
302 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

Computer Simplification of Formulas
in Linear Systems Theory

J. William Helton, Member, IEEE, Mark Stankus, and John J. Wavrik

Abstract—Currently, the three most popular commercial com
puter algebra systems are Mathematica, Maple, and MACSYMA.
These systems provide a wide variety of symbolic computation
facilities for commutative algebra and contain implementations
of powerful algorithms in that domain. The Gröbner Basis
Algorithm, for example, is an important tool used in computation
with commutative algebras and in solving systems of polynomial
equations.

On the other hand, most of the computation involved in linear
control theory is performed on matrices, and these do not com
mute. A typical issue of IEEE TRANSACTIONS ON AUTOMATIC
CONTROL is full of linear systems and computations with their
coefficient matrices A B C D’s or partitions of them into block
matrices. Mathematica, Maple, and MACSYMA are weak in
the area of noncommutative operations. They allow a user to
declare an operation to be noncommutative but provide very few
commands for manipulating such operations and no powerful
algorithmic tools.

It is the purpose of this paper to report on applications
of a powerful tool, a noncommutative version of the Gröbner
Basis algorithm. The commutative version of this algorithm is
implemented in most major computer algebra packages. The
noncommutative version is relatively new [5].

Index Terms—Automated simplification, Grobner bases, linear
systems.

I. INTRODUCTION

PART ONE of the paper introduces Gröbner Bases (GB)
and lays the foundation for simplification of complicated

algebraic expressions from engineering and other applications.
In Part Two we shall describe the Gröbner Bases for several
elementary situations which arise in systems theory. These
GB’s give (in a sense to be made precise) a “complete” set of
simplifying rules for formulas which arise in these situations.
We have found that this process provides a practical means of
simplifying expressions.

We begin Part Three with an illustration of how the simpli
fication rules from Part One apply in system theory. Section V
illustrates the use of Gröbner Basis with an application to the
Doyle–Glover–Khargonekar–Francis (DGKF) theory of
control. The rest of Part Three explores other facets of the
Gröbner Basis machinery.

The simplification process and the Gröbner Basis depend on
the choice of an ordering on variables. In Section VI we will

Manuscript received May 5, 1995. Recommended by Associate Editor, A.
A. Stoorvogel. This work was supported by the Air Force Office for Scientific
Research and by the National Science Foundation.

The authors are with the Department of Mathematics, University of Cali
fornia, San Diego, CA 92093 USA.

Publisher Item Identifier S 0018-9286(98)02074-1.

examine the effect of changing the ordering on the GB which
arises in connection with Lyapunov equations.

In addition to providing an approach to simplifying complex
expressions, the Gröbner Basis algorithm can be used to
generate new and (sometimes) interesting equations from
equations that are the statements of the basic assumptions.
For example, the Youla–Tissi (Y–T) formulas involving the
intertwining of the controllability and observability operators
of a system arise as a subset of the Gröbner bases studied in
Section VII.

The research required the use of software suited for com
puting with noncommuting symbolic expressions. Most of
the research was performed using a special-purpose system
developed by Wavrik. This system uses a new approach to
the creation of support software for mathematical research.
It provides the flexibility needed for experimentation with
algorithms, data representation, and data analysis.

In an effort to make available computational facilities for
work in noncommutative algebras to a wider audience, the
other authors have written a collection of packages for Math
ematica called NCAlgebra.1 NCAlgebra has a number of
commands for manipulating noncommuting expressions which
are named and designed to be noncommutative analogs of
Mathematica’s built-in commands. We have incorporated in
these packages many of the results on simplification obtained
from this research.

PART ONE: SIMPLIFYING EXPRESSIONS

II. SIMPLIFICATION

The problem of simplification involves a collection of
expressions and a notion of equivalence among expressions. A
goal is to obtain expressions equivalent to a given expression
which are simpler in some way. Another goal is to find a
unique representation for equivalent expressions.

