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Abstract

A highly optimized register allocator should provide an
efficient placement of save/restore code for procedures that
contain calls. This paper presents a new approach to plac-
ing callee-saved save and restore instructions that gener-
alizes Chow’s shrink-wrapping technique[6]. An efficient,
profile-guided, hierarchical spill code placement algorithm
is used to analyze the structure of a procedure to calculate
the minimum dynamic execution count locations to place
callee-saved save and restore code. The algorithm is im-
plemented in the Gnu Compiler Collection and has been
tested on the SPEC CPU2000 Integer Benchmark suite. Re-
sults show that the technique reduces the number of dy-
namic load and store instructions by 15% compared to sav-
ing and restoring at procedure entry and exit while Chow’s
shrink-wrapping technique reduces dynamic load and store
instructions by only 1% compared to saving and restoring
at procedure entry and exit. The dynamic number of callee-
saved save and restore instructions inserted with this new
approach is never greater than the number produced by
Chow’s shrink-wrapping technique or the placement at pro-
cedure entry and exit.

1. Introduction

Register usage conventions are used to divide a regis-
ter set into two subsets. Callee-saved registers are regis-
ters whose values are preserved across procedure calls, and
caller-saved registers are registers whose values are not pre-
served across procedure calls. The register allocator must
ensure the register usage convention is not violated by any
register allocation. One aspect of ensuring a valid register
allocation is to place save and restore code at valid locations
for the callee-saved registers allocated in a procedure. A
save instruction is a store to memory of a callee-saved reg-
ister value prior to the callee-saved register being allocated
to a variable. A restore instruction is a load from memory of
a callee-saved register value that restores the original value

to the callee-saved register. A valid placement of save and
restore code for callee-saved registers ensures that a call-
ing procedure has the same value in a callee-saved register
before and after a procedure call.

This paper describes a profile guided, hierarchical spill
code placement algorithm for optimizing the placement of
save/restore instructions within a procedure after register al-
location has been performed. The algorithm is simple, effi-
cient, produces excellent results compared to previous tech-
niques, and is compatible with any register allocator.

The organization of this paper is as follows. The prob-
lem being targeted in this paper is defined in Section 2. Re-
lated work is presented in Section 3. The profile guided
hierarchical spill code placement algorithm is described in
Section 4. The experimental method and results are given
in Section 5.

2. Problem Definition

A register allocator allocates the limited set of registers
available in a processor to program variables. When there
are not enough registers available for all variables that need
to be allocated, the register allocator must spill a variable.
When a variable is spilled, it is temporarily allocated to
memory rather than a register. The instructions used to spill
a variable are store and load instructions and are referred to
as spill code. When a register allocator utilizes callee-saved
registers in an allocation, the original value in the callee-
saved register is treated as a variable that must be spilled.
The original value in the callee-saved register must be saved
to memory before the register is used for another variable,
and the original value must be restored to the same callee-
saved register prior to the exit of the procedure.

Spill code instructions introduced by a register alloca-
tor are considered overhead instructions, because they are
not included in the original set of instructions in the pro-
gram. There is a cost associated with overhead instructions.
Each overhead instruction has a dynamic execution count
determined by profiling data. In the context of this paper,
dynamic execution count, dynamic overhead, and cost are
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used interchangeably. There is also a static overhead asso-
ciated with each spill code instruction inserted. Static over-
head reduction is not a goal of the algorithm presented in
this paper.

The problem considered in this paper is the minimum
cost placement of callee-saved save and restore code af-
ter register allocation has been completed. A placement of
save/restore instructions must satisfy the conditions that the
register allocation is not altered and that each callee-saved
register’s value is consistent at procedure entry and exit.

3. Related Work

When allocating registers to variables, a register alloca-
tor may allocate a callee-saved register to a variable that
spans a set of call locations, to prevent having to save and
restore a caller-saved register around each call site in the
set. There will be spill code overhead associated with the
necessary save and restore instructions for the callee-saved
registers allocated in a procedure.

