
530 Proceedings of the 35th
Conference on Decision and Control
Kobe, Japan December 1996

Computer Assistance In Discovering Formulas And
Theorems In System Engineering I1 *

J. William Helton
Mark Stankus

Kurt Schneider
Department of.Mathematics, U. C. San Diego La Jolla, Cal 92093-0112

helton@osiris.ucsd.edu mstankus@osiris.ucsd. edu kschneid@osiris.ucsd.edu

ABSTRACT
[HSWcdc94] focused on procedures for simplify-

ing complicated expressions automatically. [HScdc95]
turned to the adventurous pursuit of developing a
highly computer assisted method for “discovering”
certain types of formulas and theorems.

It is often the case that some variables in the for-
mulation of a problem are not the natural “coordi-
nates” for solution of the problem. Grobner Basis
Algorithms, which lie a t the core of our method, are
very good at eliminating unknowns, but have no way
of finding good changes of variables. This paper gives
a way of incorporating changes of variables into our
method.

As an example, we “discover” the DGKF equations
of Hm control.

INTRODUCTION
If one reads a typical article on A,B,C,D systems

in the control transactions, one finds that most of
the algebra involved is non commutative rather than
commutative. Thus, for symbolic computing to have
much impact on linear systems research, one needs
a program which will do noncommuting operations.
Mathematica, Macsyma and Maple do not. We have a
package, NCAlgebra, which runs under Mathematica
which does the basic noncommuting operations, block
matrix manipulations and other things. The package
might be seen as a competitor to a yellow pad. Like
Mathematica, the emphasis is on interaction with the
program and flexibility.

The issue now is what types of “intelligence” to
put in the package. As mentioned in the abstract,
[HScdc95] turned to the adventurous pursuit of devel-
oping a highly computer assisted method for discov-
ering certain types of formulas and theorems. At the
beginning of “discovering” a theorem, an engineering
problem is often presented as a large system of ma-
trix equations. The point is to isolate and to minimize
what the user must do by running heavy algorithms.
Often when viewing the output of the algorithm, one
can see what additional hypothesis should be added
to produce a useful theorem and what the relevant

matrix quantities are.
Rather than use the word “algorithm”, we call our

method a strategy since it allows for modest human
intervention. We are under the impression that many
theorems in engineering systems might be derivable
in this way.

We are under the impression that many theorems
in engineering systems, matrix and operator theory
amount to giving hypotheses under which it is possi-
ble to solve large collections of equations. (It is not our
goal to reprove already proven theorems in engineer-
ing systems theory, but rather to develop technique
which will be useful for discovering new theorems.)
Any method which assumes that all of the hypothesis
can be stated algebraically and are known at the be-
ginning of the computation will be of limited practical
use.

Our method allows one to add (algebraic) hypothe-
ses as one proceeds with the computation. These hy-
potheses would be motivated by insights gained in the
course of a computer session and the user would have
to record and justify them independently of the com-
puter run. .However, we do want to be extremely
systematic so we shall propose a structure which is
algorithm-like but a bit looser.

We begin by reviewing the basic method and then
turn to our new changes of variable ideas [H-St].

1 What is a strategy?
At the highest level, a strategy consists of running a
program called NCProcess which displays a sorted list
of equations in UTEX as its output. Then a person
looks at the output and makes a decision which pro-
duces a new set of equations on which to run NCPro-
cess again. A discussion of when the repetition ends
is discussed in $1.4.

The flowchart for a strategy is:

‘This work was partially supported by the Air Force Office
for Scientific Research, by the National Science Foundation and
by the Ford Motor Company.

441 2 0-7803-3590-2/96 $5.00 0 1996 IEEE

mailto:helton@osiris.ucsd.edu
mailto:kschneid@osiris.ucsd.edu

are times during a strategy when one wants
to introduce new variables and equations.

03 . Equations involving no unknowns.

04. Equations involving only one unknown.

05. Equations involving only 2 unknowns. etc.

Knowns
Unknowns
Equations

Run NCProcess

Declare motivated unknowns to be
knowns or select important equations

No

1.1 NCProcess
The approach which we will use to manipulate large
collections of equations will be based largely upon a
noncommutative Grobner Basis Algorithm (GBA). A
person can use this practical approach to performing
com!iutations and proving theorems without knowing
anything about GBA’s. Indeed, this article is a self-
contained description of our method.