When matrix expressions are simplified by hand, they
are scanned for subexpressions which can be replaced by
something which is equivalent and simpler. For example,
the expression simplifies to because the
subexpression can be replaced by , and then can
be replaced by .

In the case above, the occurrence of a matrix expression
next to its inverse leads to a rather obvious simplification.
Simplification can also use less obvious replacements. For
example, simplifies to zero even

1 Available from ncalg@osiris.ucsd.edu.

0018–9286/98$10.00 © 1998 IEEE

303 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS

though no subexpression consists of a matrix adjacent to its

known—but it is not quite as obvious. We will show that this
rule and others of this sort are generated automatically by the
simplification technology introduced in this paper.

We will examine several classes of matrix expressions. In
each case we will start with a few simple matrix expressions
and variables like and , which
we will call elementary or atomic expressions. Polynomial
expressions are those which can be obtained by repeatedly
performing arithmetic operations (addition, subtraction, mul
tiplication, and multiplication by scalars) on these atomic
expressions.2 Very complex expressions can be obtained in
this way. It is quite possible for two expressions which look
quite different to be equivalent in the sense that they represent
the same matrix. We would like to find the simplest possible
among these representations.

We are drawing a distinction among, for example, the
polynomial expressions and . We regard these
as different expressions because they are formed differently
in terms of atomic expressions and operations. They look
different. While they are not identical expressions, they are
(strongly) equivalent3 in the sense that for any choice of
invertible matrix they assume the same value.

Simplification depends on a concept of simplicity and a
concept of equivalence. A simplifier is a procedure which
takes any expression to an equivalent and simpler expression

. Thus we have (indicating that is
equivalent to) and (indicating that is
simpler, in some sense, than). In this paper we will discuss
a simplifier which is based on a noncommutative version of
the Gröbner Basis algorithm. It can be implemented on a
computer and shows evidence of being a very valuable tool.
The precise notions of simplicity and equivalence which we
use are discussed in Section II-C2). We have been able to
show, in the cases we have examined, that this simplifier
is a canonical simplifier in the sense that

The expression is a canonical form for
. In other words, equivalence of expressions can be tested

by reducing them to the canonical form. A test for equiva
lence of expressions is a major application for simplification
machinery.

The problem of automatically simplifying matrix expres
sions and our use of the noncommutative Gröbner technol
ogy for this purpose are quite new. Simplification plays a
fundamental role in computer algebra. A treatment of the
general theory of simplification including an extensive set of

0�2 For example, �� �� 0 �� and �� � ���0� are polynomial expressions
in the atomic expressions �� �0� � and ��0 �� 0� , while ������ and �������
are not polynomial expressions in �� �0� � and �� 0 �� 0� .

3 We will just say equivalent until we need to distinguish this from another
concept of equivalence.

inverse. Here we use the fact that is equivalent
to so that

The simplification rule is well

Loos [1]. A good general reference on commutative Gröbner
Basis is [2] and on noncommutative Gröbner Basis is [6].

A. Replacement Rules

For a collection of atomic expressions, there is usually a
collection of replacement rules coming from obvious relations
among the expressions. Thus we have rules like and

references is found in the survey article of Buchberger and

which allow us to replace a matrix which occurs
next to its inverse. The initial set of rules is insufficient for
producing major simplifications. Crucial to our simplification
procedures is a mechanism for extending a set of simplification
rules.

