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Abstract

Modeling and identi%cation of non-linear hysteretic systems are widely encountered in the structural dynamics %eld,
especially for the hysteresis with slip. A model, called SL model, which can describe the pinching of most practical hysteresis
loops perfectly was proposed by Baber and Noori (J. Eng. Mech. 111 (1985) 1010). A method of estimating the parameters
of SL model on the basis of input–output data based on bootstrap %lter was proposed by the writers. Bootstrap %lter is a
%ltering method based on Bayesian state estimation and Monte Carlo method, which has the great advantage of being able to
handle any functional non-linearity and system and/or measurement noise of any distribution. The standard bootstrap %lter,
however, is not time e8cient, i.e., it is very time consuming and is not suitable for real-time applications. In this paper,
previous work by the writers is extended to do the parameter estimation of SL model by a fast Bayesian bootstrap %ltering
technique. Simulation results are presented to demonstrate the performance of the algorithm.
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1. Introduction

Many civil engineering structures exhibit hysteresis
when subjected to severe dynamic loading, i.e., the
restoring force of structure depends not only on the
instantaneous deformation but also on the past history
of deformation. As a result, the hysteretic restoring
force cannot be expressed by an algebraic function
of the instantaneous displacement and velocity. This
memory nature renders the hysteretic systems more
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di8cult to model and analyze than other non-linear
systems, especially for the hysteresis with slip. Mod-
eling and identi%cation of these hysteretic systems are
of considerable theoretical and practical interest over
the years because of its importance in response pre-
diction, structural control and health monitoring.
Much eBort has been devoted by numerous inves-

tigators to develop models of hysteretic systems [1].
One of the widely accepted model is a diBerential
model originally proposed by Bouc [2] and further
developed and generalized by Wen and his colleagues
[3,4]. In this model the restoring force and the defor-
mation are connected through a non-linear diBerential
equation containing unspeci%ed parameters. By choos-
ing the parameters suitably, it is possible to generate
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a large variety of diBerent shapes of the hysteresis
loops. Based on the Bouc–Wen model, a smoothed
hysteretic slip model, which can describe the pinch-
ing of hysteresis loops perfectly was proposed by
Baber and Noori [5]. The model, called SL model,
consists of a non-pinching hysteretic element in se-
ries with a ‘slip-lock’ element and contains six loop
parameters.
System identi%cation refers to any systematic way

of deriving or improving models through the use of
experimental data. System identi%cation techniques
can be classi%ed into parametric and non-parametric
procedures. In the parametric identi%cation proce-
dure, the mathematical model of the system is a
priori known from theoretical considerations, and
only the values of model parameters are to be deter-
mined from experimental data. On the other hand,
the non-parametric identi%cation procedure does not
require a priori knowledge of system model, but in-
stead yields the best representation of the system in
the form of a multiple-indexed series of functions or
functionals [6,7]. As a parametric identi%cation pro-
cedure, the method based on extended Kalman %lter
(EKF) has received much attention and has been
used successfully in the parameter estimation prob-
lems over the past years [8,9]. In this procedure, the
estimation problem is linearized about the predicted
state so that the Kalman %lter can be applied. How-
ever, the linearization process and the assumption of
a Gaussian probability density function (PDF) may
be a gross distortion of the true underlying structure
and may lead to estimation divergence.
A %ltering method, called bootstrap %lter, based on

Bayesian state estimation and Monte Carlo method
was proposed by Gordon [10]. The idea of this method
is to represent the required PDF as a set of random
samples, rather than as a function over state space. As
the number of samples becomes large, they can ef-
fectively provide an accurate representation of the re-
quired PDF. Estimations of states can then be obtained
directly from the samples. The advantage of this ap-
proach over the EKF is that no linearization is needed
and the required PDFs are not restricted to Gaussian.
Thus, it is particularly well suited for the identi%ca-
tion of complicated non-linear systems. Using this %l-
tering technique, a method to identify parameters of
non-linear and non-Gaussian models subjected to dy-
namic forces was proposed by Hoshiya [11].

