevation(length(Elevation),1);

 end

 AXIS2_XY = [X_MIN X_MAX Y_MIN Y_MAX];%axis for 2-D graph of X-Y

 AXIS2_XZ = [X_MIN X_MAX Z_MIN Z_MAX];%axis for 2-D graph of X-Z

 AXIS2_YZ = [Y_MIN Y_MAX Z_MIN Z_MAX];%axis for 2-D graph of Y-Z

 AXIS3 = [X_MIN X_MAX Y_MIN Y_MAX Z_MIN Z_MAX];%axis for 3-D graph

%%

%%%%%%%%%

 %Wind Plot Variables

 for i = 1:Wind_C

 [Dq, Cq, Sq, Tq] = SUB_Direction(Direction(i,1));

American Institute of Aeronautics and Astronautics

39

 Uq3(i) = Wind_Speed(i,1) * Cq;

 Vq3(i) = Wind_Speed(i,1) * Sq;

 Wq3(i) = 0;

 Xq3(i) = (X_MAX + X_MIN) / 2;

 Yq3(i) = (Y_MAX + Y_MIN) / 2;

 Zq3(i) = Elevation(i);

 end

 if abs(X_MAX) >= abs(X_MIN)

 SCALE = abs(X_MAX) / Z_MAX;

 elseif abs(X_MAX) < abs(X_MIN)

 SCALE = abs(X_MIN) / Z_MAX;

 end

 if abs(X_MAX) >= abs(X_MIN)

 SCALE2(1) = abs(X_MAX);

 elseif abs(X_MAX) < abs(X_MIN)

 SCALE2(1) = abs(X_MIN);

 end

 if abs(Y_MAX) >= abs(Y_MIN)

 SCALE2(2) = abs(Y_MAX);

 elseif abs(Y_MAX) < abs(Y_MIN)

 SCALE2(2) = abs(Y_MIN);

 end

%%

%%%%%%%%%

 %Graph 1

 %3-D Graph of the entire trip

 if Fig_Num(1) == 0 && Display == 1

 %Graph 1 set to not display

 G_REPORT = strcat('Graph 1 set to not Display');

 G_REPORT = char(G_REPORT);

 disp(G_REPORT);

 else

 %Plot Graph 1

 figure(Fig_Num(1));

 clf(Fig_Num(1));

 figure(Fig_Num(1));

 hold on;

 quiver3(Xq3, Yq3, Zq3, Uq3, Vq3, Wq3, SCALE);

 plot3(X, Y, Z, 'kd--');

 view(-15, 15);

 title('3-Dimensional Trip Display');

 xlabel('X');

 ylabel('Y');

 zlabel('Z');

 axis(AXIS3);

 %Start Location Label

 START=strcat('Start (',[' ' num2str(X_S)],',',...

 [' ' num2str(Y_S)],',',...

 [' ' num2str(Z_S)],')');

 text(X_S,Y_S,Z_S,START);

 %End Location Label

 END=strcat('End (',[' ' num2str(X_E)],',',...

 [' ' num2str(Y_E)],',',...

American Institute of Aeronautics and Astronautics

40

 [' ' num2str(Z_E)],')');

 text(X_E, Y_E, Z_E, END);

 %1st Distance

 text([(X_2 + X_1) / 2],...

 [(Y_2 + Y_1) / 2],...

 [(Z_2 + Z_1) / 2],...

 strcat([num2str(Distance(1))],...

 ' feet'));

 %2nd Distance

 text([(X_3 + X_2) / 2],...

 [(Y_3 + Y_2) / 2],...

 [Z_3 + .02 * (Z_MAX - Z_MIN)],...

 strcat([num2str(Distance(2))],...

 ' feet'));

 %3rd Distance

 text([(X_4 + X_3) / 2],...

 [(Y_4 + Y_3) / 2],...

 [(Z_4 + Z_3) / 2],...

 strcat([num2str(Distance(3))],...