One placement of callee-saved save and restore instruc-
tions that is always valid is to insert save instructions at pro-
cedure entry and restore instructions at each procedure exit.
This entry/exit placement technique results in low static
overhead. However, save and restore instructions placed
at procedure entry/exit may be executed more often than
necessary. There may be many different execution paths
through a procedure, not all of them taken for each invo-
cation. As a result, dynamic overhead for save and re-
store code may be suboptimal with a procedure entry/exit
placement. To reduce dynamic overhead associated with
placement of callee-saved save and restore instructions,
Chow proposed a technique that uses data flow analysis
to improve the placement of callee-saved save and restore
instructions[6]. Chow’s technique, called shrink-wrapping,
identifies the regions of a procedure where a callee-saved
register is allocated, and places save and restore instruc-
tions around each disjoint region of allocation. His shrink-
wrapping technique places callee-saved save and restore
code only on execution paths that cross regions of the pro-
cedure where a callee-saved register is allocated. Chow’s it-
erative data flow implementation is done efficiently in a sin-
gle compilation pass, and may result in code that has lower
dynamic overhead than the same procedure where save and
restore instructions are placed at procedure entry and exit.

Chow’s shrink-wrapping technique is limited because it
cannot leverage profiling data. One example where the
callee-saved spill code locations computed using the shrink-
wrapping technique may or may not produce lower dynamic
overhead is described by Chow and is shown in Figure 1.

In the example shown in Figure 1, the placement of
save and restore instructions computed using the shrink-
wrapping technique will have lower dynamic overhead than

Figure 1. Example control flow graph with
shaded basic blocks indicating regions of
allocation for a callee-saved register where
save and restore instructions are placed (a)
at procedure entry and exit and (b) at loca-
tions determined using the shrink-wrapping
technique.

the placement at procedure entry and exit only if the aver-
age dynamic execution count of the two basic blocks with a
callee-saved register allocated is less than the dynamic ex-
ecution count of the procedure entry and exit. Only when
profiling data are available can the minimum dynamic over-
head spill code locations be selected.

The algorithm presented in the next section is a new ap-
proach to placing save and restore instructions that general-
izes Chow’s shrink-wrapping technique and minimizes the
dynamic overhead of callee-saved save and restore instruc-
tions. Section 4 describes an efficient, hierarchical spill
code placement algorithm for computing the minimum cost
locations of callee-saved save and restore instructions over
the entire control flow graph for all callee-saved registers
allocated in a procedure. The new approach is guaranteed
to compute locations for save and restore instructions that
never have greater dynamic overhead than locations deter-
mined by the shrink-wrapping technique or by the proce-
dure entry/exit spill code placement technique, and very of-
ten have significantly lower dynamic overhead.

Like the shrink-wrapping technique, the hierarchical
spill code placement algorithm presented in this paper is
performed after register allocation, and is compatible with
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any register allocator, such as [2, 3, 4, 5, 7, 11].

4. Hierarchical Spill Code Placement

This section presents the new approach for finding a min-
imum dynamic execution count placement of callee-saved
save and restore code.

Consider the example control flow graph shown in
Figure 2(a). The shaded basic blocks indicate areas where
a callee-saved register has been allocated. Chow’s shrink-
wrapping technique will place spill instructions as shown
in Figure 2(b). Save instructions are placed before basic
blocks C, G, K and N, and restore instructions are placed
after basic blocks F, G, K and N. The dynamic overhead of
any spill code placement is computed by summing each in-
serted instruction’s dynamic execution count. In the place-
ment determined by the shrink-wrapping technique, the dy-
namic spill code overhead is 250 instruction cycles.

Another valid spill code placement for the example in
Figure 2(a) is to place a save instruction in the entry ba-
sic block A and a restore instruction in the exit basic block
P. The dynamic spill code overhead for the procedure en-
try/exit spill code placement is 200 instruction cycles. For
this example, the shrink-wrapping technique produces spill
code with greater dynamic overhead than the procedure en-
try/exit spill code placement technique. Other valid callee-
saved spill code placements exist for the program example
shown in Figure 2, and will be discussed later in the section.

As the size and complexity of the control flow graph in-
creases, so do the number of valid locations for save and
restore code. Comparing the cost of each set of possible
save/restore locations to the set of locations determined by
the shrink-wrapping technique is not only computationally
expensive, but is also not precise in all cases. Consider
again the example shown in Figure 2(a). If a save instruc-
tion is inserted before basic block I, and a restore instruction
is inserted after basic block O, then the save/restore instruc-
tion pairs around basic blocks K and N are not necessary.
Adding save and restore instructions at certain points in a
program’s control flow graph may allow other save and re-
store locations to be removed, potentially reducing dynamic
spill code overhead.

