
Empirical Software Engineering in Industry Short Courses 

David S. Janzen, Clark S. Turner 
Computer Science Department 

California Polytechnic State University 
San Luis Obispo, CA USA 

{djanzen,csturner}@csc.calpoly.edu 

Hossein Saiedian 
Electrical Engineering and Computer Science Department
 

University of Kansas
 
Lawrence, KS USA
 

saiedian@eecs.ku.edu
 

Abstract 

This paper reports on a pilot project that incorporated small empirical studies in three industry 
short courses. These laboratory experiments were one component of a larger leveled study on the 
effects of test-driven development (TDD) on internal software quality. 

The approach is proposed to have pedagogical value to student-developers by improving their 
understanding and appreciation for empirical evidence, to instructors by providing feedback through 
surveys and exercises, and to the community at large by reporting results of the studies. 

Pre-experiment surveys in the three pilot experiments revealed large differences in programmer 
opinions of TDD. Possible correlations to development environment and programmer experience 
will be proposed. Post-experiment surveys revealed improvements in programmer opinions of TDD 
following the experiment exercises. 

Crafting sufficiently small but interesting assignments proved to be challenging. Few complete 
solutions were submitted and some developers were unwilling to submit their partial solutions. 

Positive observations will be made regarding the use of experiments in short courses. For in­
stance, participating in the study encourages analytical thinking, prompts developers to evaluate 
alternative approaches, and instills the value of empirical evidence. Ethical concerns regarding 
threats to validity are raised and addressed. The authors find that ethical considerations not only 
support performing such studies, but encourage it as the duty of software professionals. 

1. Introduction 

Evidence-based software engineering (EBSE) endeavors to produce a body of documented ex­
periences that might inform software practice adoption decisions. Evaluative research methods 

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007

. 



such as case studies and controlled experiments are commonly employed to demonstrate the effi­
cacy of software practices, tools, and methods. Evidence-based paradigms have proven successful 
in disciplines such as medicine. Many anticipate similar benefits from widespread adoption and 
appreciation of an evidence-based approach in software engineering [7]. 

Despite increased interest in evidence-based software engineering [2], the growth of EBSE re­
search is somewhat slow [5] and difficult. Many factors contribute to the challenges of EBSE, not 
least among them are access to conduct field experiments. While laboratory experiments are often 
conducted in academic environments, there are many inherent threats to validity. Students are rarely 
as mature as professional software developers. Application domains are often contrived. Software 
projects are rarely as large and complex as “real-world” projects. 

Unfortunately companies and organizations are often reluctant to participate in field experiments. 
Many may be unwilling to try new, perhaps unproven approaches. Others may be concerned that 
they might reveal poor metrics or performance. Or they may be unwilling to allow researchers in 
for fear of losing proprietary information or simply that they may slow down the team. Regardless 
the reasons, barriers must be overcome in order for EBSE to advance. 

Education on EBSE is proposed as a possible strategy to reduce entry barriers for conducting field 
experiments. Professional developers often acquire new skills through professional training. We 
propose that small laboratory controlled experiments can be integrated into many training courses. 
By obtaining first-hand experience participating in a short controlled experiment, it is believed 
that student-programmers will gain an appreciation for EBSE, they will gain analytical skills for 
comparing approaches, and they will be more open to allowing larger field experiments within 
their organization. The goal is not to train the industry student-programmers to conduct their own 
experiments, simply to raise awareness of EBSE among industry practitioners. This approach may 
help satisfy the need for more new and replicated studies [1], as well as satisfy an ethical duty of 
software professionals to assist colleagues and develop the field. 

This paper describes the authors’ experience with three laboratory experiments in professional 
training courses. The experiments were designed as part of a larger set of leveled experiments 
considering the internal software quality effects of test-driven development. Twelve leveled ex­
periments were conducted in academic and professional settings from introductory programming 
through graduate software engineering courses, and in field and laboratory experiments with pro­
fessional developers. The experiments compared an iterative test-first approach with an iterative 
test-last approach by analyzing numerous software metrics in the general categories of software 
size, complexity, coupling, cohesion, and testing. The results of the experiment will be reported 
here primarily for example purposes. The primary goal of this work is to expose industry prac­
titioners to EBSE techniques so they can better understand EBSE results when making adoption 
decisions, and to encourage industry willingness to participate in larger EBSE studies. 

Pedagogical value will be discussed, along with the threats to validity and ethical considerations 
of conducting and distributing results from such small laboratory experiments. 

