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ABSTRACT 
[HSWcdc94] focused on procedures for simplify- 

ing complicated expressions automatically. [HScdc95] 
turned to the adventurous pursuit of developing a 
highly computer assisted method for “discovering” 
certain types of formulas and theorems. 

It is often the case that some variables in the for- 
mulation of a problem are not the natural “coordi- 
nates” for solution of the problem. Grobner Basis 
Algorithms, which lie a t  the core of our method, are 
very good at eliminating unknowns, but have no way 
of finding good changes of variables. This paper gives 
a way of incorporating changes of variables into our 
method. 

As an example, we “discover” the DGKF equations 
of Hm control. 

INTRODUCTION 
If one reads a typical article on A,B,C,D systems 

in the control transactions, one finds that most of 
the algebra involved is non commutative rather than 
commutative. Thus, for symbolic computing to have 
much impact on linear systems research, one needs 
a program which will do noncommuting operations. 
Mathematica, Macsyma and Maple do not. We have a 
package, NCAlgebra, which runs under Mathematica 
which does the basic noncommuting operations, block 
matrix manipulations and other things. The package 
might be seen as a competitor to a yellow pad. Like 
Mathematica, the emphasis is on interaction with the 
program and flexibility. 

The issue now is what types of “intelligence” to 
put in the package. As mentioned in the abstract, 
[HScdc95] turned to  the adventurous pursuit of devel- 
oping a highly computer assisted method for discov- 
ering certain types of formulas and theorems. At the 
beginning of “discovering” a theorem, an engineering 
problem is often presented as a large system of ma- 
trix equations. The point is to isolate and to  minimize 
what the user must do by running heavy algorithms. 
Often when viewing the output of the algorithm, one 
can see what additional hypothesis should be added 
to  produce a useful theorem and what the relevant 

matrix quantities are. 
Rather than use the word “algorithm”, we call our 

method a strategy since it allows for modest human 
intervention. We are under the impression that many 
theorems in engineering systems might be derivable 
in this way. 

We are under the impression that many theorems 
in engineering systems, matrix and operator theory 
amount to  giving hypotheses under which it is possi- 
ble to solve large collections of equations. (It is not our 
goal to reprove already proven theorems in engineer- 
ing systems theory, but rather to  develop technique 
which will be useful for discovering new theorems.) 
Any method which assumes that all of the hypothesis 
can be stated algebraically and are known at  the be- 
ginning of the computation will be of limited practical 
use. 

Our method allows one to  add (algebraic) hypothe- 
ses as one proceeds with the computation. These hy- 
potheses would be motivated by insights gained in the 
course of a computer session and the user would have 
to record and justify them independently of the com- 
puter run. .However, we do want to be extremely 
systematic so we shall propose a structure which is 
algorithm-like but a bit looser. 

We begin by reviewing the basic method and then 
turn to our new changes of variable ideas [H-St]. 

1 What is a strategy? 
At the highest level, a strategy consists of running a 
program called NCProcess which displays a sorted list 
of equations in UTEX as its output. Then a person 
looks at  the output and makes a decision which pro- 
duces a new set of equations on which to run NCPro- 
cess again. A discussion of when the repetition ends 
is discussed in $1.4. 

The flowchart for a strategy is: 
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are times during a strategy when one wants 
to introduce new variables and equations. 

03 .  Equations involving no unknowns. 

04.  Equations involving only one unknown. 

05. Equations involving only 2 unknowns. etc. 

Knowns 
Unknowns 
Equations 

Run NCProcess 

Declare motivated unknowns to be 
knowns or select important equations 

No 

1.1 NCProcess 
The approach which we will use to manipulate large 
collections of equations will be based largely upon a 
noncommutative Grobner Basis Algorithm (GBA). A 
person can use this practical approach to performing 
com!iutations and proving theorems without knowing 
anything about GBA’s. Indeed, this article is a self- 
contained description of our method. 

The program which we shall use, which is based 
upon a GBA, will be called NCProcess and will be 
disccssed in 51.5. 