In the past decades, the parametric identi%cation of
non-linear hysteretic systems of diBerential type mod-
els has been extensively studied [12–15], but mostly
for the Bouc–Wen model or other linear hysteretic
models. There are seldom papers on the estimation of
hysteretic systems with slip because of its complexity.
A parametric identi%cationmethod for the SLmodel

based on bootstrap %lter was proposed by the writers
[16]. However, a drawback of the method is the heavy
computational load, which precludes its utilization for
real time estimations. A fast Bayesian bootstrap %l-
ter, which can dramatically decreases the computation
time of the standard bootstrap %lter, was proposed by
Beadle and Djuric [17]. The time decrease is realized
by resampling the prior into the posterior distribution
at each time step by using sampling groups, rather than
a sample as in the standard approach. The groups are
generated based on the expected number of times at
which each value in the prior is resampled to the pos-
terior. Using this %ltering technique, a new algorithm
is proposed in the present paper for estimating param-
eters in the SL model. The new algorithm is in fact
an improvement of the previous work by the writers
[16]. A simulation is performed for an example for
comparing the two algorithms.

2. Hysteretic slip model

In this section we brieNy present the SL model pro-
posed by Baber and Noori [5]. More details about this
model are given in [5,16]. This diBerential model to
describe hysteretical system with slip is governed by

Ox + 2�!0ẋ + �!2
0x + (1 − �)!2

0 Qz = p(t); (1)

Q̇z = QAẋ1 − Q
|ẋ1| Qz| Qz|n−1 − Q�ẋ1| Qz|n; (2)

ẋ2 =

√
2
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�
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[
− Qz2

2�2

]
Q̇z; (3)

x = x1 + x2 (4)

in which p(t) is the input, � is the ratio of
post-yield/pre-yield stiBness, and Qz is the hysteretic
displacement. QA, Q
, Q� and n are model parameters.
Among the parameters, Q
, Q� and n determine the hys-
teresis shape, and QA determines the tangent stiBness.
The hysteresis loop pinching is added by incorporat-
ing a time-dependent ‘slip-lock’ element as shown
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Fig. 1. Hysteretic slip model.

in Figs. 1 and 2, and the relationship between the
‘slip-lock’ and hysteretic displacement is described by
Eq. (3) where s is the magnitude of slip, and � reNects
the degree of pinching and sharpness of hysteresis
loops, as shown in Fig. 3.
By de%ning a set of new parameters as follows:

a = 2�!0; b = �!2
0;

z = (1 − �)!2
0 Qz; A = (1 − �)!2

0
QA;


 = Q
=[(1 − �)!2
0]

n−1; � = Q�=[(1 − �)!2
0]

n−1;

Eqs. (1)–(4) can be rewritten as

Ox + aẋ + bx + z = p(t); (5)

ż = Aẋ1 − 
|ẋ1|z|z|n−1 − �ẋ1|z|n; (6)

ẋ2 =

√
2



s
�
exp

[
− z2
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]
ż; (7)

x = x1 + x2: (8)

In general, the magnitude of slip s may vary with
the history of response. In this model s is assumed
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Fig. 2. Slip-lock series hysteresis.
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Fig. 3. Pinching behavior of model under diBerent �.

to be a function of the system energy dissipation E(t)
as follows:

s = �sE(t); (9)

where �s is a constant. Eqs. (5)–(9) complete the
model, and the parameters need to be identi%ed are a,
b, A, 
, �, n, �s and �.

3. Fast Bayesian bootstrap �lter

In this section, both the original bootstrap %lter
[10] and the fast Bayesian bootstrap %lter [17] will be
reviewed brieNy.