2. Course and Experiment Design 

The lead author developed and presented three industry training courses to professional software 
developers in two Fortune 500 corporations. The first course introduced C++ to experienced C pro­

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007



Pairs/ Submissions 
Experiment Timeframe Students Assignment Solo TF TL 
TDD in Java Fall 2005 15 Bowling Both 3 3 
C++ for C Programmers Summer 2005 14 Bowling Solo 2 4 
TDD in Java Fall 2006 14 Bowling Pairs 2 3 
TDD in Java Fall 2006 14 ToDo List Pairs 4 0 

Table 1. Experiment Profile 

grammers. This was a four-day course with a segment on test-driven development on the morning 
of the final day. The second and third courses introduced test-driven development to experienced 
Java programmers in two different companies. These were both two-day courses. All courses were 
delivered in full-day, on-site, lab-based environments. Course enrollments were 15, 14, and 14 
respectively. 

Course participants were provided basic instruction on automated unit testing and given short lab 
exercises to establish basic competency. The two Java courses utilized JUnit and the C++ course 
utilized simple assert statements due to the shorter time frame. 

Participants were given a pre-experiment survey to measure developer experience and opinions, 
then instructed in both an iterative test-first and test-last development approach. Extensive dis­
cussion of test-driven development was delayed until after the experiment was completed and the 
post-experiment surveys were administered. Students were then divided into test-first and test-last 
groups and given a programming assignment. 

The exercise was to build a bowling game scorer as described by Robert C. Martin [8]. The same 
exercise was used in an industry experiment by Laurie Williams [4] to examine the effects of TDD 
on external quality. The project involved reading bowling throws from a file, calculating scores, 
and presenting scores through a text-based user interface. Approximately two hours was given to 
complete the assignment. Some sample input/output code was provided to subjects to shorten the 
development effort. 

In the third course, participants were also given a second programming assignment on the fol­
lowing day and asked to switch test-first/test-last approaches. The second programming assignment 
was a simple To-Do list planner. In this course, post-experiment surveys were administered after 
both programming exercises. 

2.1. Experiment Results 

Students were asked to submit code and tests from the four projects in the three experiments. 
Only between 42% and 73% of the students submitted their projects and a few of the submitted 
projects did not compile and/or were incomplete. Lack of time was the primary reason given for 
the low submission rate. Half of the Bowling projects received were completed with a test-first 
approach, but all of the To-Do list submissions were from test-first developers. Table 1 summarizes 
the submissions. Notice that the use of solo or pair programming is inconsistent. In the 2005 
TDD course, a couple of individuals with limited Java experience requested to work in pairs with 
more experienced Java developers while others preferred to work solo. This was allowed and both 
test-first and test-last groups contained one or two such pairs of programmers. 

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007



Coverage 
Experiment Exercise Approach Line Branch 
TDD Summer 2006 Bowling TF 81% 79% 
TDD Summer 2006 Bowling TF 45% 0% 
TDD Summer 2006 Bowling TL 91% 87% 
TDD Summer 2006 Bowling TL 0% 0% 
TDD Summer 2006 ToDo TF 100% 100% 
TDD Summer 2006 ToDo TF 100% 100% 
TDD Summer 2006 ToDo TF 88% 75% 
TDD Summer 2006 ToDo TF 86% 76% 
TDD Fall 2005 Bowling TF 50% 19% 
TDD Fall 2005 Bowling TF 58% 55% 
TDD Fall 2005 Bowling TF 49% 30% 
TDD Fall 2005 Bowling TL 68% 63% 
TDD Fall 2005 Bowling TL 73% 80% 
TDD Fall 2005 Bowling TL 6% 0% 

Average TF 73% 59% 
Average TL 60% 58% 

Table 2. Test Metrics 

2.2. Software Metric Results 

A suite of static metrics was calculated on the projects from the two Java experiments. Metrics 
were chosen to evaluate software size, complexity, coupling, and cohesion. Detailed discussion of 
the metric selection and results of the larger leveled study are available in [6]. Unlike the larger 
studies, in the training course studies no statistically significant differences existed between the 
software developed with a test-first and a test-last approach. Likely this is due to the small size of 
the projects completed. 

Table 2 reports the test coverage metrics from the training experiment. Excluding the one project 
with no automated tests, the test-first projects had an average line and branch coverage of 73% and 
59% respectively, compared with 60% and 58% for the test-last projects. The gap between test-first 
and test-last test coverage was even more significant in the leveled study with much larger projects. 