A replacement rule consists of a left-hand side (LHS), which
will always be a monomial, and a right-hand side (RHS),
which will always be a polynomial. A replacement rule is
applied to an expression by scanning its terms to find a match
for the LHS. If we find a term which has LHS as a factor,
we replace the factor by RHS. Our notation for a rule is

. Thus, for example, we have the replacement
rule

Naturally, we are unwilling to substitute RHS for LHS
unless these are equivalent. Thus we require that

becomes zero (1)

whenever matrices are substituted for the matrix variables
that occur in the atomic expressions. is a valid
replacement rule since becomes zero whenever
is replaced by an invertible matrix and by its inverse.

is also a valid replacement rule
(since becomes zero whenever
and are replaced by matrices for which this makes sense).4

Simplification of a polynomial expression using a list
of replacement rules involves repeatedly applying rules in the
list until we arrive at an expression which is irreducible (no
further rules on the list are applicable). In Section II-C2) we
will place an ordering on the terms of polynomial expressions.
Our replacement rules will always have the property that LHS
is greater than any of the terms in the RHS in this ordering.
This will guarantee that: 1) repeated application of the rules
eventually leads to an irreducible expression and that 2) the
irreducible expression is simpler in the sense of having terms
of smaller order than the original. If is irreducible and
obtained from by applying reduction rules in list , we will
say that is a normal form of and write
or In general, the normal form is not unique.5

We will now look at an example of simplification. This will
illustrate the process and show what can occur. Here is a list
of simplification rules based on the definition of inverse for
the atomic expressions and

Rule 1)

Rule 2)

4 As mentioned above, this classical rule can be automatically derived from
simpler rules; see Section II-D.

5 If the reduction rules are applied in different sequences, different normal
forms can be obtained (unless � has special properties). Even though the
normal form is not uniquely defined, the notation � � � ������� �� is
commonly used.

304 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

Rule 3)
Rule 4)

Example 1: We now apply these rules to the expression

(2)

We first apply Rule 3) to the first term. This produces

(3)

which, after expanding, rearranging, and cancelling terms,
produces the result

(4)

None of the rules apply to this expression and, therefore, it
is irreducible. Thus (4) is a normal form for (2).

B. Complete Lists of Rules

We come to one of the more basic points which is the
concept of “completeness” of a list of rules.

The reader may have noticed that there are other possibilities
for applying the replacement rules to (2). If we first apply
Rule 2) then we get

(5)

This, after rearranging and cancelling terms, becomes

(6)

We obtain two different expressions, (4) and (6), just by
changing the sequence in which rules are applied. As a
result, we obtain two expressions which are equivalent but
which cannot be reduced to a common irreducible form. The
difference of these two expressions is

(7)

It is equivalent to zero but cannot be reduced to zero by
repeated application of the rules. A set of rules will be
called complete if it is sufficient for simplifying to zero all
expressions which are actually equivalent to zero. The set of
Rules 1)–4) is not complete because they are not enough to
simplify (7) to zero.

This problem can be handled by enlarging the set of rules.
Expression (7) does not reduce to zero using the current set
of rules, so we add it to the list of rules. The two rules we
obtain in this way are as follows.

Rule 5)
Rule 6)

Incidentally, Rules 5) and 6) are often called the resolvent
identities.

It will follow from Section III-A that this expanded list has
several important special properties. First of all, the expanded
set of rules Rule 1)–6) is complete.6 Such a complete set of
rules corresponds to something called a Gröbner Basis (GB)
for the relations on and (with respect to the
given ordering); this will be discussed later. Secondly, if the

6 This is not obvious. It follows from the fact that the Mora algorithm
terminates in this case (see Section II-D).

full list of rules is applied repeatedly to any polynomial in
and , then one obtains a particular irreducible

polynomial . The same polynomial is obtained regardless
of the sequence in which the rules are applied. We can show,
in this case, that is a canonical form for with respect to
algebraic equivalence7: decisions about algebraic equivalence
of expressions can be made by comparing canonical forms .

We have illustrated the idea of expanding a set of simpli
fication rules to find a complete set for a particular example.
We now provide a more formal description of this process in
general.

C. Formal Description

It can become very confusing if we sometimes regard
and as different, and, at other times, treat them as the
same. We can understand what is at issue here by introducing
a bit of formalism. This section will also make precise the
concepts of simplicity and equivalence used in this work.