3.1. Bootstrap 8lter

The system model is assumed to have the discrete
form

xk = f(xk−1; wk); (10)



where f :Rn ×Rm → Rn is the system transition func-
tion and wk ∈ Rm is a zero-mean noise process inde-
pendent of the system states. The PDF of wk is as-
sumed to be known as pw(wk). At discrete times,
measurements are denoted by yk ∈ Rp, which are re-
lated to the state vector via the observation equation

yk = h(xk ; �k); (11)

where h :Rn × Rr → Rp is the measurement function,
and �k ∈ Rr is the observation noise, assumed to be an-
other zero mean random sequence independent of both
state variable xk and the system noise wk . The PDF of
�k is assumed to be known as p�(�k). The available
information at time step k is the set of measurements
Dk ={yi: i=1; : : : ; k}. It is noted that f(xk−1; wk) and
h(xk ; �k) are generally not linear functions, and xk , wk

and �k are not necessarily Gaussian vectors.
It is required to construct the PDF of the current

state xk , given all the available information:p(xk | Dk).
In principle, this PDF may be obtained recursively in
two stages: prediction and update. Suppose that the
required PDF p(xk−1 | Dk−1) at time step k − 1 is
available. Then using the system model it is possible
to obtain the prior PDF of the state at time step k

p(xk | Dk−1) =
∫

p(xk | xk−1)

× p(xk−1 | Dk−1) dxk−1; (12)

where p(xk | xk−1) is determined by f(xk−1; wk) and
the distribution of wk in system equation (10). Then
at time step k, a measurement yk becomes available
and may be used to update the prior according to the
Bayes’ rule

p(xk | Dk) =
p(yk | xk)p(xk | Dk−1)∫

p(yk | xk)p(xk | Dk−1) dxk
; (13)

where the conditional PDF p(yk | xk) is determined
from the measurement model and the known statistics
of �k

p(yk | xk) =
∫

�(yk − h(xk ; �k))p�(�k) d�k : (14)

The bootstrap %lter is a recursive algorithm to es-
timate the posterior p(xk | Dk) from a set of samples

[10]. Assuming that we have a set of random samples
{xk−1(i): i = 1; : : : ; m} from the PDF p(xk−1 | Dk−1),
the %lter procedure is as follows:
(1) Prediction: Each sample from PDF p(xk−1 |

Dk−1) is passed through the system model to obtain
samples from the prior at time step k:

x∗
k (i) = f(xk−1(i); wk(i)); (15)

where wk(i) is a sample drawn from the PDF of the
system noise pw(wk).
(2) Update: On receipt of the measurement yk ,

evaluate the likelihood of each prior sample and ob-
tain the normalized weight for each sample

qi =
p(yk | x∗

k (i))∑m
j=1 p(yk | x∗

k (j))
: (16)

De%ne a discrete distribution over {x∗
k (i): i =

1; : : : ; m}, with probability mass qi associated with
element i. Now resample m times from the discrete
distribution to generate samples {xk(i): i = 1; : : : ; m},
so that for any j, Prob{xk(j) = x∗

k (i)} = qi. It can be
contended that the samples xk(i) are approximately
distributed as the required PDF p(xk | Dk) [10]. Re-
peat this procedure until the desired number of time
samples has been processed.

3.2. Fast bootstrap technique

The resampling method in the update process of
bootstrap %lter is the discrete version of inverse trans-
form method: draw a random sample U from the uni-
form (0; 1] distribution, and choose x∗

k (M) for making
up the posterior when

M−1∑
j=1

qj ¡ U 6
M∑

j=1

qj: (17)

If m is large, this process takes a very long time to
complete, and the problem is further exacerbated when
a large number of samples are needed. A fast bootstrap
algorithm was proposed by Beadle and Djuric [17]
to overcome the problem. It is based on the expected
number of times at which a prior sample appears in
the posterior at each time instant, as described below.
With a sequence of m trials, the weighted bootstrap

resampling procedure can be analyzed as a sequence
of Bernoulli trials. Thus, the probability of ‘success’



on a single trial (i.e., selecting an x∗
k (M)) is p = qM ,

and the probability of ‘failure’ is q = 1 − qM . The
probability of the times selecting the value x∗

k (M) in
m trials is given by the binomial distribution of order
m. For m trails, the expected number of times that any
prior sample x∗

k (i) appears in the posterior is mqi. This
is the key to the fast algorithm.
In the fast algorithm, at a %xed time instant k, pick

one of the m prior samples randomly from {x∗
k (i)}, say

x∗
k (M), assign a sampling probability of 1=m for each

x∗
k (i), and place [mqM ] samples into the posterior at a
time, rather than only place one sample in the standard
bootstrap approach. The symbol [ · ] means the largest
integer not exceeding the content. This method is re-
peated until a total of m samples have been generated.
Due to the random selection of the samples from the
prior, it is possible to generate more than m samples in
the posterior. When this happens, the posterior sample
vector is truncated to the %rst m samples selected.