2.3. Subjective and Evaluative Results 

Surveys were conducted immediately before and immediately after the programming exercises 
in all three courses. No statistically significant differences existed between the test-first and test-last 
groups in terms of academic background, work experience, or specific programming experience. 

Programmer responses on three questions were analyzed for changes from the pre to the post 
experiment survey. The questions rated programmer attitudes toward the following factors: 

• importance of unit testing (Attitude) 

• timing of writing unit tests (Timing) 

• choice of test-first or test-last programming (Choice) 

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007



Experiment Direction Attitude Timing 
TDD Fall 2005 %Increasing 

%Decreasing 
62% 
0% 

50% 
0% 

C++ Summer 2005 %Increasing 
%Decreasing 

0% 
13% 

88% 
0% 

TDD Summer 2006 %Increasing 
%Decreasing 

9% 
9% 

100% 
0% 

Table 3. Programmer Attitude Changes
 

Experiment Choice %Pre %Post %Difference 
TDD Fall 2005 Test-First 

Test-Last 
67% 
33% 

83% 
17% 

17% 
-17% 

C++ Summer 2005 Test-First 
Test-Last 

29% 
71% 

33% 
67% 

5% 
-5% 

TDD Summer 2006 Test-First 
Test-Last 

60% 
40% 

82% 
18% 

22% 
-22% 

Table 4. Programmer Choice Changes 

Table 3 presents the results of this analysis. %Increasing indicates that respondents increased 
their opinions of the importance of unit testing (Attitude) and the “earliness” of writing unit tests 
(Timing) between the pre and post experiments. Sixty-two percent of the programmers in the 
“TDD Fall 2005” experiment indicated that testing was more important after participating in the 
experiment, whereas programmers in the other two experiments actually thought testing was less 
important or had mixed opinion shifts. In all of the experiments, 50% or more of the programmers 
changed their opinions to favor earlier testing. 

The final question asked programmers whether they would choose to use the test-first or the test-
last approach. Table 4 reports the changes from the pre to post experiment survey in programmer 
choice. In all cases more programmers chose the test-first approach after completing the experi­
ment. These results are consistent with those from the larger studies. It is interesting to note the 
significant difference in programmer willingness to adopt the test-first approach between the differ­
ent courses. The C++ programmers were far less open to the test-first approach. One explanation 
might be the nature of the courses. The C++ course was primarily a language course with the 
experiment on the last day, whereas the Java courses were specifically focused on test-driven devel­
opment with the experiment on the first day. It seems likely that students coming to a TDD course 
are more open to trying TDD than students in any other non-TDD specific course. Additional ratio­
nale could be the different development environment. The C++ programmers used primitive assert 
statements whereas the Java programmers used the more sophisticated JUnit framework. 

3. Pedagogical Considerations 

The inclusion of controlled experiments in industry training courses is proposed as a win-win 
situation. Coupling such experiments with course content can greatly enhance courses while in­

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007



troducing only minimal overhead, primarily that of conducting surveys. Professional student-
programmers attending courses containing such experiments will gain valuable experiences beyond 
merely learning the course material. Most notably, student-programmers may benefit by: 

• recognizing that alternative approaches exist 

• learning to analyze and evaluate EBSE comparisons of alternative approaches 

• gaining appreciation for and understanding of EBSE
 

Instructors and the software community at large may benefit by:
 

• collecting survey data
 

• obtaining experimental results for analysis and possible dissemination
 

• opening the door to conduct full-scale empirical studies in an industry domain
 

Depending on the nature of the study, data obtained may be of limited value due to common 
threats to validity. Training courses will typically have small sample sizes. Short time frames will 
generally limit the size of exercises so that they may not be representative of industrial projects. 
Further the very nature of training courses indicates that developers will likely be immature in their 
use of the particular tools, languages, or practices being examined. As a result, any publications 
resulting from such studies should clearly advertise their limitations. 

Despite such validity threats, valuable information may still be obtained from such short ex­
periments. Evaluations of pedagogical approaches or learning curves seem appropriate. Results 
from short course studies can be combined with replicated studies to gain confidence, or data may 
augment other results from diverse studies as seen in the TDD studies above. 

4. Ethical Considerations 

4.1. Human Subjects 

Industry short courses such as this one clearly support the IEEE/ACM Software Engineering 
Code of Ethics (“Code”) [9] section 7.02 in that we “[a]ssist colleagues in professional develop­
ment” with the instruction in software testing. However, gathering data from human subjects may 
also involve other serious considerations. The Belmont Report [3] states that “[a]pplications of the 
general principles to the conduct of research leads to consideration of the following requirements: 
informed consent, risk/benefit assessment, and the selection of subjects of research.” 