1) Polynomials: We will make a polynomial ring with one
(noncommuting) variable for each of our atomic expressions.
Let us continue with the example from the previous section
where the atomic expressions are and We
introduce three polynomial variables and . Since the
variables do not commute, and are different polynomials.
Now take a polynomial in and and substitute a matrix

for for and for . The result is a
matrix. The result of substituting into is , while the
result of substituting into is . The polynomials are
different but the resulting matrices are the same. We obtain,
in this way, one notion of equivalence on polynomials: two
polynomials are (strongly) equivalent if, upon any meaningful
substitution, they produce the same matrix. Here are some
polynomials that are equivalent to zero with the substitution
as in this example:

(8)

because, on substitution, they become

all of which are zero for any matrix for which they
make sense. A polynomial which is equivalent to zero (in
the context of association of the polynomial’s variables with
atomic expressions) is said to be a relation on the variables.
Therefore, in our example, and

are relations on and .
Let denote all polynomials in three noncommuting vari

ables and . Define

(9)

and observe that if we substitute for for and
for , then these polynomials become zero and

7 We will discuss algebraic equivalence in Section II-C3). It depends on the
choice of starting rules.

305 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS

in fact constitute the definitions of the expressions and
. These relations correspond to the simplification

rules in Rules 1)–4). In practice it is only easy to determine that
some very simple polynomials are relations. and
are relations which result from the definition of inverse. We
often show that a more complicated polynomial is a relation
by showing that it is an “algebraic consequence” of known
relations. For example, is a relation because

(10)

and which
make

Notice that any matrices substituted for
and zero will also make zero. Thus is a

relation since and are relations and is an “algebraic
8and .

Since our work involves the notion of “algebraic con
sequence” we will introduce some terminology to make it
precise. Let

consequence” of

be the set of polynomials in a fixed finite
collection of noncommuting variables. Recall that an ideal of

is a subset of such that whenever and are in
and whenever and are in , both and

are in . The ideal generated by a set of polynomials is the
smallest ideal of containing . This ideal consists of finite
sums of the form where are any polynomials
and .

Suppose that is a finite set of polynomials

is the ideal generated by and . If any set of matrices
satisfies the equations , then they

also satisfy If the are relations on
some atomic expressions, then will also be a relation on
these expressions. We say that is an algebraic consequence
of if is in the ideal generated by the . An ideal
is the set of all algebraic consequences of a starting set of
polynomials.

Notation: Using the strict polynomial notation, as we
have above, makes it hard to remember which atomic ex
pression is associated with which variable. We have found
it convenient to use the associated atomic expressions as
names for the polynomial variables. Thus, in the case above,
we would use rather than and rather than .
should be thought of as a variable for which matrices can
be substituted. should be thought of as a polynomial
in two variables which is not zero (as a polynomial) but which
becomes zero when any matrix and its inverse are substituted
for the variables. We will always specify in advance which
atomic expressions are being used.

2) Ordering: A replacement rule gives rise
to a relation . A relation, on the other hand, could
give rise to several possible replacement rules. For example,
the definition of gives the relation

(11)

8 We call attention to the way that � is obtained from �� and �� , namely
� � �� �0��� . This shows that � can be obtained from �� and �� by applying
certain algebraic operations.

The three replacement rules we could associate to this are

We wish to use the rule to make expressions less complicated
so we choose the last rule which replaces the “most compli
cated” monomial in (11) by a sum of simpler ones. A choice
of a particular replacement rule for any relation is made by
placing an ordering on the terms in expressions. The ordering
will be chosen so that expressions which we subjectively
regard as complicated tend to be higher in the order than those
which we think of as simpler. Once an ordering is imposed,
each relation has a term of highest order. We associate to a
relation that replacement rule for which LHS is the term of
highest order.

Let us assume that the variables for the polynomial ring
are (one letter for each atomic expression). The

monomials of are words in the letters . We place
an ordering on these monomials by

if and only if

either

or and

comes before in the dictionary.

This is called graded lexicographic ordering of the mono
mials.