The input to NCProcess is: 

11. A list of knowns. 

12. A list of unknowns (together with priorities for 
eliminating them). 

13. A collection of equations in these knowns and 
unknowns. 

The output of the NCProcess commands is a list 
of equations which are mathematically equivalent to 
the equations in 13. These equations are presented to 
the user as 

01. Unknowns which have been solved for, and 
equations that yield these unknowns. 

0 2 .  Equations selected or created by the user. 

lThese do not exist in the first run. A user-selected equation 
is a polynomial equation which the user has selected. When a 
user selects an equation, they are given the highest priority in 
eliminating other equations when NCProcess runs. 

We will call the formatted output described above 
a spreadsheet. 

1.2 A simple example 
We used our method to classify 3 projections in an 
algebra A whose sum is equal to a constant X times 
the identity; strengthening an old result due to Joe 
Stampfli. Here we will just derive the solution for the 
case where A = 1. 

Note that A,  B and C are projections whose sum 
is 1 if and only if the following four equations hold 

A + B + C - l = O  A A - A Z O  
B B - B = O  C C - C = O .  

The next consideration is which variables are to 
be considered known and which are unknowns. This 
problem is so simple that it does not matter how one 
selects knowns or unknowns. For illustrative pur- 
poses, we set A to be known and B and C to be 
unknown. The spreadsheet that NCProcess produces 
is the following. - YOUR SESSION HAS DIGESTED - 

THE FOLLOWING RELATIONS - 
THE FOLLOWING VARIABLES HAVE BEEN SOLVED 
FOR {G) 
The corresponding rules are the following: 
C + 1 - A - B  

The expressions with unknown variables {} 
and knowns { A }  
A A - +  A 

USER CREATIONS APPEAR BELOW - - 

SOME RELATIONS WHICH APPEAR BELOW - MAY BE UNDIGESTED - 
THE FOLLOWING VARIABLES HAVE NOT BEEN 
SOLVED FOR: { A ,  B }  

The expressions with unknown variables { B )  
and knowns { A }  
A B - t O  B A - i O  B B - i B  

This shows not only that A,  B and C commute, but 
that the product of any two of them is zero. 
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Strategy 
The idea of a strategy is : 

S1. Run NCProcess which creates a display of the 
output (see 01-05 in 51.1). Suppose that there 
is an equation which involves only one unknown 
(for example, a particular equation E17 contains 
only one unknown 2 5 )  OR that there is an equa- 
tion El8 which involves only one expression which 
contains unknowns (say (~1.2 + 2 3 )  - see 52). 

S2. The user must now make a decision about equa- 

s3 

tions in 2 5  (e.g., E17 is a Riccati equation so 
I shall not try to simplify it, but solve it using 
Matlab) OR make a decision about equations in 
the equations which involve only one expression, 
21x2 +Q, which contains unknowns (I will intro- 
duce the new variable y and introduce the new 
equation y = 2 1 2 2  + 2 3  to perform a change of 
variables - see 32.) Now the user declares the 
unknown 25 (OR y) to be known. 

The process repeats. 

S4. Knowing when a strategy stops is discussed in 
$1.4. 

The above listing is, in fact, a statement of a I -  
strategy. Sometimes one needs a 2-strategy in that 
the key is equations in 1 or 2 unknowns (OR equations 
involving 1 or 2 unknown expressions). 

The point is to isolate and to minimize what the 
user must do. This is the crux of a strategy. 

1.4 When to Stop 
There are various criteria for stopping. 

The digested equations (those in items 01, 0 2  and 
0 3 )  often contain the hypotheses of the desired the- 
orem and the main flow of its proof. If the starting 
equations follow as algebraic consequences of them, 
then we should stop. This last statement is true if 
and only if the Grobner Basis generated by the di- 
gested equations reduce (in a standard way) the set 
of starting equations to 0. Checking this on a com- 
puter is a purely mechanical process. 

