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ABSTRACT 

This paper represents the results from the initial phase of a research program to determine the flow 
characteristics of the C-130 Hercules transport aircraft. The initial phase of the program consists of 
evaluation and comparison of the flow-field obtained from flow visualization methods. Specifically CFD 
(Computational Fluid Dynamics) results are compared with experimental Hot Wire results produced by wind 
tunnel tests on the C-130 in clean configuration.  This paper outlines the results to date and provides a 
description of further work.  The CFD element of this research features the use of Detached Eddy Simulation 
(DES) in order to extend its use as a reliable method for use on complex flow-fields. DES combines the 
efficiency of a Reynolds-averaged turbulence model near the wall with the fidelity of LES (Large Eddy 
Simulation) in separated regions. Because of the LES treatment in separated regions, it provides more 
accurate descriptions of the geometry-dependant, three-dimensional unsteady motions resulting in regions of 
massive separation. The computational aspect of the research is performed at the US Air Force Academy, 
with subsequent wind tunnel tests (Hot Wire) being undertaken in France at ENSICA. 

I. INTRODUCTION 

This paper forms part of a multi-national project to determine the flow-field characteristics of the C130 Hercules 
aircraft. Comparison with wind tunnel experiments is provided as a means to evaluate the use of DES for complex 
flow-fields. The investigation is split into three phases namely – comparison with wind tunnel data (in particular 
flow visualization results from Hot Wire technique (phase 1)), secondly - flow visualization comparison with wind 
tunnel results (phase 2, with a larger simplified model) and comparison with flight test data (phase 3). This paper 
presents work from phase 1 and outlines work for phase 2. The aim of this three phase investigation is to quantify 
the flow-field behavior and aerodynamic characteristics of the C-130 Hercules in both tail-gate down and door 
closed configurations. The majority of the work presented in this paper focuses on the clean configuration and 
assesses the ability of CFD to provide insight into the complex flow-field. 

The use of rapid reaction forces, in particular the deployment of airborne troops or the delivery of cargo/supplies 
to frontline troops or humanitarian supplies for drought or other disaster relief has been a role carried out with 
diligence by the C-130 Hercules. The delivery of cargo or troops is by the use of the cargo bay ramp; this has a 
region of complex flow consisting of both a separation and subsequent recirculation zone. Problems can arise when 
objects are caught within this region; in particular operations are concerned with the possibility of objects nearly 
touching the empennage on exit from the rear door.  
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Several investigators have studied the flow behind the C-130H; in a study undertaken by Johnson1 et al. into the 
flow behind the C-130 they applied both experimental and computational methods to study the flow. Their study 
indicated some general trends – vortices, about the span-wise and longitudinal axis, tend to form in a number of 
different areas beneath the tail and a consistent upward flow throughout the entire region aft of the cargo bay. 

In a study carried out by Galloway and McClurg2 they undertook a comprehensive evaluation of the C-130H 
firefighting nozzle performance. They investigated solutions to a similar problem in which fire fighting chemicals 
caught in the aft circulation region contacted and damaged the underside of the aircraft. They concluded that 
extending the nozzle by 2.4 feet from the present location provided the optimal length to effectively deploy the 
material. 

II. DETACHED-EDDY SIMULATION 

DES was proposed by Spalart et al.3 The motivation for this approach was to combine Large-Eddy Simulation 
(LES) with the best features of Reynolds-averaged Navier-Stokes (RANS) methods. RANS methods have 
demonstrated an ability to predict attached flows very well with a relatively low computational cost. LES methods 
have demonstrated an ability to compute separated flow-fields accurately, but at a tremendous cost for 
configurations with boundary layers. Spalart’s DES method is a hybrid of LES and RANS, which combines the 
strengths of both methods. 

The DES model was originally based on the Spalart-Allmaras one equation RANS turbule ce model (Ref. 3). n 
The wall destruction term is proportional to (ν~ / d )2 , where d is the distance to the wall and ν~ which is related to 
the turbulent viscosity. When this term is balanced with the production term, the eddy viscosity 

2becomes proportional to Ŝd  where Ŝ  is the local strain rate. The Smagorinski LES model varies its sub-grid scale 
2(SGS) turbulent viscosity with the local strain rate, and the grid spacing: ν SGS ∝ Ŝ∆ , where ∆ = max(∆x,∆y,∆z) . If d 

is replaced with ∆ in the wall destruction term, the S-A model will act as a Smagorinski LES model. 
To exhibit both RANS and LES behavior, d in the SA model is replaced by 

~ d = min(d ,CDES ∆). 

When d << ∆ , the model acts in a RANS mode and when d >> ∆  the model acts in a Smagorinski LES mode. 
Therefore the model switches into LES mode when the grid is locally refined. 