The program which we shall use, which is based
upon a GBA, will be called NCProcess and will be
disccssed in 51.5.

The input to NCProcess is:

11. A list of knowns.

12. A list of unknowns (together with priorities for
eliminating them).

13. A collection of equations in these knowns and
unknowns.

The output of the NCProcess commands is a list
of equations which are mathematically equivalent to
the equations in 13. These equations are presented to
the user as

01. Unknowns which have been solved for, and
equations that yield these unknowns.

0 2 . Equations selected or created by the user.

lThese do not exist in the first run. A user-selected equation
is a polynomial equation which the user has selected. When a
user selects an equation, they are given the highest priority in
eliminating other equations when NCProcess runs.

We will call the formatted output described above
a spreadsheet.

1.2 A simple example
We used our method to classify 3 projections in an
algebra A whose sum is equal to a constant X times
the identity; strengthening an old result due to Joe
Stampfli. Here we will just derive the solution for the
case where A = 1.

Note that A, B and C are projections whose sum
is 1 if and only if the following four equations hold

A + B + C - l = O A A - A Z O
B B - B = O C C - C = O .

The next consideration is which variables are to
be considered known and which are unknowns. This
problem is so simple that it does not matter how one
selects knowns or unknowns. For illustrative pur-
poses, we set A to be known and B and C to be
unknown. The spreadsheet that NCProcess produces
is the following. - YOUR SESSION HAS DIGESTED -

THE FOLLOWING RELATIONS -
THE FOLLOWING VARIABLES HAVE BEEN SOLVED
FOR {G)
The corresponding rules are the following:
C + 1 - A - B

The expressions with unknown variables {}
and knowns { A }
A A - + A

USER CREATIONS APPEAR BELOW - -

SOME RELATIONS WHICH APPEAR BELOW - MAY BE UNDIGESTED -
THE FOLLOWING VARIABLES HAVE NOT BEEN
SOLVED FOR: { A , B }

The expressions with unknown variables { B)
and knowns { A }
A B - t O B A - i O B B - i B

This shows not only that A, B and C commute, but
that the product of any two of them is zero.

441 3

Strategy
The idea of a strategy is :

S1. Run NCProcess which creates a display of the
output (see 01-05 in 51.1). Suppose that there
is an equation which involves only one unknown
(for example, a particular equation E17 contains
only one unknown 2 5) OR that there is an equa-
tion El8 which involves only one expression which
contains unknowns (say (~1.2 + 2 3) - see 52).

S2. The user must now make a decision about equa-

s3

tions in 2 5 (e.g., E17 is a Riccati equation so
I shall not try to simplify it, but solve it using
Matlab) OR make a decision about equations in
the equations which involve only one expression,
21x2 +Q, which contains unknowns (I will intro-
duce the new variable y and introduce the new
equation y = 2 1 2 2 + 2 3 to perform a change of
variables - see 32.) Now the user declares the
unknown 25 (OR y) to be known.

The process repeats.

S4. Knowing when a strategy stops is discussed in
$1.4.

The above listing is, in fact, a statement of a I -
strategy. Sometimes one needs a 2-strategy in that
the key is equations in 1 or 2 unknowns (OR equations
involving 1 or 2 unknown expressions).

The point is to isolate and to minimize what the
user must do. This is the crux of a strategy.

1.4 When to Stop
There are various criteria for stopping.

The digested equations (those in items 01, 0 2 and
0 3) often contain the hypotheses of the desired the-
orem and the main flow of its proof. If the starting
equations follow as algebraic consequences of them,
then we should stop. This last statement is true if
and only if the Grobner Basis generated by the di-
gested equations reduce (in a standard way) the set
of starting equations to 0. Checking this on a com-
puter is a purely mechanical process.

1.5 Redundant Equations
We mentioned earlier that we are using the Grobner
Basis algorithm (GBA). GBA and the formatted out-
put (51.1) alone are not enough to generate solutions
to engineering or math problems. This is because usu-
ally they generate too many equations. It is our hope
and our experience that the equations which it gen-
erates contain all of the equations essential to the so-
lution of whatever problem you are treating. On the
other hand, it contains equations derived from these
plus equations derived from those derived from these
as well as precursor equations which are no longer rel-
evant. That is, a GB contains a few jewels and lots of

garbage. In technical language a GB is almost never a
minimal basis for an ideal, and what a human seeks in
discovering a theorem is a minimal basis for an ideal.
Our method addresses this problem in that we have
algorithms and substantial software for finding small
(or smallest) sets of equations associated to a problem.
The process of running GBA followed by an algorithm
for finding small sets of equations then followed by a
command to be described in 52.3 for a “collecting” on
knowns is what constitutes NCProcess.