To identify the set of locations determined by the shrink-
wrapping technique, and as a starting point for the spill
code placement algorithm, the data flow analysis described
by Chow is used with two modifications. For the duration

of this section, spill locations determined using the shrink-
wrapping technique will include these modifications.

The first modification deals with loops within the con-
trol flow graph. Chow has the correct observation that save
and restore instructions should, in general, not be placed in-
side loops because of their higher execution frequency. To
handle this situation, Chow propagates artificial data flow
throughout loop bodies in the control flow graph to pre-
vent save and restore instructions from being placed inside
loops. In the algorithm presented in this section, artificial
data flow propagation is not necessary, as a precise, mini-
mum cost placement of save and restore locations will be
found in the control flow graph of the procedure, naturally
avoiding placement of saves and restores within loops.

The second modification involves the placement of spill
code on jump edges. A jump edge is an edge initiated by a
control flow instruction whose target is not the next sequen-
tial instruction in the program. Chow’s data flow analysis
will identify jump edges where spill code should be placed,
but Chow specifically prohibits spill code instructions from
being inserted onto jump edges. Instead, when the shrink-
wrapping technique identifies a jump edge where spill code
should be placed, Chow propagates artificial data flow along
that jump edge, and reiterates the data flow analysis. This
iteration is repeated until no spill code is placed on a jump
edge. For the algorithm presented in this section, no artifi-
cial data flow is propagated, and spill code instructions can
be inserted on jump edges. More analysis of jump edges
with spill code is given later in the section.

To determine a minimum cost spill code placement, it is
necessary to identify a set of sufficient locations in a pro-
cedure where it is valid to place save and restore instruc-
tions. The program structure tree (PST) is a hierarchical
representation of program structure based on single entry
single exit (SESE) regions described by Johnson, Pearson
and Pingali[8]. The PST is defined and unique for all con-
trol flow graphs. There is one difference between the PST
described by Johnson et al. and the PST used in the algo-
rithm described in this paper. Johnson et al. identify canon-
ical SESE regions, where canonical indicates the smallest
SESE region. The algorithm in this paper uses maximal
SESE regions.

Definition: A SESE region is maximal provided

post-dominates for any SESE region , and

dominates for any SESE region .

The entry and exit of a SESE region are called the bound-
aries of the region. Boundaries of maximal SESE regions
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Figure 2. Motivating example for hierarchical spill code placement. (a) Shaded basic blocks indi-
cate callee-saved register usage. Numbers next to edges indicate execution counts determined by
profiling. (b) Placement of callee-saved spill code using Chow’s shrink-wrapping technique.

contained within the PST, as well as save and restore loca-
tions determined by the shrink-wrapping technique, are a
sufficient set of valid locations for determining a minimum
cost placement of save and restore instructions in a proce-
dure. Save and restore locations determined by the shrink-
wrapping technique ensure that any callee-saved value that
is saved will be restored along all execution paths from the
save instruction to the exit of the procedure. Similarly, all
callee-saved values restored will have been saved along all
execution paths from the procedure entry to the restore in-
struction. The same is true for maximal SESE regions. Any
value that is saved at the entry of a maximal SESE region
and restored at the exit of that maximal SESE region is guar-
anteed to be a valid save/restore placement. The locations
are sufficient for a minimum cost spill code placement be-
cause all locations within the procedure that have a change
in execution frequency correspond either to the entry and
exit points of maximal SESE regions, or the locations com-
puted using the shrink-wrapping technique.

The PST is hierarchical in that the top level of the hi-
erarchy (root node) represents the entire procedure, and the
lowest levels of the hierarchy (leaf nodes) represent individ-
ual basic blocks. Each node in the PST has a parent node
and a list of child nodes.

Save and restore locations are grouped into save/restore
sets. A save/restore set is a collection of save and restore
locations that are dependent on each other for a valid callee-
saved spill code placement, and that are independent of any
other save or restore locations. The save and restore loca-
tions determined by the shrink-wrapping technique are the
initial save/restore sets.