1.5 Redundant Equations 
We mentioned earlier that we are using the Grobner 
Basis algorithm (GBA). GBA and the formatted out- 
put (51.1) alone are not enough to generate solutions 
to engineering or math problems. This is because usu- 
ally they generate too many equations. It is our hope 
and our experience that the equations which it gen- 
erates contain all of the equations essential to the so- 
lution of whatever problem you are treating. On the 
other hand, it contains equations derived from these 
plus equations derived from those derived from these 
as well as precursor equations which are no longer rel- 
evant. That is, a GB contains a few jewels and lots of 

garbage. In technical language a GB is almost never a 
minimal basis for an ideal, and what a human seeks in 
discovering a theorem is a minimal basis for an ideal. 
Our method addresses this problem in that we have 
algorithms and substantial software for finding small 
(or smallest) sets of equations associated to a problem. 
The process of running GBA followed by an algorithm 
for finding small sets of equations then followed by a 
command to be described in 52.3 for a “collecting” on 
knowns is what constitutes NCProcess. 

1.6 Summary 
As a strategy proceeds, more and more equations are 
digested by the user and more and more unknowns 
become knowns. Thus we ultimately have two classes 
of knowns: original knowns KO and user designated 
knowns K u .  Often a theorem can be produced di- 
rectly from the output by taking as hypotheses the 
existence of knowns KU U IC0 which are solutions to 
the equations involving only knowns. 

Assume that we have found these solutions. To 
prove the theorem, that is to construct solutions to 
the original equations, we must solve the remaining 
equations. Fortunately, the digested equations often 
are in a block triangular form which is amenable to 
backsolving. This is one of the benefits of “digesting” 
the equations. 

2 Changes of Variables and 
motivated unknowns 

Changes of variables were introduced hastily in S1 and 
S2 of 31.3. Now we give more detail. 

2.1 Decompose 
Suppose that it can be shown algebraically that an ex- 
pression, such as 21x2 + 2 3 ,  solved a Ricatti equation, 
e.g., 

( 2 1 2 2  + X 3 ) a l a 2 ( z l z z  +Z3) -ka3(ZlZa +Z3)  = 0 (1) 

The left hand side of (1) depends on three unknowns 
21, 2 2  and 2 3  and so would not be an equation three 
unknowns, not one. It is natural, however, to view (1) 
as an equation in one new unknown y and to rewrite 
the left hand side of (1) as the composition 

k(al> . . . , a6,4(al,. . . a6, 2 1 ,  2 2 ,  2 3 ) )  

where q(al,. . . , a6,21, 2 2 ,  23) = 21x2 + 2 3  and 

k (a l , .  . . > a 6 , y )  = yala2y + a39 + 0 5 4 6  

In this example, we would call y a motivated unknown. 
Let Decompose denote the operation of of creating all 
non-trivial maximal compositions of a polynomial p .  
Decompose, therefore, produces motivated unknowns. 

One can consider an analogous decomposition, 
called an !-decomposition, into several variables and 
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introduce new variables y1, . . . , ye. Let &- 
Decompose denote the operation of creating all non- 
trivial maximal &-decompositions of a polynomial p .  

A variant on 1-Decompose which we shall use fre- 
quently is called symmetric 1-Decompose. This ap- 
plies in an algebra with involution, w -+ w* for all 
w. For example, if A is a matrix algebra which is 
closed under transposes (or adjoints), then the oper- 
ation transpose (or adjoint) is an involution on A. 

2.2 Left and Right Multiples 
Suppose that a polynomial p(a1,. . . ,U,, 5 1 , .  . . ,x,) 
appears on a spreadsheet and has the property that 
there are other monomials L(a1,.  . . , a,, 2 1 , .  . . ,z,) 
and R(a1,. . . , a T , x l , .  . . ,xs) for which L p R  has a 1- 
decomposition 

LPR k(a1,. . . ,a,,q(al,. . . , a r , z l , .  . . , X s ) )  

where k is a polynomial in one unknown. For math- 
cmatical reasons we do not describe, the polynomial 
L p R  will not appear on the spreadsheet. We formalize 
this as follows. 

Definition 2.1 A polynomial p motivates an un- 
known y via the equation y = q(a1,. . . , u , , x ~ , .  . . , x,) 
af there exist monomials L(a1,.  . . , a r , x l , .  . . , 5, )  and 
R(a1,.  . . ,a,, 21,. . . , x,) and there exists a polynomial 
in one unknown k(a1,. . . ,ar ,y )  such that L p R  = 

Of course, from the perspective of finding zeros of 
collections of polynomials, if p has a zero, then L p R  
has a zero and so k has a zero. Since k is a polynomial 
in only one unknown variable, finding the zeros of k 
is bound to  be easier than finding the zeros of p. 

k ( a l , .  .. 7 q(al,  * .  . > .. l x S ) ) .  