1.6 Summary
As a strategy proceeds, more and more equations are
digested by the user and more and more unknowns
become knowns. Thus we ultimately have two classes
of knowns: original knowns KO and user designated
knowns K u . Often a theorem can be produced di-
rectly from the output by taking as hypotheses the
existence of knowns KU U IC0 which are solutions to
the equations involving only knowns.

Assume that we have found these solutions. To
prove the theorem, that is to construct solutions to
the original equations, we must solve the remaining
equations. Fortunately, the digested equations often
are in a block triangular form which is amenable to
backsolving. This is one of the benefits of “digesting”
the equations.

2 Changes of Variables and
motivated unknowns

Changes of variables were introduced hastily in S1 and
S2 of 31.3. Now we give more detail.

2.1 Decompose
Suppose that it can be shown algebraically that an ex-
pression, such as 21x2 + 2 3 , solved a Ricatti equation,
e.g.,

(2 1 2 2 + X 3) a l a 2 (z l z z +Z3) -ka3(ZlZa +Z3) = 0 (1)

The left hand side of (1) depends on three unknowns
21, 2 2 and 2 3 and so would not be an equation three
unknowns, not one. It is natural, however, to view (1)
as an equation in one new unknown y and to rewrite
the left hand side of (1) as the composition

k(al> . . . , a6,4(al,. . . a6, 2 1 , 2 2 , 2 3))

where q(al,. . . , a6,21, 2 2 , 23) = 21x2 + 2 3 and

k (a l , . . . > a 6 , y) = yala2y + a39 + 0 5 4 6

In this example, we would call y a motivated unknown.
Let Decompose denote the operation of of creating all
non-trivial maximal compositions of a polynomial p .
Decompose, therefore, produces motivated unknowns.

One can consider an analogous decomposition,
called an !-decomposition, into several variables and

441 4

1.3

introduce new variables y1, . . . , ye. Let &-
Decompose denote the operation of creating all non-
trivial maximal &-decompositions of a polynomial p .

A variant on 1-Decompose which we shall use fre-
quently is called symmetric 1-Decompose. This ap-
plies in an algebra with involution, w -+ w* for all
w. For example, if A is a matrix algebra which is
closed under transposes (or adjoints), then the oper-
ation transpose (or adjoint) is an involution on A.

2.2 Left and Right Multiples
Suppose that a polynomial p(a1,. . . ,U,, 5 1 , . . . ,x,)
appears on a spreadsheet and has the property that
there are other monomials L(a1,. . . , a,, 2 1 , . . . ,z,)
and R(a1,. . . , a T , x l , . . . ,xs) for which L p R has a 1-
decomposition

LPR k(a1,. . . ,a,,q(al,. . . , a r , z l , . . . , X s))

where k is a polynomial in one unknown. For math-
cmatical reasons we do not describe, the polynomial
L p R will not appear on the spreadsheet. We formalize
this as follows.

Definition 2.1 A polynomial p motivates an un-
known y via the equation y = q(a1,. . . , u , , x ~ , . . . , x,)
af there exist monomials L(a1,. . . , a r , x l , . . . , 5,) and
R(a1,. . . ,a,, 21,. . . , x,) and there exists a polynomial
in one unknown k(a1,. . . ,ar ,y) such that L p R =

Of course, from the perspective of finding zeros of
collections of polynomials, if p has a zero, then L p R
has a zero and so k has a zero. Since k is a polynomial
in only one unknown variable, finding the zeros of k
is bound to be easier than finding the zeros of p.

k (a l , . .. 7 q(al, * . . > .. l x S)) .

2.3 Implementation
The authors do not know how to fully implement
the Decompose operation. Finding decompositions by
hand can be facilitated with the use of a certain type
of “collect” command. This “collect” command both
assists the user in performing decompositions of a par-
ticular polynomial and helps in finding other poly-
nomials in the ideal which would produce motivated
unknowns.