The initial save/restore sets are identified using standard
compiler data flow techniques for computing variable live
ranges[1] or webs[10]. Save instructions represent the be-
ginning of a web rather than definitions, and restore instruc-
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tions represent the termination of a web rather than last-
uses. The data flow analysis is otherwise identical.

Save and restore locations have a hierarchical nature.
Procedure entry and exit locations are at the top of the hi-
erarchy, and locations determined by the shrink-wrapping
technique are at the bottom of the hierarchy. For each maxi-
mal SESE region within the PST, a list of all the save/restore
sets contained in the region and the total cost of those sets is
computed. Analysis begins at the bottom of the hierarchy.
A topological-order traversal of the PST is performed until
the smallest maximal SESE region that contains at least one
save/restore set is encountered. If the cost of placing save
and restore locations at the boundaries of the current maxi-
mal SESE region is less than or equal to the total cost of the
contained save/restore set(s), the set(s) are removed from
the region, and a new save/restore set with save/restore lo-
cations at the maximal SESE region’s boundaries is added.
This substitution is then propagated upward through the hi-
erarchy; deleting the cost of the removed set(s), adding the
cost of the new set, and including the new set in the list of
save/restore sets contained by the parent regions. If the cost
of placing save and restore locations at the boundaries of
the current region is not less than or equal to the total cost
of the contained save/restore set(s), no changes are made.
After analyzing the current region, the algorithm continues
to the next region in the topological-order traversal of the
PST.

The topological-order traversal of the PST guarantees
that when a maximal SESE region is analyzed, all of
that region’s children have already been analyzed, and all
save/restore sets contained within the region are at their
minimum cost locations relative to the level of the hierar-
chy that is currently being analyzed. The final comparison
in the analysis is between the cost of placing save and re-
store locations at procedure entry and exit to the cost of all
the contained save/restore sets in the procedure, which have
potentially been modified from the original locations deter-
mined by the shrink-wrapping technique.

The hierarchical spill code placement algorithm is shown
below.

HIERARCHICAL-SPILL-CODE-PLACEMENT

1 compute PST
2 compute shrink-wrapping save/restore locations
3 compute initial save/restore sets
4 traverse PST regions in topological order
5 for each callee-saved register allocated

6 if

7 Remove contained save/restore sets from region
8 Create new save/restore set at region boundaries
9 Propagate changes upward through hierarchy

There is a cost function used in the hierarchical spill
code placement algorithm to determine whether a new
save/restore set should be created at the boundaries of a
maximal SESE region. Two different cost models are dis-
cussed next.

An execution count cost model for the hierarchical spill
code placement algorithm is to have each inserted save
and restore instruction weighted by the dynamic execution
count of the control flow edge the instruction is inserted
into. The cost of the boundaries of a maximal SESE region
is the execution count of the entry edge plus the execution
count of the exit edge. The hierarchical spill code place-
ment algorithm solves the post register allocation spill code
placement problem optimally with the execution count cost
model.

Optimality is guaranteed using the execution count cost
model because all valid save and restore locations in the
procedure where dynamic execution count may change are
examined in the topological-order traversal of the PST. The
boundaries of each maximal SESE region represent a por-
tion of the procedure where dynamic execution count may
change. The initial placement of save and restore locations
determined from the shrink-wrapping technique guarantees
that no save and restore locations can be placed any closer
to the portions of the procedure where each callee-saved
register is allocated. The topological-order traversal eval-
uates each save/restore location beginning at the locations
determined using shrink-wrapping, and moving hierarchi-
cally upward in the PST at each point where dynamic ex-
ecution count can change. The order of the PST traversal
is important, as the topological ordering ensures that for
any maximal SESE region, all valid save/restore locations
contained in that region have been evaluated to determine
where the minimum cost locations are.

To illustrate how the hierarchical spill code placement
algorithm works, consider the following example. The ex-
ample program shown in Figure 2 is reproduced in Figure 3
with maximal SESE regions and initial save/restore sets
identified and labeled. The save and restore locations deter-
mined by the shrink-wrapping technique are omitted from
the example for clarity, but exist wherever a save/restore set
intersects a control flow edge.

