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It has been widely believed that Gregor Mendel's experiments with peas (genus Pisum) were 

designed to discover the basic principles of heredity (genetics). Those more familiar with the 

history of genetics know that his work with peas sought to explain the laws governing the origin 

and development of hybrids (Hartl and Orel 1992, p. 245; Monaghan and Corcos 1985, p. 49–50; 

Stern and Sherwood 1966, p. 2). His subsequent work with hawkweeds (genus Hieracium) was 

an attempt to find an explanation for the apparent constancy of some hybrid forms in this and 

other species (Orel 1984, p. 63). One of his main motives was to see if hybrids between different 

varieties of a species or between different species could breed true, that is, hybrids produce only 

more hybrids. In those days, the difference between varieties and species was not always well 

defined. True-breeding hybrids behaved like new species. Mendel published 2 botanical papers in 

German: his Pisum paper was published in 1866, the one on Hieracium was published in 1870. 

Both of these papers and his letters to his friend and advisor Carl Nägeli have been translated into 

English in Stern and Sherwood (1966). In the text of the present paper, numbers following 

Mendel's name refer to pages in the Stern and Sherwood book. A complete English translation of 



Mendel's 1866 paper by William Bateson can be found on the internet (see Mendelweb). The 

concept of reproductive isolation as a hallmark of a biological species did not become popular 

until well into the 20th century (Mayr 1982, p. 270–275). Mendel found that his intervarietal pea 

hybrids were phenotypically identical but did not breed true when self fertilized, segregating pure 

breeding parental types (homozygotes) as well as hybrids (heterozygotes) in the now familiar 

ratio 1:2:1. [N.B. Modern terms are used here and elsewhere in this paper instead of Mendel's 

terms that have become passé.] Mendel was aware that Charles Darwin's book On the Origin of 

Species was published in 1859 before he began his pea experiments in 1862. Darwin did not 

really shed much light on how new species originate by natural selection. And the role of 

hybridization in that process was begging for experimental insights, especially for how an 

ancestral species can split into 2 or more daughter species that coexist in time (horizontal 

evolution or speciation, cladogenesis).  

After Mendel found some principles of hybrid behavior in his pea varieties, he hoped to find the 

same regularities operative in other plant species. In his famous 1866 paper (published in The 

Proceedings of the Brünn Natural Science Society), Mendel also reported his interspecific 

hybridizations with another species of plant (beans, genus Phaseolus). He hybridized bean 

species differing in plant height and shape of ripe pods and found that they followed the same 

laws of development as Pisum. The colors of both flowers and unripe pods, however, seemed to 

be more complex. Crosses between plants with white flowers and plants with crimson blossoms 

produced hybrids with flowers less intensely crimson than the parental variety. The progeny of 

hybrids had flowers varying from crimson to pale violet and white. The unripe seed pods also 

had various shades of coloring from dark green to yellow. Because white flowered plants seemed 

to appear in about 1/16 of the progeny of hybrids (F2), Mendel proposed that there were 2 color 



elements (genes) A1 and A2
 that together in homozygotes contributed to crimson color. Plants 

with the recessive alleles a1 and a2, when homozygous together, produced white flowers. Other 

gene combinations contributed to the range of colors between crimson and violet. Mendel seems 

to be the first to conceive of multiple factors for a single character.  

The Hieracium Enigma 

Mendel (living in Moravia, part of the Habsburg Monarchy) wrote 10 letters to Carl Nägeli during the 

years 1866–1873. Nägeli was Professor of Botany at Munich and one of the foremost botanists and 

hybridizers of his time (Dunn 1965, p. 16). In his first letter, dated 31 December 1866, Mendel (p. 58) told 

Nägeli that he had selected Hieracium, Cirsium, and Geum for further experiments to see if they could 

produce "constant hybrids." Thus, the myth that Nägeli was the one who initially caused Mendel to work 

with Hieracium is untenable. Because Nägeli had extensive knowledge with interspecific hybrids and 

"was a well-known Hieracium specialist" (Endersby 2007, p. 122), Mendel asked for his advice. Mendel 

made no reference to Hieracium in his 1866 paper. It is unknown why he chose Hieracium instead of other 

genera in his research on constant hybrids. Before he began his research with peas, Mendel was aware that 

the German botanist C. F. Gärtner had reported hybrids that remain constant in their progeny and 

propagate like pure strains, including the highly fertile hybrids Aquilegia atropurpurea canadensis, 