If , then the monomials of degree three are ordered

These are all taken to be bigger than any monomial of degree
two.9

Every polynomial has a unique term whose monomial
part10 is of highest order. This is called the leading term of

and is denoted . A polynomial relation is converted
to a simplification rule by setting to be and
to be . One polynomial is simpler than another if
the terms of the first polynomial are smaller in this ordering
than the largest term of the second. Our simplification rules
decrease the order of the terms.

3) Definition of Gröbner Basis—Definition 12: Let be
a polynomial ring and an ordering on the terms of . A set

of polynomials corresponds (using the ordering) to a set
of replacement rules. Let and be polynomials, and let
be obtained from by applying rules in list until no further
rules apply. We will say that is a normal form of and write

or

9 This ordering is intended to capture our notion of simplicity. When we
apply this machinery, we assign variables higher in the ordering (alphabet)
to atomic expressions which seem more complicated. Terms having fewer
factors are automatically regarded as simpler than terms with more factors.

10 In the term ����, � is the coefficient and ��� the monomial part.

306 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

Definition 13: Let be a polynomial ring, an ideal of
, and an ordering on the terms of . A set is

called a Gröbner Basis for if it generates and if
implies

We will also speak of a set of simplifying rules as a Gröbner
Basis when the associated set of polynomials is a GB. If

is a Gröbner Basis, then is independent of
the order in which replacement rules are applied. It is also a
canonical form for algebraic equivalence (that is, and are
algebraically equivalent if is in the ideal).11

D. A Gröbner Basis Algorithm

Here is a simplified version of Mora’s algorithm used to
extend a set of generators for an ideal to a larger (and
potentially complete) set of generators.

Simplified Basis Algorithm
Let

While

Choose

For all

Let

If
 then

An is a combination of the form
where the are numbers and the and are

monomials. These are chosen so that: 1) the leading term
of equals the leading term of and 2) this
occurs in a “minimal” way.12 may depend on
the sequence in which the simplification rules are applied.
can be chosen to be any normal form of .

Notice that the algorithm is an iterative process which adds
new polynomials to . Notice also that every new element
which is added to is in the ideal . So the elements of
at any stage in this algorithm are all algebraic consequences
of the starting . Thus, if the original consists of relations

polynomials in commuting variables, the algorithm always
terminates and thus always produces a Gröbner Basis.

1) Comments on Rules and Notation: In general, the
process of applying rules to simplify a given expression is very
quick once a Gröbner Basis has been computed. The process
of computing a Gröbner Basis is usually labor intensive and

11 If � and � are algebraically equivalent and if the generators of � are
relations (i.e., become zero upon substitution), then � and � are also strongly
equivalent. Thus, for most of our Gröbner Bases, which are obtained from
somewhat evident starting relations, two expressions which simplify to the
same normal form are equivalent in the usual sense.

12 In the case of commuting variables, there is a unique minimal match—and
so a unique �������� � ���. In the noncommutative case, there may be none
or several minimal matches for a given pair ��� � ���; see [4]–[6] for details.

there is a big advantage to computing it and storing it, once
and for all, for a given set of atomic expressions. As we have
noted, if the Mora algorithm terminates yielding a finite basis,
then this basis is automatically a Gröbner Basis [5].

In some of our examples, the Gröbner Basis is infinite.
In this case, the Mora algorithm is interrupted after it has
produced sufficiently many new polynomials to indicate the
ultimate result. The truncated output can be quite useful. In
practice we have found that it can provide a list of rules which
has considerable simplifying power. We have also found that
in analyzing the output we could sometimes obtain recursive
formulas for parameterized families of relations. Application
of the SPoly criterion has allowed us to assert that the infinite
families discussed in this paper are actually Gröbner bases;
see Section III-C for examples of this.