The traversal of the PST in topological-order for the
example in Figure 3 will stop first at Region 1 because
there are no smaller maximal SESE regions that contain
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Figure 3. Example program for hierarchi-
cal spill code placement algorithm. Maxi-
mal SESE regions and save/restore sets are
shown.

save/restore sets. Region 1 contains one save/restore set,
Set 1. Using the execution count cost model, the cost of
Set 1 is 80. The cost of the boundaries of Region 1 is 100.
Since the total cost of the contained save/restore sets is less
than the cost of the boundaries of the maximal SESE re-
gion, no changes are made and the topological-order traver-
sal of the PST continues to Region 2. Region 2 contains
two save/restore sets, Set 1 and Set 2. Using the execution
count cost model, the cost of Set 1 is 80 and the cost of Set 2
is 50, for a combined cost of 130. The cost of the bound-
aries of Region 2 is 140. Since the cost of the contained
save/restore sets is less than the cost of the region bound-
aries, no change is made and the topological-order traversal
of the PST continues to Region 3. Region 3 contains two
save/restore sets, Set 3 and Set 4. Using the execution count
cost model, the cost of Set 3 is 50 and the cost of Set 4 is
50. The cost of the boundaries of Region 2 is 60. Since
the total cost of the contained save/restore sets is greater

than the cost of the boundaries of Region 3, Set 3 and Set 4
are removed, and a new save/restore set, Set 5, is created at
the boundaries of Region 3. The topological-order traversal
of the PST then analyzes Region 4, the top of the hierar-
chy. Region 4 contains three save/restore sets, Set 1, Set 2
and Set 5. The total cost of the contained save/restore sets
using the execution count cost model is 190. The cost of
the boundaries of Region 4 is 200. Since the cost of the
contained save/restore sets is less than the cost of the maxi-
mal SESE region boundaries, no further changes are made,
and the callee-saved spill code placement is optimal for this
example. The final callee-saved spill code placement deter-
mined using the hierarchical spill code placement algorithm
with the execution count cost model is shown in Figure 4(a).

The execution count cost model does not always accu-
rately represent how spill code is inserted into real pro-
grams. Spill code must be inserted into a basic block, and
cannot reside on a control flow edge. For example, consider
save/restore set Set 1 shown in Figure 4(a). The save in-
struction in Set 1 is inserted into basic block D prior to the
other instructions in the basic block. The restore instruction
shown after basic block E is inserted as the last instruction
in basic block E. However, the restore instruction on the
control flow edge between basic block D and basic block F
cannot be inserted into basic block D, because that would
corrupt the value of the register in basic block E, and the
restore instruction cannot be inserted into basic block F be-
cause there is an execution path that would reach that restore
without any save instruction.

Sometimes the placement of spill code requires the intro-
duction of a jump block. A jump block is a new basic block
that is inserted into the control flow graph specifically to
contain spill code that cannot be placed in other basic blocks
in the control flow graph. The method for inserting a jump
block on a jump edge involves changing the target of the
jump instruction at the beginning of the jump edge to the
beginning of the new jump block location, then inserting a
new jump instruction at the end of the jump block whose
target is the original destination of the jump edge.

The jump edge cost model takes into consideration the
additional dynamic overhead introduced when a jump block
must be inserted into the control flow graph. In the jump
edge cost model, save or restore instructions that must be
inserted on a jump edge are assumed to require a jump in-
struction to be inserted as well. The inserted jump instruc-
tion has a dynamic overhead equal to the dynamic execution
count of the jump edge. For the initial save/restore sets de-
termined using the shrink-wrapping technique, the cost of a
jump instruction is divided among all the callee-saved reg-
isters that have spill locations on the corresponding jump
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Figure 4. Example of callee-saved spill code placement computed using hierarchical spill code place-
ment algorithm with: (a) execution count cost model, and (b) jump edge cost model.

edge. For new save/restore sets created in the topological-
order traversal of the PST, each callee-saved spill instruc-
tion placed on a jump edge is assigned the complete cost of
the jump instruction.

The jump edge cost model is more precise than the ex-
ecution count cost model, but is not completely precise for
multiple reasons. One reason is that only the first spill code
instruction inserted on a jump edge requires the insertion of
a jump instruction. Spill code for other callee-saved regis-
ters can be inserted in jump blocks that were previously cre-
ated without having to insert additional jump instructions.
This is modeled correctly with the initial placement deter-
mined using the shrink-wrapping technique, but is not pre-
cisely modeled when one or more save/restore sets are cre-
ated or removed. The incremental change in jump instruc-
tion cost cannot be precisely modeled in one iteration of the
hierarchical spill code placement algorithm, as the order in
which callee-saved registers are evaluated may change the

cost of each inserted jump instruction. The hierarchical spill
code placement algorithm is limited to one iteration to avoid
additional algorithmic complexity, which is discussed in de-
tail later in the section.