Lavatera pseudolbia thuringiaca, and Geum urbano rivale (Mendel, p. 41). "This feature is of particular 

importance to the evolutionary history of plants because constant hybrids attain the status of new species" 

(Mendel, p. 41). In his first letter to Nägeli, Mendel (p. 58–59) questioned that Gärtner's hybrids from 

Geum urbanum + rivale produced "non-variable progeny as long as they remained self-pollinated." In his 

tenth and last letter to Nägeli, Mendel (p. 98) finally reveals that "The name following the hybridization 

symbol + refers in all cases to that species from which the pollen was taken." Unfortunately in Mendel's 

time, the work of other plant breeders mentioned in his papers were not required to be fully cited so that 

anyone might be able to check the accuracy of statements made or have access to the entire contents of 



cited work. So, it is a little known fact that "Gärtner described separately nearly all the phenomena that 

later occurred in the definitions of the so-called Mendelian Laws of Heredity, with the exception of the 

most important, those providing the theoretical basis for the numerical segregation ratios" (Orel 1984, p. 

39).  

Nägeli's letters to Mendel have not been found. Translations of Mendel's letters to Nägeli by Piternick LK 

and Paternick J (1950) can be found on the internet. In Mendel's letters, he reported on hybridization 

experiments between species or varieties belonging to 26 different genera. Four of these crosses produced 

segregating hybrids like those of peas; the remainder did not (Dunn 1965, p. 14). "In 1869 Mendel 

concluded experiments with Matthiola (stock), Zea (maize), and Mirabilis (four-o'clock), and stated in his 

eighth letter to Nägeli (3 July 1870) that their hybrids had behaved exactly like Pisum" (Orel 1984, p. 62). 

Mendel made no mention of this in his second and last botanical paper (1869). Titled On Hieracium-

Hybrids Obtained by Artificial Fertilisation, it was published in the same journal as his 1866 paper. In this 

paper, Mendel reported on his hybridization experiments with the various "species" in the genus 

Hieracium. He was unable to reproduce the kind of results he had with varietal hybrids of Pisum. Mendel 

wrote: "This genus [Hieracium] possesses such an extraordinary profusion of distinct forms that no other 

genus of plants can compare with it ... Regarding no other genus has so much been written or have so 

many and such fierce controversies arisen, without as yet coming to a definite conclusion" (Mendel, p. 

50–51). Near the end of the paper Mendel confesses: "In Pisum the hybrids, obtained from the immediate 

crossing of two forms, all have the same type, but their posterity, on the contrary, are variable and follow 

a definite law in their variations. In Hieracium according to the present experiments the exactly opposite 

phenomenon seems to be exhibited" (Mendel, p. 55). Unfortunately, it was not known at the time that 

Hieracium species are "frequently parthenogenetic or apogamous, a situation which obviously results in 

offspring to which the supposed pollinating parent has not made any genetic contribution" (Stern and 

Sherwood 1966, p. vii). They develop viable seeds without being fertilized. Apomixis is also common in 

the weedy, invasive dandelions (Taraxacum), and the brambles of genus Rubus (Endersby 2007, p. 126). 



According to Swanson 1957 (p. 520), the cells of Hieracium that produce the gametophyte (embryo sac) 

are of archesporial origin (diplospory), and the meiotic processes are missing or abortive so that a 

gametophyte of diploid character is preserved. Occasionally, however, some Hieracium species reproduce 

by normal fertilization. But, according to Dunn 1965(p. 14), hybrids between different species of 

Hieracium are "always apogamous, that is, the parent reproduces vegetatively and the offspring are all 

alike, as though derived from cuttings, and no sexual process, and hence no segregation, can occur." 

Pisum varietal hybrids tend to revert to the parental types over successive generations of self-fertilization, 

but apogamous Hieracium hybrids breed true generation after generation.  

Hybrid speciation is more common in plant genera that can reproduce asexually or when self-fertilization 

is possible. Hawkweeds (Hieracium), for example, reproduce mainly asexually but occasionally reproduce 

sexually. This has produced so many highly variable "species" that no 2 taxonomists agree on how many 

forms exist (Ridley, p. 418). Even if some of these interspecific hybrids are semifertile, unless they can 

exploit an ecological niche different from those of the parental species, they usually fail to survive. Thus, 

true-breeding hybrids by sexual reproduction are uncommon in nature.  