This “collect” command “collects” knowns and
products of knowns out of expressions. For example,
suppose that A and B are knowns and X , Y and Z
are unknowns. The collected form of

XABX+-YABY+YABX+YABY+AX+AY (2)

is
(X + Y) A B (X + Y) + A(X + Y) . (3)

Clearly this suggests a decomposition of (2) and, in-
deed, the collect command helps find decompositions
of much more complicated polynomials.

Next we give a demonstration of how collect enters
the NCProcess commands. 441 5

3 Examp1e:Solving the H”
Control Problem

In this section we give an example of solving a problem
using a strategy.

A basic problem in systems engineering (H” con-
trol) is to make a given system A, B1, B2, C1, C2,
Dl l = 0 = 0 2 2 , 0 1 2 = 1 = D21 dissipative by design-
ing a feedback law.

wujq GIVEN 5’
This corresponds to the existence of a nonnegative

quadratic form (Ez , z) on the statespace of the closed
loop system. It must satisfy a HJBI inequality which
we abbreviate H 5 0. Now we can only deal with
equalities so we optimistically set out to find E which
solves H = 0 and do not ask the computer to keep
track of E 2 0 . Natural coordinates on the closed
loop statespace are the statespace of the plant and of
the compensator. In these coordinates E and H split
into block 2 x 2 matricies. Setting H = 0 gives the
following 4 equations below.

3.1 Problem statement
Let H,,, H x z , H,, and H,, be defined as follows.

H,, = E z l A + aT(E2i+ E’) + cTCl + E22 bCz +
L

T T T EzlB1bT(Ezl +E&) +

c B2 Eli + 2

E21 BI BT ET, + E22 bbT (Em + E &) + 2
E22 b BT ET,

math problem we address is:

(HGRAIL)

Let A, B1, B2, C1, C2 be matrices of com-
patible size be given. Solve H,, = 0 , H,, =
0, H,, = 0, H,, = 0 , and H,, = 0 for a ,
b, c and for E l l , E12, E21 and E22. When
can they be solved? If these equations can be
solved, find formulas for the solution.

Since we are trying to "discover" a result we pro-
ceed a bit like we would in a back of the envelope com-
putation, e.g., we assume everything in sight, such as
Eij, is invertible. Later, after the main ideas have
been discovered, the user can selectively relax them
and thereby obtain more general results.

3.2 Solving (HGRAIL) using a Strat-
egy

We now give a demonstration of how one discovers
the algebraic part of the solution to this problem.

3.2.1 The Set-Up

The first step is to assemble all of the key polynomial
equations in executable form:

The polynomials we shall input to NCProcess are
naturally thought of in several groups. First, to en-
force that the 2 x 2 matrix (Ea,j),,l,2,J=1,2 is symmet-
ric, we require each of the following polynomials to be
zero:

Since we assumed that Eij is invertible for i = 1 , 2
and j = 1 , 2 , we require the following polynomials to
be zero:

Naturally we also assume the following polynomials
are zero:

Hxz, Hzz, H z x , Hzz

The knowns in this example are A, AT, B1, BT, B2,

c1 a and a l .
We ran NCProcess for 2 iterations with the "col-

lect" operation (described above) applied to each
equation.

The algorithm did not run the full two iterations
but finished after one. Our program produced a mes-
sage saying that, in fact, the output is a Grobner Ba-
sis.

~

441 6

3.2.2 Step 1: Process and Collect

There is no point in listing the full output here. In-
deed, the only nontrivial undigested polynomial equa-
tions are:

The expressions with unknown variables

and knowns {A, Bi, C1, CZ, AT, BY, CY, C f }

bbT + bCzEG1 + EF;CTbT + E;;EiiAE,' +
E,' Eli B1 6' + E,' AT E11 E;' +E,' CT Ci E;: + (b +

{bT , b, E;;, E;;,

E ; ~ B ~) BY E;] = o
The expressions with unknown variables
{c', c, EG1, ET;, El i , Ezz, E n , Eiz}
and knowns { A , Bi, Bz, ci, AT, BT, BT, c;}

3.2.3 Step 2: The user attacks

Now the reader must apply his expertise to the non-
trivial polynomial equations left undigested by the
NCProcess command. A key observation is that the
first key polynomial equation contains b but not c and
the second key polynomial equation contains c but not
b. In other words, b and c appear in decoupled equa-
tions.