A second reason the jump edge cost model lacks pre-
cision is that it is sometimes possible to change the jump
alignment of the procedure. Jump alignment, also known
as branch alignment, is a method of restructuring the con-
trol flow graph to reduce the number of jump instructions
executed on the execution paths with the highest execution
frequencies[9]. The jump alignment problem is beyond the
scope of work presented in this paper.

To illustrate the difference between the more precise
jump edge cost model and the execution count cost model
in the hierarchical spill code placement algorithm, consider
again the example shown in Figure 3. When analyzing Re-
gion 1, the cost of the contained save/restore set Set 1 is 110
using the jump edge cost model; 40 for the save instruction,
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10 for the restore instruction in basic block E, and 60 for the
restore instruction and the jump instruction required on the
jump edge between D and F. The cost of Set 1 is now greater
than the cost of the boundaries of Region 1, and the con-
tained save/restore set is replaced with a new save/restore
set, Set 6, at the boundaries of Region 1. The total cost of
all the contained save/restore sets in Region 2 is now 150,
the sum of Set 6 and Set 2. This cost is greater than the
cost of the boundaries of Region 2. Therefore, the sets con-
tained in Region 2 are deleted and a new save/restore set,
Set 7, is added at the boundaries of Region 2 at a cost of
140. The results of the analysis for Region 3 are unaffected
by using the jump edge cost model because none of the save
or restore instructions are required to be inserted on jump
edges. When analyzing Region 4, there are two contained
save/restore sets. Set 7 has a cost of 140 and Set 5 has a
cost of 60. Since the costs of the contained save/restore sets
and the boundaries of the maximal SESE region are equal,
the contained sets are removed and a new save/restore set
is created at the boundaries of Region 4, which correspond
to procedure entry/exit. The final placement of save and
restore code is illustrated in Figure 4(b).

Chow does not allow jump blocks to be inserted in
his shrink-wrapping technique, effectively assigning infinite
cost to each jump edge. The jump edge cost model pre-
sented here uses a more precise measure of cost for jump
edges. If the execution count of jump edges is minimized,
as would be the case in a procedure where jump alignment
has been performed, the jump edge cost model for spill code
placed on jump edges more closely represents the real cost
of inserted spill code, and the results of the hierarchical spill
code placement algorithm will be affected less when the
jump edge cost model is used compared to the execution
count cost model.

The hierarchical spill code placement algorithm with
the jump edge cost model generalizes both Chow’s shrink-
wrapping technique, and the procedure entry/exit place-
ment technique. The spill code locations determined by the
shrink-wrapping technique are a special case of the hierar-
chical spill code placement algorithm where the minimum
cost locations for the placement of callee-saved save and
restore instructions occur at the bottom of the hierarchical
structure of the procedure. Placement of spill code at pro-
cedure entry/exit is also a special case of the hierarchical
spill code placement algorithm where the minimum cost lo-
cations for the placement of callee-saved spill code occurs
at the top of the procedure’s hierarchical structure.

In this subsection, the algorithmic complexity of the hi-
erarchical spill code placement algorithm is analyzed.

Johnson et al. describe a fast cycle equivalence algo-

rithm that allows SESE regions and the PST to be computed
in linear time[8].

The algorithmic complexity of Chow’s shrink-wrapping
technique is not explicitly stated in prior work. For each
of the edges in a control flow graph, the number of data
flow equations is bounded by a small constant equal to
the number of registers in the target processor. The number
of iterations required to propagate the data flow equations
through the control flow graph is bounded by the maximum
distance between two control flow edges, which is . So
the the algorithmic complexity of the shrink-wrapping tech-
nique is .

The computation of save/restore sets is an iterative data
flow analysis quite similar to shrink-wrapping, and the com-
plexity of the computation is also .