Mendel found that interspecific hybrids of Hieracium were not easy to obtain, those that did survive were 

of low fertility even when fertilized by their own pollen (Orel 1984, p. 66); the hybrids were not uniform, 

and yet their progeny bred true. Eventually Mendel was able to obtain a few true hybrids of Hieracium 

that segregated characters in their progeny but in a series even more complicated than those of Phaseolus 

(Orel 1984, p. 65). Mendel complained that the flowers of Hieracium were very small and he needed a 

magnifying glass and artificial light to accomplish artificial pollination. In his first letter to Nägeli, 

Mendel confessed that, despite the great pains he took to insure that only foreign pollen was applied to the 

stigmas of Hieracium (e.g., Hieracium pilosella with Hieracium pratense, Hieracium praealtum, and 

Hieracium auricula; and Hieracium murorum with Hieracium umbellatum and H. pretense), he thought 

that self-fertilization had occurred (Mendel, p. 58). His failing eyesight and appointment in 1868 as abbot 

of the Augustinian monastery of St Thomas eventually put an end to his plant work. However, in his last 



letter to Nägeli, Mendel (p. 102) anticipates the arrival of "shipments from the corresponding members of 

our society." Mendel died in 1884, unaware of the importance his Pisum work would later prove to be.  

Some historians claim that Mendel's 1866 paper was published in an obscure journal (Lander and 

Weinberg 1778). It is now well publicized that the Verhandlungen (transactions, deliberations, 

proceedings) of the Brünn Society was sent to the libraries of 115 or more institutions, including the 

Royal Society and the Linnean Society in Great Britain (Mayr 1982, p. 723). Mendel also made 40 

reprints of his paper, but in his second letter to Nägeli (dated 18 April 1867) Mendel (p. 61) remarks "The 

paper which was submitted to you is the unchanged reprint of the draft of the lecture mentioned; thus the 

brevity of the exposition, as is essential for a public lecture." Unfortunately, Nägeli was a firm believer in 

the theory of pure blending inheritance. To acknowledge Mendel's theories would have meant, for Nägeli, 

a complete refutation of his own theories (Mayr 1982, p. 723). When Mendel asked Nägeli for his advice, 

he seems to have encouraged Mendel to go ahead with his plans to see if Hieracium hybrids could produce 

segregating progeny and later exchanged many specimens or seeds with him. In his 1884 book on 

evolution and inheritance, however, Nägeli made no mention of Mendel (Mayr 1982, p. 723). Perhaps, 

this was because Mendel (p. 51) never used Nägeli's name but referred to him only once indirectly in his 

1869 paper as "a famous Hieracium specialist." Mendel (born 1822) coincidentally died in 1884.  

The Bizarre Oenothera Complex 

The evening primrose Oenothera lamarckiana is a beautiful, freely branching plant that can grow more 

than 5-ft tall. It is a self-fertilizing biennial plant, taking 2 years to produce seeds. In 1900, the Dutch 

botanist Hugo de Vries was one of the botanists who rediscovered Mendel's 1866 paper. He found his first 

"mutants" in the evening primrose O. lamarckiana in 1886 (Dunn 1965, p. 57), 2 years after Mendel's 

death. These rare variant types (races) differed from the normal form of the species in several 

characteristics and naturally bred true by self-fertilization from seed through subsequent generations. He 

collected seeds from plants growing wild in an abandoned potato field near Amsterdam and planted them 



in his own garden. Among the numerous resulting plants, he found 3 phenotypically identical plants that 

had different characteristics than O. lamarckiana, but they did not produce fertile pollen. He named these 

3 plants Oenothera lata. Later this species was found growing in the wild (Endersby 2007, p. 152). "It was 

the survival of the Oenothera mutants alongside the parental forms [in the wild], resisting blending and 

swamping, that had first excited de Vries" and led him to believe that the mutants were reproductively 

isolated new species (Endersby 2007, p. 185). de Vries also discovered a robust variant he named 

Oenothera gigas (later shown by others to be a polyploid) that bred true without any sign of reverting to 

the original type. When other plant breeders hybridized 2 pure-breeding lines (races) of Oenothera (O. 

lamarckiana and Oenothera biennis), it was found that the hybrids split into three distinct phenotypes, 

each of which bred true when self-fertilized. This was the exact opposite of Mendel's results with pea 

hybrids. deVries thought that each of these "mutations" represented a different "elementary species" 

(Dunn 1965, p. 59). In 1901–1903, he published his theory that new species originate in a single step, in 

his 3-volume book Die Mutationstheorie as a counterpoint to Darwin's theory that gradual changes occur 

within a single lineage over many generations as an adaptive response to natural selection (Dunn 1965, p. 