Observe that the first key polynomial from the
above spreadsheet is quadratic in b. We could com-
plete the square and put the polynomial in the form

(b + p) (bT + p T) + Y (4)

where p and v are expressions involving C2, CT, B1,
BT, A , AT, E;', EG1 and Ell . Since there are many
unknowns in the problem, there is probably excess
freedom. Let us investigate what happens when we
take b + = 0. This yields the polynomial equation

b = -E-' 12 CT 2 - EL1 Ell B1 (5)

which we could add to the input for NCProcess in Step
3. We can also complete the square for the expression
in c and put that expression in the form

(c + X) (Z + A*) + y . (6)

We also assume that c + X = 0. This defines c by the
following equation

Since we have now solved for b and c, we can use these
equations to solve for bT and cT.

~

we shall see, this is the step which requires the
most human intervention. The reason is that the orig-
inal problem, has a nonunique solution and the user
must make a decision which eliminates some of the
degrees of freedom.

3.2.4 Step 3

The equations for this step will be the output from the
first call to NCProcess (above) as well as the four new
equations that we have just derived. We ran NCPro-
cess for two iterations.

Once again we go directly to the spreadsheet which
NCProcess created. There is no need to record all of
it here, sinre at this stage we shall be concerned only
with the undigested polynomial equations. There are
only two undigested polynomial equations which are
not banal.

The expressions with unknown variables { E l l }
and knowns { A , B1,C1,C2,AT, BT,CT,CT}

E l l B1 C2 + Ell A+AT E1l+CTC1-CT C2-C,'BT E11

The expressions with unknown variables
{EG', E;', El i , E22,E21, E n }
and knowns { A , B1,B2,C1,AT,BT,B2T,CT}
E22 E,' AT (E12 - E11 ET: E22) + (E21 -
(E21 - E22 E;' E l i) B1 BT (E12 - E11 EG'E22) + (E21 -
E11 EG1 E22) - E22 E;' CT B,T (El2 - E11 E,' E22) -
(E21 - E22 E;' Eli) B2 Ci E&' E22 == 0

E22 E,' E l i) A E;' E22

Ezz EG1 E l i) B2 BZT (E12

-
-

3.2.5 Step 4

Now we analyze these two polynomial equations.
The first polynomial equation is a (Ricatti-

Lyapunov) equation in Ell. Numerical methods for
solving Ricatti equations are common. For this rea-
son assuming that a Ricatti equation has a solution is
a socially acceptable necessary condition throughout
control engineering. Thus we can consider Ell to be
known. (Indeed, it is the Y-l Ricatti of DGKF.)

A first glance at the second equation reveals that
the same products of unknowns appear over and over.
Also we can see that this equation is symmetric. It
would not take an experienced person long to real-
ize that by multiplying this equation on the left by
E12 E;' and on the right by EG1 E21, we will have
an equation in one unknown, Ell - El2 EG' E21.

Now we can replace Ell - E12 E;' E21 with a new
variable X . There are two ways of proceeding at this
point. The first is to compute that the above equa-
tions yields

-X A-AT X+X B2 Cl+CT BT X-X B1 BT X + X B2 BT X

Observe that this is an equation in the one unknown
X. (Indeed, it is the X Ricatti of DGKF.) The second

441 7

approach is to use NCProcess. In particular, create
new knowns, X and Y (which at this point we take
to be invertible) and add the equations

We then run NCProcess. The output of NCProcess
contains the list of equations below. To save space in
the presentation we go to the next step where we turn
on the strongest algorithm for removing redundant
equations inside of NCProcess (see 51.5) and obtain

YOUR SESSION HAS DIGESTED - - THE FOLLOWING RELATIONS -
THE FOLLOWING VARIABLES HAVE BEEN SOLVED
FOR t

The corresponding rules are the following:

c -+ -BF E12 + Ci El: E22 + B,T Eli E,' E22

E11 -+ Y-'

E;' + Y

cT -+ -E21 B2 + E22 EA1 CY + E22 E;' E11 BZ

The expressions with unknown variables {}
and knowns
{ A , B i , Bz,Ci,Cz,X,Y,X-',Y-l,AT,BT,B,',CITICT}
xx-1 --f 1 x-'x + 1 YY-l --f 1 Y-lY -il

CT BT Y-1

X B ~ B T X

Y-' B1 C2 -+ Y-' A + ATY-' + CFC1 - C,T Cz -

X B z B T X -+ X A + A T X - X B z C i - CTB,TX +
- USER CREATIONS APPEAR BELOW -

We have left out the undigested portion of the spread-
sheet, which contains only equations which give the defi-
nition of the inverses.

