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Abstract

In this note I study Nash bargaining when the utility possibility set

of the bargaining problem is non-convex. A simple variation of Nash�s

symmetry axiom is all that is necessary to establish a set valued version of

Nash�s solution in non-convex settings.

�I would like to thank Kaushik Basu for useful discussions on the subject. All remaining
errors are mine.

yDepartment of Finance, 238 MCOB, University of Notre Dame, South Bend, IN 46556.
Phone: 574-631-4597. Fax: 574-631-5255. E-mail: ezambran@nd.edu.

1



1. Introduction

The Nash bargaining solution needs no introduction. Since its development by

Nash in 1950 it has been a central tool in the analysis of bargaining problems and

its layout became the departure point for all the subsequent work in the area. It

is also extensively used in applications.

Unfortunately, for Nash�s solution to be applied, the underlying utility possi-

bility on top of which the bargaining problem is laid out must be a convex set.

This convexity is not often found in applications and is often remedied by con-

vexi�cation via lotteries. While this is a satisfactory way to proceed in certain

situations, it is not always so (See e.g., Conley and Wilkie, [2]). It would therefore

be nice if we could apply Nash�s solution to any problem, even non-convex ones.

To deal with non-convexities I relax the requirement of �nding a point-valued

solution to a bargaining problem. One then has to accept set-valued solutions,

as exempli�ed in Anant, Mukherji and Basu [1]. What distinguishes this work

from the related work on Nash bargaining done by Serrano and Shimomura [5],

Herrero [3] or Kaneko [4] in non-convex settings is that a simple variation of Nash�s

symmetry axiom is all that is necessary in my paper to recover Nash�s (set valued)

solution as the solution to the bargaining problem.
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2. Notation

Let f (U; d) � U be a candidate solution to bargaining problem (U; d) : U is

compact but need not be convex. It can even contain only �nitely many points.

Consider the following axioms:

(IAT ) If U 0 = fy : yi = �i + �ixi for some x 2 Ug and d0i = �i + �idi (where

�i 2 <; �i > 0 for all i) then f (U 0; d0) = fy : yi = �i + �ixi for some x 2 f (U; d)g :

(P ) If x; y 2 U such that yi � xi for all i with strict inequality for some i then

y 2= f (U; d) :

(IIA) If y 2 f (U; d) and y 2 U � U then y 2 f U; d :

For the next axiom we need a de�nition. Point y i

�
s com

�
parably more symmetric

than x if y = �x+ (1� �) s (x) for � 2 (0; 1) and s a symmetry operator.

(Sy) If U is symmetric and x; y 2 U with y comparably more symmetric than

x then x 2= f (U; d) :

If
�
fk (U; d)

	
is the family of candidate solutions that satisfy IAT , P , IIA

and Sy then the solution to bargaining problem (U; d) is f (U; d) = [kfk (U; d).

It is easy to see that f itself satis�es IAT , P , IIA and Sy:
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3. A Solution by Nash

Let f �(U; d) = argmaxv U (v1 � d )2 1 � � � � � (vI � dI) :

Theorem 3.1. f � satis�es IAT; P; IIA and Sy:

Proof. The reader will note that the proof for the IAT , P and IIA axioms are

identical to the case with U convex.

(IAT ) First let U 0 = fy : yi = �i + xi for some x 2 Ug and d0i = �i+di (where

�i 2 < for all i). Then we have

f �(U 0; d0) = argmax (v1 � d01)� � � � � (vI � d0I)
v2U 0

= arg max (v1
v2U+f�g

� d1)� � � � � (vI � dI)

= f�g+ f �(U; d) = fy : yi = �i + xi for some x 2 f � (U; d)g

From this it is always the case that f �(U; d) = f �(U � fdg ; 0) + fdg ; so from

now on we normalize so that d = 0, and write f � (U) for f � (U; d) :

Now let U 0 = fy : yi = �ixi for some x 2 Ug. Then if y = �x 2 f �(U 0) it is

the case that y1 � � � � � yI � y10 � � � � � yI0 for all y0 2 U 0 , so �1x1 � � � � � �IxI �

�1x
0
1� � � ���Ix0I for all x0 2 U; that is, x1� � � ��xI � x01� � � ��x0I for all x0 2 U