2.3 Implementation 
The authors do not know how to fully implement 
the Decompose operation. Finding decompositions by 
hand can be facilitated with the use of a certain type 
of “collect” command. This “collect” command both 
assists the user in performing decompositions of a par- 
ticular polynomial and helps in finding other poly- 
nomials in the ideal which would produce motivated 
unknowns. 

This “collect” command “collects” knowns and 
products of knowns out of expressions. For example, 
suppose that A and B are knowns and X ,  Y and Z 
are unknowns. The collected form of 

XABX+-YABY+YABX+YABY+AX+AY (2) 

is 
(X  + Y ) A B  ( X  + Y )  + A(X + Y ) .  (3) 

Clearly this suggests a decomposition of (2) and, in- 
deed, the collect command helps find decompositions 
of much more complicated polynomials. 

Next we give a demonstration of how collect enters 
the NCProcess commands. 441 5 

3 Examp1e:Solving the H” 
Control Problem 

In this section we give an example of solving a problem 
using a strategy. 

A basic problem in systems engineering (H” con- 
trol) is to make a given system A,  B1, B2, C1, C2, 
Dl l  = 0 = 0 2 2 ,  0 1 2  = 1 = D21 dissipative by design- 
ing a feedback law. 

wujq GIVEN 5’ 
This corresponds to  the existence of a nonnegative 

quadratic form (Ez ,  z )  on the statespace of the closed 
loop system. It must satisfy a HJBI inequality which 
we abbreviate H 5 0. Now we can only deal with 
equalities so we optimistically set out to find E which 
solves H = 0 and do not ask the computer to keep 
track of E 2 0 . Natural coordinates on the closed 
loop statespace are the statespace of the plant and of 
the compensator. In these coordinates E and H split 
into block 2 x 2 matricies. Setting H = 0 gives the 
following 4 equations below. 

3.1 Problem statement 
Let H,,, H x z ,  H,, and H,, be defined as follows. 

H,, = E z l A  + aT(E2i+ E’) + cTCl + E22 bCz + 
L 

T T T EzlB1bT(Ezl +E&)  + 

c B2 Eli + 2 

E21 BI BT ET, + E22 bbT (Em + E & )  + 2 
E22 b BT ET, 



math problem we address is: 

(HGRAIL) 

Let A,  B1, B2, C1, C2 be matrices of com- 
patible size be given. Solve H,, = 0 ,  H,, = 
0, H,, = 0, H,, = 0 ,  and H,, = 0 for  a ,  
b, c and for E l l ,  E12, E21 and E22. When 
can they be solved? If these equations can be 
solved, find formulas for the solution. 

Since we are trying to "discover" a result we pro- 
ceed a bit like we would in a back of the envelope com- 
putation, e.g., we assume everything in sight, such as 
Eij, is invertible. Later, after the main ideas have 
been discovered, the user can selectively relax them 
and thereby obtain more general results. 

3.2 Solving (HGRAIL) using a Strat- 
egy 

We now give a demonstration of how one discovers 
the algebraic part of the solution to this problem. 

3.2.1 The Set-Up 

The first step is to assemble all of the key polynomial 
equations in executable form: 

The polynomials we shall input to NCProcess are 
naturally thought of in several groups. First, to en- 
force that the 2 x 2 matrix (Ea,j),,l,2,J=1,2 is symmet- 
ric, we require each of the following polynomials to be 
zero: 

Since we assumed that Eij is invertible for i = 1 , 2  
and j = 1 , 2 ,  we require the following polynomials to 
be zero: 

Naturally we also assume the following polynomials 
are zero: 

Hxz, Hzz,  H z x ,  Hzz 

The knowns in this example are A, AT, B1, BT,  B2, 

c1 a and a l .  
We ran NCProcess for 2 iterations with the "col- 

lect" operation (described above) applied to each 
equation. 

The algorithm did not run the full two iterations 
but finished after one. Our program produced a mes- 
sage saying that, in fact, the output is a Grobner Ba- 
sis. 