 ' feet'));

 %4th Distance

 text([(X_5 + X_4) / 2],...

 [(Y_5 + Y_4) / 2],...

 [Z_5 + .02 * (Z_MAX - Z_MIN)],...

 strcat([num2str(Distance(4))],...

 ' feet'));

 %5th Distance

 text([(X_6 + X_5) / 2],...

 [(Y_6 + Y_5) / 2],...

 [(Z_6 + Z_5) / 2],...

 strcat([num2str(Distance(5))],...

 ' feet'));

 hold off;

 end

%%

%%%%%%%%%

 %Graph 2

 %Top-Down view of the Trip

 if Fig_Num(2) == 0 && Display == 1

 %Graph 2 set to not display

 G_REPORT = strcat('Graph 2 set to not Display');

 G_REPORT = char(G_REPORT);

 disp(G_REPORT);

 elseif Fig_Num(2) ~= 0

 %Plot Graph 2

 figure(Fig_Num(2));

 clf(Fig_Num(2));

 figure(Fig_Num(2));

 hold on;

 quiver(Xq3, Yq3, Uq3, Vq3, SCALE2(1)/SCALE2(2) *40);

 plot(X, Y, 'rx-');

 title('2-Dimensional Trip Display: Top-Down View');

 xlabel('X');

 ylabel('Y');

American Institute of Aeronautics and Astronautics

41

 axis(AXIS2_XY);

 hold off;

 text(X_S, Y_S, 'Start');

 text(X_E, Y_E, 'End');

 end

%%

%%%%%%%%%

 %Graph 3

 %Collection of 3-graphs from all useful view points

 if Fig_Num(3) == 0 && Display == 1

 %Graph 3 set to not display

 G_REPORT = strcat('Graph 3 set to not Display');

 G_REPORT = char(G_REPORT);

 disp(G_REPORT);

 elseif Fig_Num(3) ~= 0

 %Plot Graph 3

 figure(Fig_Num(3));

 clf(Fig_Num(3));

 figure(Fig_Num(3));

 %Subplot 1 :X-Y

 subplot(2, 2, [1 3]), plot(X, Y, 'rx-');

 title('2-Dimensional Trip Display: Top-Down View');

 xlabel('X');

 ylabel('Y');

 axis(AXIS2_XY);

 text(X_S, Y_S, 'Start');

 text(X_E, Y_E, 'End');

 %Subplot 2: X-Z

 subplot(2, 2, 2), plot(X, Z, 'bx-');

 title('2-Dimensional Trip Display: X-Z Side View');

 xlabel('X');

 ylabel('Z');

 axis(AXIS2_XZ);

 text(X_S, Z_S, 'Start');

 text(X_E, Z_E, 'End');

 %Subplot 3: Y-Z

 subplot(2, 2, 4), plot(Y, Z, 'gx-');

 title('2-Dimensional Trip Display: Y-Z Side View');

 xlabel('Y');

 ylabel('Z');

 axis(AXIS2_YZ);

 text(Y_S, Z_S, 'Start');

 text(Y_E, Z_E, 'End');

 end

%%

%%%%%%%%%

 %Graph 4

 %Collection of 3-graphs from all useful view points

 %Arranged differently than Graph 3

 if Fig_Num(4) == 0 && Display == 1

 %Graph 4 set to not display

 G_REPORT = strcat('Graph 4 set to not Display');

 G_REPORT = char(G_REPORT);

 disp(G_REPORT);

American Institute of Aeronautics and Astronautics

42

 elseif Fig_Num(4) ~= 0

 %Plot Graph 4

 figure(Fig_Num(4));

 clf(Fig_Num(4));

 figure(Fig_Num(4));

 %Subplot 1: X-Y

 subplot(2, 2, 2), plot(X, Y, 'rx-');

 title('2-Dimensional Trip Display: X-Y Top-Down View');

 xlabel('X');

 ylabel('Y');

 axis(AXIS2_XY);

 text(X_S, Y_S, 'Start');

 text(X_E, Y_E, 'End');