DES was implemented in an unstructured grid method by Forsythe et al.4 They determined the CDES 
constant 

should be 0.65, consistent with the structured grid implementation of Spalart et al. 3 when the grid spacing  ∆  was 
taken to be the longest distance between the cell center and all of the neighboring cell centers. A Newton sub-
iteration method is used in the solution of the system of equations to improve time accuracy of the point-implicit 
method and approximate Jacobians.  In the calculations presented below, a typical number of three Newton sub-
iterations are used for all time-accurate cases.   

DES has successfully been applied to iced airfoils, in particular in the research undertaken by Pan and Loth 5 on 
the subject showed that DES predicted the maximum lift coefficient and stall qualitatively consistent with 
experiments. Morton et al.6 applied the YPG guidelines to three massively separated flows of interest: fore-body in a 
cross-flow, flow over a delta wing at 27o angle of attack, and the flow over an F-15E at 65o angle of attack. The 
unstructured finite-volume solver Cobalt has been used in conjunction with DES successfully on a number of 
complex problems, including a supersonic base flow 4, delta wing vortex breakdown 7, a square with rounded 
corners 8, the F/A-18C with tail buffet 9, and the F/A-18E with unsteady shock buffet 10. 

III. GRID GENERATION 

Spalart11 described the process of grid design and assessment for DES, defining important regions of the solution 
and offering guidelines for grid densities within each region. The “Young-Person’s Guide”11 (YPG) forms a basis 
for interpretation of many of the results presented below. One of the traditional motivations for using unstructured 
grids has been the ability to rapidly create grids around complex geometries. There are other positive attributes of 
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unstructured grids that are relevant to DES. Most notably, it is possible to concentrate points in the region of interest 
(i.e. in a vortex core or separated flow over a wing) and rapidly coarsen the grid away from these areas. This region 
of interest was termed the “focus region” in the YPG. The YPG reference describes the desirability of having 
isotropic grid cells in the focus region in which unsteady, time-dependent, features are resolved. For this reason, 
unstructured grids are good candidates for use in DES because near isotropy of the grid cells in the LES region is 
assured by most grid generation packages. 

Comparison with wind tunnel experiments is provided as a means to evaluate the use of DES for complex flow-
fields. All computational runs are performed using the CFD solver Cobalt.  A half simplified aircraft model was 
created using Gridgen12 with the completed grid consisting of up to 4 x 106 cells. A grid sensitivity study was 
undertaken, and it was determined that the original grid lacked sufficient grid points. Additional cells were 
incorporated into a new volume grid (Figure 1) created around the model geometry; the new volume grid extends 
downstream of the model and covers the planes of interest, these being the planes the hotwire measurements were 
obtained. Both grids have a y+ less than one, but the new grid has an increased resolution in the region surrounding 
the body (Figure 1). The new grid has 6.2 x 106 cells. 

(a) Original grid (4 x 106 cells)  (b) Second grid (6.2 x 106 cells) 

Figure 1: Gridgen C-130 Unstructured Grid 

Figure 1 shows the two grids generated for this investigation. The new grid shown in Figure 1b differs from the 
original grid in the number of cells; these additional cells were used in the creation of a zone of interest box, which 
encloses the C130. The zone of interest is shown in Figure 1b. Although an improvement over the original grid 
(Figure 1a), it would be advantageous for the second grid to have still more cells in the zone of interest; however, 
due to certain limitations this was not possible. It should be noted that additional grid sensitivity studies involving 
the above configuration and grid is to be carried out in the near future.   

IV. ENSICA EXPERIMENTAL PROCEDURE/SET UP  

The wind tunnel hot wire measurements were conducted in the low speed tunnel located in ENSICA. The model 
used for this study was approximately a 1/48th scale model, producing a Reynolds number of 208,000 (based on 
diameter) at sea level ISA. The test Mach number was 0.12 which corresponds to a velocity of approximately 40 
m/s. All measurements were taken at 0° angle of attack. Hot wire was used to determine the flow-field 
characteristics at various “x stations” along the centerline of the model. The datum point for these cross-sectional 
planes is the rear of the model (shown in Figure 3). Planes were taken upstream and down stream of this point. 
Figure 2 shows the model in the ENSICA wind tunnel also shown is the hotwire used to obtain velocity 
measurements at these points. 
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Figure 2: C-130 Model and Hotwire location in the ENSICA Wind Tunnel (courtesy of ENSICA) 

A total of four positions were used in this study, along the x-axis or centerline of the model. The planes are listed 
in Table 1. The planes selected for investigation were chosen so as not to damage the hot wire equipment.  