~ 
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3.2.2 Step 1: Process and Collect 

There is no point in listing the full output here. In- 
deed, the only nontrivial undigested polynomial equa- 
tions are: 

The expressions with unknown variables 

and knowns {A, Bi, C1, CZ, AT, BY, CY, C f }  

bbT + bCzEG1 + EF;CTbT + E;;EiiAE,' + 
E,' Eli B1 6' + E,' AT E11 E;' +E,' CT Ci E;: + ( b +  

{bT , b, E;;, E;;, 

E ; ~  B ~ )  BY E;] = o 
The expressions with unknown variables 
{c', c, EG1, ET;, El i ,  Ezz, E n ,  Eiz} 
and knowns { A ,  Bi, Bz, ci, AT,  BT,  BT, c;} 

3.2.3 Step 2: The user attacks 

Now the reader must apply his expertise to the non- 
trivial polynomial equations left undigested by the 
NCProcess command. A key observation is that the 
first key polynomial equation contains b but not c and 
the second key polynomial equation contains c but not 
b. In other words, b and c appear in decoupled equa- 
tions. 

Observe that the first key polynomial from the 
above spreadsheet is quadratic in b. We could com- 
plete the square and put the polynomial in the form 

(b  + p) (bT  + p T )  + Y (4) 

where p and v are expressions involving C2, CT, B1, 
BT, A ,  AT, E;', EG1 and Ell .  Since there are many 
unknowns in the problem, there is probably excess 
freedom. Let us investigate what happens when we 
take b + = 0. This yields the polynomial equation 

b = -E-' 12 CT 2 - EL1 Ell B1 (5) 

which we could add to the input for NCProcess in Step 
3. We can also complete the square for the expression 
in c and put that expression in the form 

(c + X ) ( Z  + A*) + y . (6) 

We also assume that c + X = 0. This defines c by the 
following equation 

Since we have now solved for b and c,  we can use these 
equations to solve for bT and cT.  



~ 

we shall see, this is the step which requires the 
most human intervention. The reason is that the orig- 
inal problem, has a nonunique solution and the user 
must make a decision which eliminates some of the 
degrees of freedom. 

3.2.4 Step 3 

The equations for this step will be the output from the 
first call to NCProcess (above) as well as the four new 
equations that we have just derived. We ran NCPro- 
cess for two iterations. 

Once again we go directly to the spreadsheet which 
NCProcess created. There is no need to record all of 
it here, sinre at this stage we shall be concerned only 
with the undigested polynomial equations. There are 
only two undigested polynomial equations which are 
not banal. 

The expressions with unknown variables { E l l }  
and knowns { A ,  B1,C1,C2,AT, BT,CT,CT} 

E l l  B1 C2 + Ell A+AT E1l+CTC1-CT C2-C,'BT E11 

The expressions with unknown variables 
{EG', E;', El i ,  E22,E21, E n }  
and knowns { A ,  B1,B2,C1,AT,BT,B2T,CT} 
E22 E,' AT (E12 - E11 ET: E22) + (E21 - 
(E21 - E22 E;' E l i )  B1 BT (E12 - E11 EG'E22) + (E21 - 
E11 EG1 E22) - E22 E;' CT B,T (El2 - E11 E,' E22) - 
(E21 - E22 E;' Eli) B2 Ci E&' E22 == 0 

E22 E,' E l i )  A E;' E22 

Ezz EG1 E l i )  B2 BZT (E12 

- 
- 

3.2.5 Step 4 

Now we analyze these two polynomial equations. 
The first polynomial equation is a (Ricatti- 

Lyapunov) equation in Ell. Numerical methods for 
solving Ricatti equations are common. For this rea- 
son assuming that a Ricatti equation has a solution is 
a socially acceptable necessary condition throughout 
control engineering. Thus we can consider Ell to be 
known. (Indeed, it is the Y-l Ricatti of DGKF.) 

A first glance at the second equation reveals that 
the same products of unknowns appear over and over. 
Also we can see that this equation is symmetric. It 
would not take an experienced person long to real- 
ize that by multiplying this equation on the left by 
E12 E;' and on the right by EG1 E21, we will have 
an equation in one unknown, Ell - El2 EG' E21. 