 %Subplot 2: X-Z

 subplot(2, 2, [1 3]), plot(X, Z, 'bx-');

 title('2-Dimensional Trip Display: X-Z Side View');

 xlabel('X');

 ylabel('Z');

 axis(AXIS2_XZ);

 text(X_S, Z_S, 'Start');

 text(X_E, Z_E, 'End');

 %Subplot 3: Y-Z

 subplot(2, 2, 4), plot(Y, Z, 'gx-');

 title('2-Dimensional Trip Display: Y-Z Side View');

 xlabel('Y');

 ylabel('Z');

 axis(AXIS2_YZ);

 text(Y_S, Z_S, 'Start');

 text(Y_E, Z_E, 'End');

 end

%%

%%%%%%%%%

 %Graph 5

 %Collection of 3-graphs from all useful view points

 %Arranged differently than Graph 3 & 4

 if Fig_Num(5) == 0 && Display == 1

 %Graph 5 set to not display

 G_REPORT = strcat('Graph 5 set to not Display');

 G_REPORT = char(G_REPORT);

 disp(G_REPORT);

 elseif Fig_Num(5) ~= 0

 %Plot Graph 5

 figure(Fig_Num(5));

 clf(Fig_Num(5));

 figure(Fig_Num(5));

 %Subplot 1: X-Y

 subplot(2, 2, 2), plot(X, Y, 'rx-');

 title('2-Dimensional Trip Display: X-Y Top-Down View');

 xlabel('X');

 ylabel('Y');

 axis(AXIS2_XY);

 text(X_S, Y_S, 'Start');

 text(X_E, Y_E, 'End');

 %Subplot 2: X-Z

 subplot(2, 2, 4), plot(X, Z, 'bx-');

American Institute of Aeronautics and Astronautics

43

 title('2-Dimensional Trip Display: X-Z Side View');

 xlabel('X');

 ylabel('Z');

 axis(AXIS2_XZ);

 text(X_S, Z_S, 'Start');

 text(X_E, Z_E, 'End');

 %Subplot 3: Y-Z

 subplot(2, 2, [1 3]), plot(Y, Z, 'gx-');

 title('2-Dimensional Trip Display: Y-Z Side View');

 xlabel('Y');

 ylabel('Z');

 axis(AXIS2_YZ);

 text(Y_S, Z_S, 'Start');

 text(Y_E, Z_E, 'End');

 end

elseif Graph == 0 && Display == 1 && NO_ANSWER == 0%Graph switch off

 G_REPORT = strcat('Graph set to not Display');

 G_REPORT = char(G_REPORT);

 disp(G_REPORT);

elseif Graph == 1 && NO_ANSWER == 1%No Answer Graphs

 %creating variables to set the axis limits in the following graphs

 Percent=.075;

 X_MIN = min(X) - Percent * max(abs(X));

 X_MAX = max(X) + Percent * max(abs(X));

 Y_MIN = min(Y) - Percent * max(abs(Y));

 Y_MAX = max(Y) + Percent * max(abs(Y));

 Z_MIN = min(Z) - Percent * max(Z);

 if Z_MIN > Elevation(1,1)

 Z_MIN = Elevation(1,1) - Percent * Elevation(1,1);

 end

 Z_MAX = max(Z) + Percent * max(Z);

 if Z_MAX < Elevation(length(Elevation),1)

 Z_MAX = Elevation(length(Elevation),1) +...