Station No. Plane (X) Plane (X, mm) 
1 -0.123L -72 
2 0.057L 33 
3 0.069L 40 
4 0.103L 60 

Table 1, Hot Wire cutting planes and relative position  

Figure 3: C-130 Model Datum point (courtesy of ENSICA) 
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V. RESULTS AND DISCUSSION 

Figure 4: Main Flow Characteristics 

The main aim of this research is to 
quantify and evaluate the flow-field 
generated by the C130 Hercules; this is 
to be achieved by evaluating the 
results obtained from a wind tunnel 
test program and also CFD 
simulations. Before the comparison 
between the hot wire results and those 
produced by the CFD can begin it is 
necessary to outline some of the flow 
characteristics present in the complex 
flow field. Figure 4 illustrates some of 
these characteristics which dominate 
much of the local flow field, in 
particular the strong wake generated 
by the aft fuselage and the upsweep 
vortex which is produced by the 
interaction of the fuselage wake and 
the empennage. The combination of 
these two features occurs at about 40 
mm span (measured from the 

centerline of the model). At each “x-location”, a plane is generated of the vorticity produced by the model; 
the results indicate that the fuselage wake dominates much of the flow-field at each location of interest. In 
order to compare the hot wire results a CFD grid was run at the same conditions, by insuring a Reynolds 
number match of 208,000 (based on diameter) at a Mach number of 0.12 and using standard sea level 
conditions. 

In order to aid the discussion of the results, additional planes have been included namely span-wise. 
This allows for a complete evaluation of the flow-field at this point. It should be noted that the co-ordinateate 
sysyststemem fromfrom the Cthe CFFD mD modelodel defers fdefers frromom tthhatat of tof thhe wie wind tnd tuunnnnelel mmodelodel//eexpexperirimmeents, tnts, thhe die diffeffererennce ice iss 
oouutlintlineded in Table 2in Table 2.. 

Engine Nacelles

Tip Vortex

Interaction with Empennage

Fuselage wake

Upsweep Vortex region

Engine Nacelles

Tip Vortex

Interaction with Empennage

Fuselage wake

Upsweep Vortex region

Engine Nacelles

Tip Vortex

Interaction with Empennage

Fuselage wake

Upsweep Vortex region

Engine Nacelles

Tip Vortex

Interaction with Empennage

Fuselage wake

Upsweep Vortex region

Engine Nacelles

Tip Vortex

Interaction with Empennage

Fuselage wake

Upsweep Vortex region

Engine Nacelles

Tip Vortex

Interaction with Empennage

Fuselage wake

Upsweep Vortex region

Engine Nacelles 

Tip Vortex 

Interaction with Empennage 

Fuselage wake 

Upsweep Vortex region 

CCoo--oorrddiinnatatee WWiinndd TTuunnelnnel// ExExperiperimmeentntalal CCFFDD 
X Chord / length Chord / length 
Y Span-wise Vertical Height 
Z Vertical Height Span-wise 

Table 2, Co-ordinate System 

The results from the hot wire investigation are presented as a function of normalized velocity. The plots 
are presented as (Velocity measured by the Hot Wire) normalized by the free-stream velocity or VO. The 
CFD results are presented as plots of vorticity in the x-direction. 
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Figure 5: ENSICA and CFD results for x = -72 mm 

Figure 5 is a comparison between the ENSICA hot wire results (Figure 5a) and the computational 
results (Figure 5b). Both plots show a slice through the “x- direction” approximately 72mm behind the 
origin position, as shown in Figure 3.  The ENSICA results show normalized velocity ratio, while the CFD 
results show vorticity. 

The grey block section shown in the lower right hand side of the plot (Figure 5a) represents the rear 
empennage, of the wind tunnel model; while the empennage is represented by the cut –out section 
illustrated in Figure 5b. The main flow characteristics for each “x-direction” slice has been identified and 
labeled, for discussion and comparison. 

With respect to Figure 5a, a strong wake is present this is generated from the rear fuselage (denoted by 
A), also within the flow-field there is vortex produced at the fuselage empennage junction, at 
approximately 20mm span (denoted by B). The upsweep vortex travels along the underside of the 
empennage, until a point at approximately 60mm span where it interacts with the vortex generated by the 
empennage (denoted by C). The flow-field is complex within this region. 

With respect to Figure 5b, the flow characteristics are denoted in the same manner as Figure 5a. 

Figure 5b shows fuselage wake generated from the base of the model at the intersection of the rear door 
and fuselage, at this position along the x-axis the vortices begin to roll along the underside of the 
empennage (point A). The wake continues down the length of the ramp, the fuselage wake is strongly 
pronounced at a span position of 20mm from the centerline (point B). At this point an upsweep vortex is 
generated from the empennage. This vortex continues along the rear empennage, when at z = 40mm the 
interaction flow generated is dominated by the vortex generated by the leading edge of the empennage 
(point C). The upsweep vortex decreases in strength at z = 70 mm (left hand side of Figure 6b). The CFD 
results also indicate that a small interaction region is present outside the main vortex flow-field. This 
interaction/vortex region (point D) is produced by the trailing edge vortex generated by the main wing. 
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Figure 6a shows the results 
obtained from another “x-
location” at a location 33mm 
ahead of the origin. The 
fuselage wake vortex and the 
upsweep vortex are still present. 
The trailing edge of the 
empennage has been included 
for reference. 