4. Parameter estimation of SL model

4.1. Basic philosophy

Regarding the unknown parameters as state vari-
ables, one can de%ne an augmenting state vector X as

X T = {x; ẋ; z; a; b; A; 
; �; n; �s; �}
= {x1; x2; x3; : : : ; x10; x11}: (18)

Eqs. (5)–(8) can then be rewritten in the form of
non-linear state equations:

Ẋ = f(X; t); (19)

where

f(X; t) =




x2

−x4x2 − x5x1 − x3 + p(t)

x6 − x7 sgn(x2)|x3|x9−1x3 − x8|x3|x9
1 +

√
2=
x10E(t)=x11 exp(−x23=2x211)[x6 − x7 sgn(x2)|x3|x9−1x3 − x8|x3|x9 ]

x2

0

0

...

0




:

The observation equation here is expressed as

Y = CX + V; (20)

where C is the observation matrix and V is the obser-
vation noise vector.
Utilizing the fast bootstrap %ltering technique in

Eqs. (19) and (20), the state vector X (t) can be es-
timated from the input p(t) and the observed output
{Y}i. Hence the unknown parameters are estimated
simultaneously.

4.2. Choice of initial estimates

To start the identi%cation algorithm, good initial
estimates of parameters are needed. Here a method to
decide the initial estimates of parameters is suggested.
Noting the fact that n is a positive real number, one
can choose a suitable positive value n0 as an initial
estimate of n at %rst. The parameters �s and � in this
model reNect the degree of pinching and the sharpness
of loop as shown in Fig. 3. It is not di8cult for one
to get a suitable initial value of �s and � according to
the degree of pinching and the sharpness of loops as
well as the maximum displacement and the observed
dissipated energy of system. Here the corresponding
system displacement x(t) can be obtained by direct
measurement or through integration of Ôx(t), the actual
observation of acceleration.
For the choice of initial estimates of a and b, an

eBective method was obtained in practice by %tting a
linear model to the data as follows [13]:∫ T

0
Ox(t)x(t) dt + âeq

∫ T

0
ẋ(t)x(t) dt

+ b̂eq

∫ T

0
x2(t) dt =

∫ T

0
p(t)x(t) dt; (21a)



∫ T

0
Ox(t)ẋ(t) dt + âeq

∫ T

0
ẋ2(t) dt

+ b̂eq

∫ T

0
x(t)ẋ(t) dt =

∫ T

0
p(t)ẋ(t) dt; (21b)

where T is the sample length of the selected initial
motion records. De%ning

ˆ̇x(t) =
∫ t

0
Ôx(+) d+; x̂(t) =

∫ t

0

ˆ̇x(+) d+

and replacing Ox(t), ẋ(t), x(t) by Ôx(t) and ˆ̇x(t), x̂(t),
respectively, one can get suitable initial estimates of
a and b according to âeq and b̂eq.
If initial estimates of a, b, �s, n, �, say a0, b0, �s0, n0

and �0, are available, a method to estimate the initial
values of A, 
 and � is suggested here. According to
Eqs. (6)–(9) and the assumption of sgn(ẋ1) = sgn(ẋ)
[5], an equation about z is yielded as below

ż = A(ẋ − ẋ2) − 
 sgn(ẋ)(ẋ − ẋ2)z|z|n−1

− �(ẋ − ẋ2)|z|n; (22)

where ẋ2(t) is de%ned by Eq. (7). From Eq. (22)

xż = Ax(ẋ − ẋ2) − 
x sgn(ẋ)(ẋ − ẋ2)z|z|n−1

− �x(ẋ − ẋ2)|z|n;

ẋż = Aẋ(ẋ − ẋ2) − 
ẋ sgn(ẋ)(ẋ − ẋ2)z|z|n−1

− �ẋ(ẋ − ẋ2)|z|n;