The cost function used in the hierarchical spill code
placement algorithm is computed in constant time, as are
the creation and removal of save/restore sets. The prop-
agation of save/restore set changes upward through the
hierarchy of the PST is done in linear time. Since the
topological-order traversal of the PST is bounded by the
number of edges in the control flow graph, the analysis of all
save/restore sets in the PST is computed in time, and
that portion of the algorithm is repeated the small constant

times.
The complexity of the entire hierarchical spill code

placement algorithm is , which is equivalent to the
complexity of the shrink-wrapping technique.

5. Experimental Results

The hierarchical callee-saved spill code placement algo-
rithm with the jump edge cost model described in the pre-
vious section was implemented in the Gnu Compiler Col-
lection (GCC) and applied to the SPEC CPU2000 integer
benchmark programs.1 The execution count cost model is
not evaluated experimentally because it generates code that,
without modification, cannot always be executed. This is
due to spill instructions being placed on jump edges which
have no physical memory allocated to them.

The register allocator of GCC was replaced with a
Chaitin/Briggs style graph-coloring register allocator. This
was done to ensure that identical, optimized register allo-
cations and register assignments were used for each post
register allocation spill code placement technique. GCC’s
register allocator was not used because it relies heavily on a
post register allocation reload module that can alter a regis-
ter assignment and introduce additional spill code. Callee-
saved spill code placement was performed after register al-
location. The target microprocessor is a PA-RISC with 24
general purpose registers available for allocation. There are

1The one integer benchmark program written in C++ was excluded due
to lack of operating system library support at the time of the experiment.
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13 callee-saved registers in the register usage convention
used in these experiments.

To accurately observe the contribution of the register
allocator and the hierarchical spill code placement algo-
rithm without the effects of other compiler optimizations,
only dynamic spill code overhead is measured. Figure 5
shows the total dynamic spill code overhead for each of the
SPEC CPU2000 integer benchmarks. The totals include all
load and store instructions generated by the register allo-
cator as well as callee-saved save and restore instructions.
Each of the three data sets have the exact same register
allocation, with the only differences being the placement
of callee-saved save/restore instructions inserted by the hi-
erarchical spill code placement algorithm. The data set
labeled Optimized corresponds to the hierarchical callee-
saved spill code placement algorithm, the data set labeled
Shrinkwrap corresponds to an implementation of Chow’s
shrink-wrapping technique, and the data set labeled Base-
line corresponds to the placement of save/restore instruc-
tions at procedure entry and exit.

These results show that the hierarchical spill code place-
ment algorithm nearly always generates less dynamic over-
head than both the shrink-wrapping technique and the pro-
cedure entry/exit placement technique. In no case does the
hierarchical spill code placement algorithm generate more
dynamic overhead than either of the other placement tech-
niques. One benchmark, mcf, has very small spill code
overhead and is not visible in Figure 5. The procedures in
mcf are relatively small compared to procedures in the other
benchmark programs. The graph-coloring register allocator
is often able to perform a register allocation that uses only
the caller-saved registers with no spilling required. For the
few procedures in mcf that do utilize callee-saved registers,
the dynamic execution count is very small compared to pro-
cedures in the other benchmark programs.

Figure 5 also shows three benchmarks; gzip, bzip2 and
twolf, where the dynamic spill code overhead produced by
the placement of save/restore instructions using the shrink-
wrapping technique is greater than the dynamic spill code
overhead produced by the procedure entry/exit placement
technique. For each of those three benchmarks, the hier-
archical spill code placement algorithm generates less dy-
namic spill code overhead than the procedure entry/exit
placement technique. In particular, for benchmark gzip, the
hierarchical spill code placement algorithm produces 17%
less dynamic spill code overhead than the procedure en-
try/exit placement technique.

Table 1 shows the ratios of dynamic spill code overhead
for all of the benchmark applications. The ratios in Ta-
ble 1 are computed by dividing the total dynamic spill code
overhead from the hierarchical spill code placement algo-
rithm, and the total amount of dynamic spill code overhead
from the shrink-wrapping technique, by the total dynamic