. Therefore, x f� (U) and f � (U 0) = y : yi = �ixi for some x f� (U) :2 f 2 g
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(P ) If x; y 2 U such that yi � xi for all i with strict inequality for some i then

y1 � � � � � yI < x1 � � � � � xI : Therefore, y 2= f� (U) :

(IIA) If y 2 f � (U) then y1� � � �� yI � x1� � � ��xI for all x 2 U; and indeed

for every subset U of U . Therefore, if y 2 U then y 2 f � U :

(Sy) If U is symmetric and x; y m

�
2 U with y co parably m

�
ore symmetric than

x then y = �x + (1� �) s (x) for � 2 (0; 1) : By the convexity of the function

v1 � � � � � vI we have that

(�x1 + (1� �) s1 (x))� � � � � (�xI + (1� �) sI (x)) �

� (x1 � � � � � xI) + (1� �) (s1 (x)� � � � � sI (x)) = (x1 � � � � � xI)

Therefore, x 2= f� (U) :

4. The Only Solution

Theorem 4.1. If feis a candidate solution to (U; d) that satis�es IAT; P; IIA and
Sy then f (U; d) � f � (U; d).

Proof.

e
Let fe be a candidate solution to (U; d) that satis�es IAT; P; IIA

and Sy: Allow U to be an arbitrary bargaining problem with d normalized to

zero. By the independence of utility origins implied by IAT , this can be done.
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Pick x� 2 f � (U) and let v = max I xi
x U i=1 and v= max2 x� x

i
2U x1 � � � � �

x : Let U 0 =
n
x 2 <I : x

I +

PI i
i=1 x

a�
i
� v nd

P
U 00 = x 2 <I+ : x1 � � � � � xI � v :

Let US = U 0 \ U 00. This intersectio

o
n is always n

�
on-empty. Notice that U

	
�

US; that maxx US x1 � � � � � xI = v and that f � (U)2 � f �
�
US
�
: Let U 000 =n

x 2 <I+ :
PI

i=1 xi � v
o
; U IV =

�
x 2 <I+ : x1 � � � � � xI � 1

	
and UT = U 000 \

U IV : Notice that UT is always non-empty and symmetric. Let P
�
UT
�
be the

Pareto frontier of UT : By P , if y 2 f UT then y 2 P UT : By Sy, if y 2 f UT

then there is no z

e� � � � e� �
2 P

this is the case for ever

�
UT
�
that is comparably more symmetric than y. But

y point in P (U 000) that is not in P U IV : Therefore,

y 2= P (U 000) : We have thus shown that if y 2 f UT then y

� �
2 P U IV \ UT :

But notice that P U IV \ UT = argmaxv2UT v

e
T

1

� � �
U

�
� � � � � vI = f � : Hence,

fe�UT � � f � U

� �
�

T
�
: From this it follows that if x

� �
2 f UT then x1 � � � � �

xI = 1: It is easy to verify that x UT if and only

e
if

�
(

�
2 x�1x1; :::; x

�
IxI) 2 US:

Therefore, by the independence of utility units implied by IAT , it follows that

fe�US� = ny : yi = x�ixi for some x 2 fe�UT �o : As a consequence, if y 2 f US

then y1 � � � � � yI = x�1x1 � � � � � x�IxI = (x�1 � � � � � xI�) (x1 � � � � � xI) =

e
v

�
and

�

y 2 f �
�
US
�
: This means that f US � f � US : Pick y 2 f US such that

y 2 U � US: Then by IIA y f

e� � � � � �
2 e(U) but since y1 � � � � � yI =v

e
then y 2 f � (U) :

Hence, f (U) � f � (U) :e
6



Theorem 4.2. f �is the only solution to (U; d) that satis�es IAT; P; IIA and Sy:

Proof. Let
�
fk (U)

	
be the family of candidate solutions that satisfy IAT , P ,

IIA and Sy: Then any solution to bargaining problem U that satis�es IAT; P;

IIA and Sy is fe(U) = [kfk (U). Theorem 4.2 indicates that fk (U) � f � (U)

for all k, and therefore fe(U) = [kfk (U) � f � (U) : On the other hand, Theorem
3.1 says that f � (U) = fk (U) for some k, so f (U) = [kfk (U) � f � (U) : As a

consequence, fe(U) = f � (U) :
e
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