Human subjects approval was obtained from the University of Kansas for the broad set of leveled 
experiments in this study. In the training courses, informed consent was obtained from the corporate 
manager who sponsored each course. Participants were verbally informed regarding the nature of 
the experiment and their right to not participate. All student-programmers chose to participate and 
they were assigned identification numbers so their surveys and software artifacts could be correlated 
while preserving privacy. In this way, the first requirement (informed consent) was satisfied. 

The second requirement, risk analysis, is a minor consideration for studies like these. The only 
risks to participants could involve a waste of time or a breach of confidentiality leading to job 
consequences. The time taken was minimal (fifteen minutes) and was approved by management. 
The time could also be considered part of the instruction since relevant EBSE issues were addressed 

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007



in detail. Confidentiality was built into the experiment design, no personally identifying information 
was attached to any information. 

The third requirement is inapplicable in studies like this since we’re not involved in any specific 
“benefit” to participation (such as a medical treatment) and the subjects are clearly directly related 
to the problem being studied. 

4.2. Our Duty to Perform Such Studies 

Not only have these pilot studies been performed in an acceptably ethical manner, the Code ap­
pears to make it the very duty of those involved in industry short courses to consider conducting 
pilot studies and publishing the results. The most pertinent provisions are 6.02 and 6.03 where soft­
ware engineers (in the general sense) are to “[p]romote public knowledge of software engineering” 
and to “[e]xtend software engineering knowledge by appropriate ... publications.” 

An interesting and substantial side effect of performing such pilot studies can be the education 
of the student-participants in EBSE design, methods, tools, and an appreciation for gathering and 
interpreting data. The authors suggest EBSE instruction become an integral part of performing the 
study and sharing the results during short courses. Such information contributes to the strength of 
the all-important “informed consent” as the participants will gain the information needed to give 
reasoned consent. Note also that we’ve further met the duty under the Code to “assist colleagues” 
in their professional development. Not only do they learn about TDD in this case, but they gain 
knowledge and experience in EBSE. 

5. Conclusions 

Integrating controlled experiments into industry training courses is proposed to have pedagogical 
and intellectual merit while maintaining ethical integrity. Further, by raising awareness of evidence-
based techniques, access to conduct experiments in the field is expected to increase, thereby broad­
ening the body of evidence-based software engineering knowledge. 

The approach was applied with a study on test-driven development in three training courses. 
While little was revealed regarding TDD’s influence on internal software quality, results did sup­
port the propensity of test-first developers to achieve higher test coverage than their test-last coun­
terparts. In addition, survey results indicated that programmers moved toward preferring earlier 
testing, and they were more open to a test-first approach after participating in the study. Discussion 
and critical analysis of such results in the training courses occurs naturally in such courses and 
confirms the value of the approach. 

References 

[1] Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through families of experiments.	 IEEE 
Trans. Softw. Eng., 25(4):456–473, 1999. 

[2] David Budgen, Stuart Charters, Mark Turner, Pearl Brereton, Barbara Kitchenham, and Stephen Linkman. Inves­
tigating the applicability of the evidence-based paradigm to software engineering. In WISER ’06: Proceedings of 
the 2006 international workshop on Workshop on interdisciplinary software engineering research, pages 7–14, New 
York, NY, USA, 2006. ACM Press. 

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007



[3] The National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. Ethical 
principles and guidelines for the protection of human subjects of research, 1979. 

[4] Boby George and Laurie Williams. A structured experiment of test-driven development.	 Information and Software 
Technology, 46(5):337–342, 2004. 

[5] Robert L. Glass, V. Ramesh, and Iris Vessey.	 An analysis of research in computing disciplines. Commun. ACM, 
47(6):89–94, 2004. 

[6] David Janzen. An Empirical Evaluation of the Impact of Test-Driven Development on Software Quality. PhD thesis, 
The University of Kansas, August 2006. 

[7] Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen.	 Evidence-based software engineering. In ICSE ’04: 
Proceedings of the 26th International Conference on Software Engineering, pages 273–281, Washington, DC, USA, 
2004. IEEE Computer Society. 

[8] Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices. Pearson Education, Inc., 2003. 

[9] ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices. Software Engineering 
Code of Ethics and Professional Practice, 1992. 

20th Conference on Software Engineering Education & Training (CSEET'07)
0-7695-2893-7/07 $20.00  © 2007