 Percent * Elevation(length(Elevation),1);

 end

 AXIS2_XY = [X_MIN X_MAX Y_MIN Y_MAX];%axis for 2-D graph of X-Y

 AXIS3 = [X_MIN X_MAX Y_MIN Y_MAX Z_MIN Z_MAX];%axis for 3-D graph

%%

%%%%%%%%%

 %Wind Plot Variables

 for i = 1:Wind_C

 [Dq,Cq,Sq,Tq] = SUB_Direction(Direction(i,1));

 Uq3(i) = Wind_Speed(i,1) * Cq;

 Vq3(i) = Wind_Speed(i,1) * Sq;

 Wq3(i) = 0;

 Xq3(i) = (X_MAX + X_MIN) / 2;

 Yq3(i) = (Y_MAX + Y_MIN) / 2;

 Zq3(i) = Elevation(i);

 end

 if abs(X_MAX) >= abs(X_MIN)

 SCALE = abs(X_MAX) / Z_MAX;

 elseif abs(X_MAX) < abs(X_MIN)

 SCALE = abs(X_MIN) / Z_MAX;

 end

American Institute of Aeronautics and Astronautics

44

 if abs(X_MAX) >= abs(X_MIN)

 SCALE2(1) = abs(X_MAX);

 elseif abs(X_MAX) < abs(X_MIN)

 SCALE2(1) = abs(X_MIN);

 end

 if abs(Y_MAX) >= abs(Y_MIN)

 SCALE2(2) = abs(Y_MAX);

 elseif abs(Y_MAX) < abs(Y_MIN)

 SCALE2(2) = abs(Y_MIN);

 end

 %finds current figure handle

 FIG = gcf;

%%

%%%%%%%%%

 %Plot Graph 1

 figure(FIG + 1);

 hold on;

 quiver3(Xq3, Yq3, Zq3, Uq3, Vq3, Wq3, SCALE);

 plot3(X, Y, Z, 'rd');

 view(-15, 15);

 title('Wind Display: 3-Dimensional View, with No Path calculated');

 xlabel('X');

 ylabel('Y');

 zlabel('Z');

 axis(AXIS3);

 %Start Location Label

 START=strcat('Start (',[' ' num2str(X_S)],',',...

 [' ' num2str(Y_S)],',',...

 [' ' num2str(Z_S)],')');

 text(X_S,Y_S,Z_S,START);

 %End Location Label

 END=strcat('End (',[' ' num2str(X_E)],',',...

 [' ' num2str(Y_E)],',',...

 [' ' num2str(Z_E)],')');

 text(X_E, Y_E, Z_E, END);

 hold off;

%%

%%%%%%%%%

 %Plot Graph 2

 figure(FIG + 2);

 hold on;

 quiver(Xq3, Yq3, Uq3, Vq3, SCALE2(1)/SCALE2(2) *30);

 plot(X,Y,'rd');

 title('Wind Display: Top-Down View, with No Path calculated');

 xlabel('X');

 ylabel('Y');

American Institute of Aeronautics and Astronautics

45

 axis(AXIS2_XY);

 %Start Location Label

 text(X_S, Y_S, 'Start');

 %End Location Label

 text(X_E, Y_E, 'End');

 hold off;

end%End Graph switch on

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

warning('on', 'MATLAB:divideByZero');%Turns ON divide by Zero Warnings

end%End of Function

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Sub Functions

function [D, C, S, T] = SUB_Direction(Direction)

%Sub Function that changes the Direction choosen to be inbetween the values

%of +90 and -90

while max(Direction) >= 360 || min(Direction) < 0

 if Direction >= 360

 Direction = Direction - 360;

 elseif Direction < 0

 Direction = Direction + 360;

 end

end

if Direction >= 0 && Direction < 90

 %Quadrant 1 Positive

 D = Direction;

 C = [1] * cosd(D);

 S = [1] * sind(D);

elseif Direction >= 90 && Direction < 180

 %Quadrant 2 Positive

 D = 180 - Direction;

 C = [-1] * cosd(D);

 S = [1] * sind(D);

elseif Direction >= 180 && Direction < 270

 %Quadrant 3 Positive

 D = Direction - 180;

 C = [-1] * cosd(D);

 S = [-1] * sind(D);

elseif Direction >= 270 && Direction < 360

 %Quadrant 4 Positive

 D = 360 - Direction;

 C = [1] * cosd(D);

 S = [-1] * sind(D);

else

 error('Direction value is greater than 360 or less than 0 Degrees');

American Institute of Aeronautics and Astronautics

46

end

D;

C;

S;

T = S / C;

end%End of Sub Function

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

function [R_Wind, R_Start, R_End, R_a] =...