Oxż = A Ox(ẋ − ẋ2) − 
 Ox sgn(ẋ)(ẋ − ẋ2)z|z|n−1

− � Ox(ẋ − ẋ2)|z|n; (23)

where an overbars − denotes the time average, for
example, Qx = (1=T )

∫ T
0 x(t) dt. De%ne

ẑ(t) = p(t) − Ôx(t) − a0 ˆ̇x(t) − b0x̂(t); (24)

ˆ̇z(t) =
ẑ(t +Tt) − ẑ(t − Tt)

2Tt
; (25)

in which Tt is the sampling interval and ˆ̇x(t), x̂(t) are
de%ned as the same as in Eqs. (21), and

ˆ̇x2 =

√
2



�s0Ê(t)
�0

exp
[
− ẑ2

2�2
0

]
ˆ̇z; (26)

where Ê(t) is computed by

Ê(t) =
∫ t

0
ẑ(t) dx =

∫ t

0
ẑ(t) ˆ̇x(t) dt: (27)

Now replacing z(t), ż(t), Ox(t), ẋ(t) and x(t) in (23) by
ẑ(t), ˆ̇z(t), Ôx(t), ˆ̇x(t) and x̂(t), respectively, the initial
estimates of A, 
 and � can be obtained by solving
these equations.

5. Numerical example and discussions

5.1. Numerical example

In order to validate the proposed identi%cation
method, numerical simulations were carried out for a
single-degree-of-freedom hysteretic system described
by Eqs. (5)–(9). The system was assumed to be sub-
jected to the El Centro earthquake (NS, 1940), as
shown in Fig. 4. The model parameters were selected
to have the following values:

a = 0:5; b = 30; A = 20; 
 = 5;

� = 5; n = 2; �s = 0:06; � = 0:05:

Eqs. (5)–(9) with these parameters were solved nu-
merically by using the fourth-order Runge–Kutta
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Fig. 4. El Centro earthquake (NS, 1940).
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Fig. 6. Displacement response.

method with a time step of 0:02 s and the hystere-
sis loops are shown in Fig. 5. The obtained dis-
placement x(t)(as shown in Fig. 6) contaminated
by noise �k was used as the experimental measure-
ment. The observation equation (20) is then given as
follows:

yk = [1 0 0 0 0 0 0 0 0 0 0]

×{X }k + �k : (28)

Here the noise �k is assumed to be a zero-mean ran-
dom process, which has the Student’s t distribution
with four degrees of freedom scaled according to the
standard deviation of the principle noise component.
This distribution has heavier tails than the Gaussian
distribution so that exceptionally large measurement
errors may occur, i.e., it accommodates the outliers
[18]. Thus the PDF of the measurement error is
modeled as

p(�)˙ (n + �2=s2)−(n+1)=2; (29)
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Fig. 7. A noise sample with t distribution.

where the degree of freedom n = 4 and the scale
s=0:002. Since the update weights are normalized as
shown in Eq. (16), the PDF of the measurement error
need only be speci%ed to proportionality. Fig. 7 de-
picts a noise sample simulated from this distribution.
The initial conditions for this analysis were esti-

mated according to the method proposed in this paper
and given in Table 1. The distributions of all initial
estimations are assumed to be Gaussian, and the total
number of sample realizations is m = 1000. It should
be noted that the assumption of Gaussian distributions
here is not a requirement.
The parameters are estimated by the identi%cation

method proposed in this paper, and the estimated re-
sults are given in Table 2. The distribution of process
noise pw(wk) is assumed to be Gaussian with zero
mean and a standard deviation of 0.3. Figs. 8–15 show
the time histories of means of the estimated param-
eters. It can be seen that the parameters converge to
good estimated values.