60). de Vries also thought that all Oenothera mutants were produced by a common mechanism. Both these 

ideas were later disproved by other geneticists.  

The origin of de Vries’ "mutations" began to be explained in 1917 by Otto Renner, who found 

that most Oenotheras are complex translocation hybrids (structural heterozygotes) that 

nonetheless breed true from seed when they are normally self-pollinated. The ancestral species 

from which most Oenothera species evolved most likely had 7 pairs of chromosomes (2n = 14), 

as found in Oenothera hookereri (Swanson 1957, p. 496). If two nonhomologous chromosomes 

exchange chromosome tips, the resulting structural heterozygotes will tend to synapse only at 

their homologous regions and form a circle of 4 chromosomes, the remaining 10 chromosomes 

will pair as 5 bivalents during meiosis. If another chromosome exchanges end segments with a 



ring of 4, a ring of 6 and 4 pairs will form at meiosis. In this way, a series of reciprocal 

interchanges (translocations) of chromosome tips are thought to have eventually involved all 7 

pairs of chromosomes that characterize most of the numerous Oenothera races existing today. 

There are many thousands of ways to arrange 14 chromosome ends in 7 groups of 2. More than 

160 different segmental arrangements have already been identified (Herskowitz 1965, p. 235).  

In 1918, H. J. Muller was the first to discover a balanced lethal system in the fruit fly Drosophila 

(Gardner and Snustad 1984, p. 441–442). Individuals homozygous for one allele (aa) die. At 

another locus on the same chromosome, individuals homozygous for one allele (bb) die. If 

dihybrids are linked in repulsion phase (Ab/aB) and crossovers between the 2 loci is infrequent or 

entirely absent, intercrossing dihybrids would be expected to produce mainly or only dihybrid 

progeny; zygotes homozygous for either of the lethal alleles die. Because in this strain of 

Drosophila, both loci lie within an inversion heterozygote, any crossovers occurring in this 

region are likely to produce genetically unbalanced gametes (duplications or deficiencies) that are 

dysfunctional. Thus, genes within the inversion heterozygote remain inseparably linked via the 

balanced lethal system. Muller suggested that "permanent hybrids like O. lamarckiana could also 

be maintained as balanced lethal systems if crossing over between homologues was reduced 

almost to zero. Exceptions due to rare crossovers would then, because of their rarity, be 

interpreted as mutations" (Dunn 1965, p. 160). Other geneticists later found that reciprocal 

translocations (rather than inversions) "suppress" crossing over in the balanced lethal system of 

O. lamarckiana.  

The work of many geneticists contributed to our modern knowledge of the Oenotheras, including 

O. Renner, F. Oehlkers, J. Belling, S. Emerson, and A. H. Sturtevant and others. R. E. Cleland 

and A. F. Blakeslee demonstrated in 1930 that the peculiar patterns of the transmission groups in 



various Oenothera races result from a system of balanced lethal genes within each of the 

reciprocal translocation complexes. In O. lamarckiana, the balanced lethal system causes the 

death of zygotes that inherit identical recessive lethal gene complexes GG or VV, only the 

heterozygous GV zygotes survive.  

"In most species of Oenothera the seven pairs [of chromosomes] form one large ring [of 14 

chromosomes] during meiosis. When the reducing division occurs, alternate members of the ring (which 

have come from opposite parents) go to one pole and the balance to the other, so that no recombination of 

genes or chromosomes ordinarily occurs and the whole complex of each parent with its lethals is 

transmitted as a unit" (Dunn 1965, p. 160). All the genes of O. lamarckiana appear, by genetic mapping, 

to be linked to one another. In nature, self-fertilization insures that only gametes of the parent plant will 

normally unite to form the zygote. If maternal and paternal chromosomes alternate in the circle of 14 and 

alternate members of the ring segregate to opposite poles in meiotic anaphase I, as they usually do, the 

resulting gametes would be identical to those which united to form the plant. Any other segregation 

pattern would likely produce genetically unbalanced and nonfunctional gametes. The mechanism 

responsible for predominately alternate segregation of chromosomes to opposite poles is still unknown 

(Herskowitz 1965, p. 234). The chromosomes of Oenotheras that form a ring of 14 during meiosis are 

about the same size, with median centromeres, a feature that permits mobility of chromosomes on the 

metaphase plate. Thus, the surviving translocations have been not only reciprocal but also approximately 

equal in length (Swanson 1957, p. 495). During the evolution of modern Oenotheras, the only scenario 

that makes sense is the initial formation of ring complexes by reciprocal translocations, followed by the 

incorporation of balanced lethal systems and then by establishment of self-pollination (Swanson 1957, p. 