Figure 6b depicts the 
corresponding CFD simulation. 
Again the letters correspond to 
the areas of interest within the 
flow-field. The position of the 
upsweep vortex can be 
determined from the CFD 
solution. 

A B C 

Empennage trailing edge 

However, the CFD results do not show the 
interaction between the empennage and the 
upsweep vortex to the same degree. The hot 
wire results indicate that the flow in this region 
should be present above the empennage trailing 
edge especially the interaction vortex (point C, 
in Figure 6b). This could be due to the lack of 
grid refinement/ resolution available for the 
current grid. 

Figure 6a and b, ENSICA and CFD results respectively for x = +33 mm 
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Figure 7a 

Figure 7, shows the results for a position 40mm downstream of the datum point. The upsweep vortex is 
identified in the CFD case as well as the “Hooked Shaped flow”. In Figure 7a, there is an induced vortex 
present; this can clearly be seen as well as the vortex induced by the empennage. The ENSICA hot wire 
results also indicate the presence of a “hooked shaped” flow structure; however, it is not shown in the CFD 
results apart from an extremely faint region. There also does not seem to be a junction zone in the CFD 
results. The junction zone is located between the upsweep vortex and the induced vortex. However, this 
feature is not clearly visible in the CFD results. This is most probably due to the lack of grid 
refinement/resolution. 
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Figure 7a and b: ENSICA and CFD results respectively 
(For x = +40 mm) 

8
 

American Institute of Aeronautics and Astronautics 




 
 
        
 
 
                                   
 

 
 

 
  

 
 

 

 

 
  

  
    

    
   

 
 

 

  

 
 

   
 

 
 

                                 

     

   

Span (mm)

  

     
 
 
 
 

    
 

 
 

Span (mm) 

1043

0

8010

10
1043 

0 

8010 

10 

Figure 8a 

Figure 8 represents the flow field 
results obtained for an x location 
60mm from the datum point. Again 
the flow field is dominated by a large 
vortex, namely the upsweep vortex. 
The fuselage wake is still present and 
can be seen in the upper left hand 
corner of Figure 8a. 

The hot wire results show a vortex 
slightly to the right of the upsweep 
vortex; this is most likely the 
empennage induced vortex. However, 
the main differences between Figures 7 
and 8 is namely in the computational 
result to be unable to determine the 

position of the induced vortex. The flow at this location is dominated by these two flow features. The 
hooked shaped flow structure is again present in both figures. Due to the grid being too course it may not 
be able to determine the characteristics within the hooked shape/ induced vortex region and what is being 
presented is the tail region of the vortices. 

The CFD results have compared 
reasonably well with those obtained 
from hot wire. However, in order to 
determine more of the flow field and 
its characteristics a more refined grid 
is called for. The main problems with 
this work is the relatively small scale 
of the model, which makes hot wire 
very difficult near the surface of the 
model. However, the CFD results 
presented in this paper agree well 
with the hot wire near the fuselage. 
However, away from the fuselage the 
agreement between hot wire and CFD 
diminishes, with the present grid. 
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This can be clarified to some extent when comparing results obtained well away from the model and 
measured downstream. Where the probe is free to move about without the risk of damage to it or to the 
model, the probe is able to conduct a detailed study of the flow-field. 

Although the computational and experimental work has helped in the understanding of the flow-field 
around the C-130, due to the small size of the model it was difficult to obtain measurements close to the 
model. In order to address this problem a second generation wind tunnel model has been developed in order 
to fully explore the aft flow field of the C130. Due to the new models physical size it is possible to conduct 
a more extensive survey. The new model is to be used for phase 2 of this project, and is to be used for both 
clean and tail down investigations. The second generation model is a simplified C130, and consists of a 
fuselage and rear empennage only. The model is shown below (Figure 9) along with an example grid. 

Figure 9, Second C-130 Model showing cargo door and rear cavity. The simplified fuselage is 
shown to good extent 

VI. CONCLUSION 

The results have shown a complex flow-field is gene rated around the rear fuselage of the C130. The 
expe rimental hotwire results and the CFD results compare well qualitatively. The hotwire results were 
limited  by the small size of the 1/48th scale wind tunnel model in relationship to the hotwire probe. The 
CFD data was limited by the grid and needs refineme nt to accurately capture the vortical flow-field. Due to 
the fi ndings from the ENSICA experimental and USAF A CFD investigations a second phase of the 
prog ram has been created to obtain a more detailed under standing of the flow-field. This second phase will 
be comprised of a much larger simplified version of the C-130 without wings and a more detailed set of 
CFD simulations.  
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