5.2. Discussions

(1) A problem encountered in applying the pro-
posed method is the handling of low probability events
known as outliers. At a particular time instant k, the
product of mqi may be less than one, then those x∗

k (i)
in the prior cannot generate any samples into the pos-
terior using the [ · ] criterion. The bootstrap, on the
other hand, guarantees each prior sample a chance, no
matter how small, of being selected in the posterior.
To overcome this problem, two ways were suggested
in [17]. One is to choose an m large enough so that
[mqi]¿ 1 for almost every x∗

k (i) in the prior. How-
ever, no matter how large m is selected, there can be



Table 1
Initial conditions

Variable x ẋ z a b A 
 � n �s �

Qx(t0 | t0) 0 0 0 0.28 35 30 6.5 6.8 1.8 0.03 0.08
P(t0 | t0) 0.001 0.001 0.001 0.1 80 150 20 20 0.01 0.01 0.01

Table 2
Identi%ed parameters

Parameter a b A 
 � n �s �

Exact value 0.5 30 20 5 5 2 0.06 0.05
Identi%ed value 0.5674 32.55 17.7649 5.778 5.5523 1.8914 0.0617 0.0613
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Fig. 8. Estimate of parameter a.

outliers still ignored. Hence, given the same set of
prior samples, the low probability states are underrep-
resented in the posterior. Another solution is to use
max([mqM ]; 1) as the number of times of including
the selected value x∗

k (M) in the posterior. Thereby,
even those values of outliers can be selected at least
once into the posterior. However, there is a danger
here because if m is too small, some outliers can be
over-represented in the posterior by selecting them
much more often than they should be. We tried this
method in numerical simulations, but the results were
not good. The estimated values Nuctuate severely and
sometimes become unstable as shown in Fig. 16.
The method we used in this paper to overcome

the above problem is a combination approach. In this
method, each prior sample x∗

k (i) with a qi such that
[mqi]=0, is “tagged” when it is selected the %rst time,
so that it will not be selected again at a particular time
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Fig. 9. Estimate of parameter b.
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Fig. 10. Estimate of parameter A.

step. This guarantees that each sample from the prior
with a probability less than 1=m can only appear at
most once in the posterior. With this approach, good
estimated values were obtained (Figs. 8–15).
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Fig. 13. Estimate of parameter n.

(2) The estimation results using standard bootstrap
method are also given in Figs. 8–15 to compare the
performance of two methods. While the proposed al-
gorithm provides parameter estimates as good as the
standard method, it is faster than the standard boot-

0.00

0.02

0.04

0.06

0.08

0.10

0.12

δ s

 mean estimate by proposed method
 mean estimate by bootstrap filter
 true value

0 2 4 6 8
t (s)

Fig. 14. Estimate of parameter �s.

0.00

0.05

0.10

0.15

σ

 mean estimate by proposed method
 mean estimate by bootstrap filter
 true value

0 2 4 6 8
t (s)

Fig. 15. Estimate of parameter �.

0 42 6 8
25

30

35

40

b

 Posterior mean estimate
 True value

t (s)

Fig. 16. Estimate of parameter b using max([mqM ]; 1) criterion.

strap method by a factor of approximately 6 for the
period from beginning to the convergence. And this
eBect will be more signi%cant with the increasing of
sample size. However, the reduction of the computa-
tional time is less obvious after the convergence takes
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Fig. 17. Sample distributions of parameter A at diBerent time step:
(a) proposed method; (b) standard bootstrap %lter-based method.

place. The reason is that the variance of the prior
samples decreases after the convergence happens,
samples in prior will tend to a same weighted prob-
ability of 1=m. Hence, the resampling procedure in
the fast algorithm is almost the same as that in the
standard bootstrap method, and the execution time
cannot be reduced obviously.
(3) Fig. 17 shows the sample distributions of pa-

rameter A at diBerent time step computed with diBer-
ent algorithms. It can be seen clearly that the sample
distribution of parameter A is not Gaussian due to the
non-linearity of system even if the distribution of ini-
tial estimation is assumed to be Gaussian.

6. Conclusion

In this paper, a parameter estimation method based
on a fast Bayesian bootstrap %lter is proposed for

non-linear hysteretic systems with slip. The method
requires much less computation time than standard
bootstrap %lter based approach, while maintaining the
comparable accuracy. It is especially suitable for real
time applications. The decrease in computation time
is achieved by resampling the posterior in groups
instead of one sample at a time. Further work on this
technique will be carried on to investigate its applica-
bility to other non-linear models, especially to those
with time-varying parameters.
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