498). Occasionally, outcrossing may occur, bringing together independently evolved complexes from 

which F1 and F2 plants with rings of various sizes and some paired bivalents arise. Segregation of genes 

from the paired homologues produces a burst of biotypes on which natural selection can act (Swanson 

1957, p. 498). "Nothing like it is found in other species of plants or animals (aside from a few rare, 



similarly balanced systems)" (Mayr 1982, p. 744). Oenothera muricata is one such species, but its 

balanced lethal system involves gametic lethals in which pollen containing gene R is sterile, embryo sacs 

containing gene C are inactive, and only the union of a C male gamete with an R female gamete produces 

a viable zygote (Swanson 1957, p. 495).  

The Evolutionary Role of Interspecific Hybridizations 

Closely related species may naturally hybridize occasionally, but as a rule the hybrids are sterile. When 

partly interfertile with one or both parental species, the hybrids may intercross among themselves or 

backcross to the parents. Each successive backcross generation becomes more like the recurrent parent. 

Very shortly, in terms of geological time, the backcrosses become almost indistinguishable from the 

recurrent parent, and it is difficult to detect that gene flow has occurred without laboratory tests. Some of 

the genes from species A have now become incorporated into the gene pool of species B. This process is 

known as "introgressive hybridization" or simply "introgression" (Anderson 1949). In his 1866 paper, 

Mendel appears to be describing the process of introgressive hybridization in the formation of new species 

when he says: 

When species A was to be transformed into B, the two were combined by fertilization and the resulting 

hybrids once more fertilized with pollen from B; from among their various descendants those closest to 

species B were then chosen and repeatedly fertilized by pollen from B, and so on, until finally a form that 

was like B and remained constant in its progeny was obtained. Thus species A was transformed into the 

other species, B. Gärtner himself has carried out 30 experiments of this kind with plants from genera 

Aquilegia, Dianthus, Geum, Lavatera, Lychnis, Malva, Nicotiana, and Oenothera (Mendel, p. 44). 

Unlike gene mutations, introgression is a mechanism for introducing many genes simultaneously 

into a species. Many of these blocks of genes (linked in chromosomes) were functionally 

integrated in the species of their origin (adaptive gene complexes), but some of them might prove 



harmful, benign, or even beneficial in their new hosts. Some of the backcross products might, in 

time, become stabilized by selection for favorable recombinants, but the true-breeding 

introgressive variants that Mendel proposed would today probably be considered varieties or 

races, not new species.  

Viable interspecific hybrids are usually sterile because of chromosome mismatches during 

meiosis, as occurs in the mule, a hybrid between a female horse and a donkey male. However, if 

an interspecific hybrid spontaneously doubles its chromosome number (e.g., 2n 4n), it 

becomes, in a single step, fertile as well as reproductively isolated from its parental species. It is 

thus, by definition, a new biological species. For example, union of the diploid (2n) gametes of 

an allotetraploid (amphidiploid) hybrid and the haploid (n) gametes of the diploid parental 

species produces a triploid (3n) zygote that, if it survives, will be sterile because the unbalanced 

gametes of triploids contain different numbers of chromosomes that result in genic disharmony. 

This process is much more common in plants than in animals. It has been estimated that about 

half of all angiosperm species in nature and almost all pteridophytes (ferns) are polyploids, 

usually allopolyploids. Plant breeders have used the chemical colchicine to induce chromosome 

doubling in hybrids to produce many new allopolyploid species. "Polyploidy is known in certain 

of the Oenotheras, but where it accompanies structural heterozygosity it has no survival value" 

(Swanson 1957, p. 498).  

Aside from some plant apomicts and allopolyploids, the search for true-breeding interspecific 

hybrids, beginning with Gärtner and Mendel and ending with the demise of deVries’ mutation 

theory, has proved to be mostly futile.  
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