End game
Now let us compare what we have found to the well known
solution of (NGRAIL). In that theory there are two Ri-
catti equations due to Doyle, Glover, Khargonekar and
Francis. These are the DGKF X and Y equations. One
can read these off from the equations involving knowns.

Indeed what we have discovered, up to assuming that
many things are invertible, is that i j (H G R A I L) has a
solution and i f b and c are given by formulas (5) and (r),
then

(1) the DGKF X and Y- l equations must have a solutzon.

(2) X and Y are self-adjoint

Now we turn to the converse. The straightforward con-
verse of the above italicized statement would be: If items
(I) , (2) and invertibility hold, then (NGRAIL) has a solu-
tion and b and c are given by formulas (5) and (7). There
is no reason to believe (and it is not the case) that b and c
must be given by the formulas (5) and (7). These two for-
mulas came about in 83.2.3 and were motivated by “excess
freedom” in the problem. A plausible converse is:

Proposed Converse 3.2 If i tems (1) and (2) above hold
and Y , X , Y-’ - X are invertible, then (H G R A I L) has
a solution.

One can use the above spreadsheet to heavily assist in
proving the proposed converse. Space limitations prevent
us from doing that carefully here. The point is that the
groupings in the last, spreadsheet correspond to the se-
quence in which we must back solve the system of equa-
tions.

3.4 Retrospective
Now we discuss the level of difficulty of the discovery of
the DGKF equations.

The first spreadsheet fcaturcd an equation in the single
unknown b (and its transpose) and an equation in the
single unknown c (and its transpose) and so is the most
complicated. For example, the expression (4) decomposes
as

P = q 2 (8)
where q1 = b+EG1 CT+E;; E11 B1 and qz is a symmetric
polynomial which does not involve b. This forces us to
say that the proof of the necessary side was done with a
symmetrized 2-strategy.

A more aggressive way of selecting knowns and un-
knowns would allow us to obtain this same result with
a symmetrized 1-strategy.
Thanks

We would like to thank the referee for pointing out that
the idea that commutative ideal theory (Ritt and Grobner
bases) could be applied to Theorem Proving in geometry
and differential analysis goes back to [TI] and [T2].

REFERENCES

[DGKF] J. C. Doyle, K. Glover, P. P. Khargonekar and
B. A. Francis, “State-space solutions to standard Hz
and H , control problems”, IEEE Trans. Auto. Con-
trol 34 (1989), 831-847.

[HScdc95] J . W. Helton and M. Stankus: ‘Computer
Assistance In Discovering Formulas and Theorems In
System Engineering”, Conf. on Decision and Control,
New Orleans, December 1995.

[H-St] J. W. Helton and M. Stankus: “Computer Assis-
tance for “discovering” formulas in system engineer-
ing and operator theory”, preprint pp. 1-88.

[HSWcdc94] J. W. Helton, M. Stankus and J. Wavrik:
‘Computer simplification of engineering systems for-
mulas,’’ Conf. on Decision and Control, Orlando
Florida December 1994.

[NCA] J.W. Helton, R.L. Miller and M. Stankus, “NCAl-
gebra: A Mathematica Package for Doing Non Com-
muting Algebra” available from ncalg@ucsd.edu or
visit http://math.ucsd.edu/-mstankus or
http://math.ucsd.edu/Nhelton

J.W. Helton and M. Stankus, ‘Noncom-
mutative Grobner B a.-
sis Package” available from ncalg@ucsd.edu or visit
http://math.ucsd.edu/-mstankus or
http://math.ucsd.edu/-helton

[TlIWu Wen-TsY: “On the decision problem and the
mechanization of theorem proving in elementary ge-
ometry”, Scientia Sinica 21 (1978) 159-172

[T2] Wu Wen-TsY: “Some recent advances in mechanical
theorem proving of geometry”, AIMS Contemporary
Math. 29 235-241.

[NCGBDoc]

441 8

mailto:ncalg@ucsd.edu
http://math.ucsd.edu/-mstankus
http://math.ucsd.edu/Nhelton
mailto:ncalg@ucsd.edu
http://math.ucsd.edu/-mstankus
http://math.ucsd.edu/-helton