Now we can replace Ell - E12 E;' E21 with a new 
variable X .  There are two ways of proceeding at this 
point. The first is to compute that the above equa- 
tions yields 

-X A-AT X+X B2 Cl+CT BT X-X B1 BT X + X  B2 BT X 

Observe that this is an equation in the one unknown 
X. (Indeed, it is the X Ricatti of DGKF.) The second 
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approach is to use NCProcess. In particular, create 
new knowns, X and Y (which at this point we take 
to be invertible) and add the equations 

We then run NCProcess. The output of NCProcess 
contains the list of equations below. To save space in 
the presentation we go to the next step where we turn 
on the strongest algorithm for removing redundant 
equations inside of NCProcess (see 51.5) and obtain 

YOUR SESSION HAS DIGESTED - - THE FOLLOWING RELATIONS - 
THE FOLLOWING VARIABLES HAVE BEEN SOLVED 
FOR t 

The corresponding rules are the following: 

c -+ -BF E12 + Ci El: E22 + B,T Eli E,' E22 

E11 -+ Y-' 

E;' + Y 

cT -+ -E21 B2 + E22 EA1 CY + E22 E;' E11 BZ  

The expressions with unknown variables {} 
and knowns 
{ A ,  B i ,  Bz,Ci,Cz,X,Y,X-',Y-l,AT,BT,B,',CITICT} 
xx-1 --f 1 x-'x + 1 YY-l  --f 1 Y-lY -il 

CT BT Y-1 

X B ~ B T X  

Y-' B1 C2 -+ Y-' A + ATY-' + CFC1 - C,T Cz - 

X B z B T X  -+ X A  + A T X  - X B z C i  - CTB,TX + 
- USER CREATIONS APPEAR BELOW - 

We have left out the undigested portion of the spread- 
sheet, which contains only equations which give the defi- 
nition of the inverses. 



End game 
Now let us compare what we have found to the well known 
solution of (NGRAIL).  In that theory there are two Ri- 
catti equations due to  Doyle, Glover, Khargonekar and 
Francis. These are the DGKF X and Y equations. One 
can read these off from the equations involving knowns. 

Indeed what we have discovered, up to assuming that 
many  things are invertible, is that i j  ( H G R A I L )  has a 
solution and i f  b and c are given by formulas (5) and (r), 
then 

(1)  the DGKF X and Y- l  equations must have a solutzon. 

(2) X and Y are self-adjoint 

Now we turn to the converse. The straightforward con- 
verse of the above italicized statement would be: If items 
(I) ,  (2) and invertibility hold, then (NGRAIL)  has a solu- 
tion and b and c are given by formulas (5) and (7). There 
is no reason to  believe (and it is not the case) that  b and c 
must  be given by the formulas (5) and (7). These two for- 
mulas came about in 83.2.3 and were motivated by “excess 
freedom” in the problem. A plausible converse is: 

Proposed Converse 3.2 If i tems (1)  and (2) above hold 
and Y ,  X ,  Y-’ - X are invertible, then ( H G R A I L )  has 
a solution. 

One can use the above spreadsheet to heavily assist in 
proving the proposed converse. Space limitations prevent 
us from doing that carefully here. The point is that the 
groupings in the last, spreadsheet correspond to  the se- 
quence in which we must back solve the system of equa- 
tions. 

3.4 Retrospective 
Now we discuss the level of difficulty of the discovery of 
the DGKF equations. 

The first spreadsheet fcaturcd an equation in the single 
unknown b (and its transpose) and an equation in the 
single unknown c (and its transpose) and so is the most 
complicated. For example, the expression (4) decomposes 
as 

P = q 2  ( 8 )  
where q1 = b+EG1 CT+E;; E11 B1 and qz  is a symmetric 
polynomial which does not involve b. This forces us to  
say that the proof of the necessary side was done with a 
symmetrized 2-strategy. 

A more aggressive way of selecting knowns and un- 
knowns would allow us to obtain this same result with 
a symmetrized 1-strategy. 
Thanks 

We would like to thank the referee for pointing out that 
the idea that commutative ideal theory (Ritt and Grobner 
bases) could be applied to  Theorem Proving in geometry 
and differential analysis goes back to [TI] and [T2]. 
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