spill code overhead generated by the procedure entry/exit
spill code placement technique. On average, the hierarchi-
cal spill code placement algorithm generates 15% less dy-
namic spill code overhead compared to the procedure en-
try/exit placement technique. In contrast, the amount of dy-
namic spill code overhead generated when using the shrink-
wrapping technique is reduced by less than 1% on average
compared to the procedure entry/exit spill code placement
technique. The results of the hierarchical spill code place-
ment algorithm are sometimes much better than the aver-
age indicates. For example, in the gcc benchmark program,
the hierarchical spill code placement algorithm reduces the
amount of dynamic spill code overhead by greater than
40%. The gcc benchmark program is the largest program
in the SPEC CPU2000 integer benchmark suite, compris-
ing nearly a third of all the procedures in the benchmarks.
In contrast, the shrink-wrapping technique reduces dynamic
spill code overhead in gcc by only 6% compared to the pro-
cedure entry/exit placement technique. The crafty bench-
mark has a greater than 50% reduction in dynamic spill code
overhead when using the hierarchical spill code placement
algorithm compared to 6% when using the shrink-wrapping
technique. Both the gcc and crafty benchmarks utilize a
number of unconditional jump instructions (gotos), which
tend to increase the number of jump edges that can be ex-
ploited with the jump edge cost model but are ignored in the
shrink-wrapping technique.

Compile times were measured for both the hierarchi-
cal spill code placement algorithm and shrink-wrapping
technique. Each technique was implemented using sim-
ilar dynamic memory allocation techniques. All experi-
ments were run with an optimization level of O2 on a HP
C3000 workstation with 1.5GB of RAM. Table 2 shows
the incremental increase in compilation time of both the
shrink-wrapping technique and the hierarchical spill code
placement algorithm compared to compile times of the en-
try/exit placement technique. The results show that the ad-
ditional compilation time required for the hierarchical spill
code placement algorithm is within an average factor of 6
compared to the additional compilation time required for
shrink-wrapping. Additional compilation time is expected
because the shrink-wrapping technique is a component of
the hierarchical spill code placement algorithm.

6. Summary

This paper presents a new, post register allocation ap-
proach to placing spill code. The hierarchical spill code
placement algorithm generalizes prior techniques for plac-
ing callee-saved save and restore instructions, and produces
a spill code placement with minimized dynamic execution
count. The post register allocation spill code placement
problem is solved optimally using the execution count cost
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Figure 5. Spill code overhead generated for SPEC CPU2000 integer benchmarks with callee-saved
save/restore placement determined by; optimized hierarchical algorithm, shrink-wrapping, and pro-
cedure entry/exit.

model in the hierarchical spill code placement algorithm,
while a more precise jump edge cost model allows place-
ment of spill code on jump edges where previous tech-
niques do not. Algorithmic complexity of the hierarchical
spill code placement algorithm is equivalent to that of the
best previous technique. The hierarchical spill code place-
ment algorithm is implemented in the GCC compiler with a
graph-coloring register allocator and applied to the SPEC
CPU2000 integer benchmark applications. Results show
that average dynamic spill code overhead is reduced by 15%
compared to previous spill code placement techniques.
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SPEC CPU2000 Optimized Placement / Shrinkwrap Placement /
Integer Benchmark Baseline Placement Baseline Placement
gzip 83.0% 102.6%
vpr 99.5% 100.0%
gcc 59.6% 93.9%
mcf 100.0% 100.0%
crafty 44.0% 93.3%
parser 85.8% 99.0%
perlbmk 89.7% 99.6%
gap 88.5% 95.4%
vortex 98.8% 100.0%
bzip2 90.2% 100.5%
twolf 93.9% 108.0%
Average 84.8% 99.3%

Table 1. Ratios of dynamic spill code overhead for optimized spill code placement compared to
shrink-wrapping relative to saving/restoring at procedure entry and exit.

SPEC CPU2000 Increcmental Compile Time / Incremental Compile Time Ratio
Integer Benchmark for Shrink-wrapping (sec) for Optimized Placement (sec)
gzip 0.42 2.2 5.24
vpr 0.59 4.74 8.03
gcc 115.10 269.02 2.34
mcf 0.05 0.24 4.8
crafty 0.34 1.15 3.38
parser 1.04 8.40 8.08
perlbmk 15.8 62.99 3.99
gap 10.51 64.67 6.15
vortex 5.23 40.68 7.78
bzip2 0.50 3.70 7.40
twolf 2.88 7.58 2.63
Average 13.86 42.30 5.44

Table 2. Ratios of incremental compilation times for shrink-wrapping and optimized spill code place-
ment compared to entry/exit placement compilation times.
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