 SUB_Random_Balloon_Trip(Random)

%SubFunction that is used to create Random Data

%Inputs

Number_E = Random(1,1);

Min_Speed = Random(1,2);

if Min_Speed < 0

 Min_Speed = 0;

end

Max_Speed = Random(1,3);

Max_Elevation = Random(2,1);

Min_a = Random(2,2);

if Min_a < 0

 Min_a = 0;

end

Max_a = Random(2,3);

Min_X = Random(3,1);

Min_Y = Random(3,2);

Min_Z = Random(3,3);

if Min_Z < 0

 Min_Z = 0;

end

Max_X = Random(4,1);

Max_Y = Random(4,2);

Max_Z = Random(4,3);

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Randomized Variables

%Random Wind

%Randomized Wind Speed

for i = 1:Number_E

 RWS = 1;

 while RWS == 1

 R_Wind_Speed(i,1) = [Max_Speed * rand];

 if R_Wind_Speed(i,1) <= Min_Speed%check if min is below Min_Speed

 RWS = 1;

 else

 RWS = 0;

American Institute of Aeronautics and Astronautics

47

 end

 end

end

%Randomized Wind Direction

R_Direction = [360 * rand(Number_E,1)];

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Randomized Constantly Increasing Elevation

for i = 1:Number_E

 RE = 1;

 while RE == 1

 R_Elevation(i,1) = [Max_Elevation * rand];

 if R_Elevation(i,1) > Max_Elevation * (i / Number_E)

 RE = 1;

 elseif i == 1

 RE = 0;

 elseif R_Elevation(i,1) <= R_Elevation(i-1,1)

 RE = 1;

 else

 RE = 0;

 end

 end

end

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Random Locations

%Random Start Location

%Randomized X Start Location

R_X_S = [Min_X + (Max_X - Min_X) * rand];

%Randomized Y Start Location

R_Y_S = [Min_Y + (Max_Y - Min_Y) * rand];

%Randomized Z Start Location

R_Z_S = [Min_Z + (Max_Z - Min_Z) * rand];

%%

%%%%%%%%%%%%%

%Random End Location

%Randomized X End Location

R_X_E = [Min_X + (Max_X - Min_X) * rand];

%Randomized Y End Location

R_Y_E = [Min_Y + (Max_Y - Min_Y) * rand];

%Randomized Z End Location

R_Z_E = [Min_Z + (Max_Z - Min_Z) * rand];

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Random Acceleration

%Randomized Rising Acceleration

RAR = 1;

American Institute of Aeronautics and Astronautics

48

while RAR == 1

 R_a_rise = [Max_a * rand];

 if R_a_rise <= Min_a

 RAR = 1;

 else

 RAR = 0;

 end

end

%%

%%%%%%%%%%%%%

%Randomized Falling Acceleration

RAF = 1;

while RAF == 1

 R_a_fall = [Max_a * rand];

 if R_a_fall <= Min_a

 RAF = 1;

 else

 RAF = 0;

 end

end

%End of Section

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%Outputs

R_Wind = [R_Wind_Speed, R_Direction, R_Elevation];

R_Start = [R_X_S, R_Y_S, R_Z_S];

R_End = [R_X_E, R_Y_E, R_Z_E];

R_a = [R_a_rise, R_a_fall];

end%End of SubFunction

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%%

%%%%%%%%%%%%%

%End of SubFunctions