Parameterized families of rules can be applied almost as
readily as a finite set of rules. Thus, the use of an infinite
set of rules can be quite practical. We are using an ordering
which depends on the number of factors in a term. If we wish
to simplify a particular expression , the only rules which
will be applicable are those whose LHS has a smaller number
of factors than the leading term of . Thus, a finite subset
of the rules will be sufficient to simplify all expressions up
to a certain complexity. An infinite set of rules has been
implemented by storing all rules up to a sufficiently high
degree to handle most situations, generating any instances of
yet higher order rules as needed.

PART TWO: LISTS OF GR ̈OBNER BASES

In this part we will give lists of simplification rules which
arise in settings of increasing complexity. We will provide ex
amples of complete bases which are finite and also some which
are infinite. We conclude with a formulation which provides a
powerful general summary of many of our simplification rules.

III. SIMPLIFICATION RULES FOR SOME COMMON SETTINGS

In this section we list Gröbner Bases for reducing polyno
mials in

The names (RESOL), (EB), (preNF), and (NF) are explained
in the following sections even though the names are irrelevant
to what we are doing here.

Here, as in the rest of this paper, we have adopted the
convention that atomic expressions will be used as the names
of polynomial variables (sometimes called indeterminates).
Thus, for example, and are not matrices; they are
variables for which matrices can be substituted. If we substitute
a matrix for , we must substitute the inverse of that matrix
for .

There are many ways to impose orders on the monomials
in the expressions we have listed above. The choice of an
ordering for monomials is arbitrary, but the Gröbner Basis

among a set of matrix expressions, all the elements of (at
any stage) will also be relations on the matrix expressions.

A criterion for a set to be a Gröbner Basis is
for all . If the algorithm

terminates, then the criterion shows that the (finite) resulting
set is automatically a Gröbner Basis for . In the case of

(RESOL) and
(EB) and
(preNF)

and
(NF)

and .

307 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS

may depend on the particular order chosen. In this paper we
use a graded lexicographic order which is determined by an
ordering of the atomic expressions. We have selected orderings
which reflect our subjective notion of which expressions are
more complicated than others.

For example, the ordering of
variables is consistent with this intuitive idea of increasing
complexity. Specifying an order on the three variables imposes
a unique graded lexicographic order on the monomials in these
variables. For example, when we use this graded lexicographic
order, the following monomials are ordered as indicated:

A. A Gröbner Basis for RESOL

The first list, called RESOL Rules, is a generalization of the
example presented in Section II which involves expressions in

and
expressions in and :

. The following list of rules13 involves

(RESOL)

(RESOL)

(RESOL)

(RESOL)

(RESOL)

(RESOL)

for all operators on a Hilbert space and distinct com
plex numbers and . The following theorem is an easy
generalization of a corresponding result from [4].

Theorem 14: The list of RESOL Rules is complete (where
and are distinct complex numbers).

Proof: If one uses the ordering

and the polynomials corresponding to (RESOL), (RESOL),
(RESOL), and (RESOL) together with the fact that scalars

and commute with everything as starting relations
for Mora’s algorithm, then the algorithm terminates giving
(RESOL)–(RESOL) as output. Thus by Section II-D, this
is a GB.

The name RESOL reflects the fact that operator theorists
call the resolvent of .

B. A Gröbner Basis for EB

The indeterminates which are used in EB and the ordering
which we use is as follows:

13 We use graded lexicographic order consistent with the order in which the
symbols are listed.

The set of relations of EB is the set of defining relations
of and (EB through EB
below).14 This set of relations is not a Gröbner basis. The
following theorem shows that one can extend this list of
relations to obtain a Gröbner basis.

Theorem 15: The following relations constitute a finite
Gröbner basis for EB:

EB

EB

EB

EB

EB

EB

EB

EB

EB

EB

EB

EB

EB

EB

Proof: Mora’s algorithm terminates producing this set.
We express this GB as a list of polynomials rather than

as a list of replacement rules. We will use the convention
that polynomials are written with terms in descending order.
Thus, the first term of a polynomial will be the LHS when it is
converted to a replacement rule. Note that EB and EB can be
reduced to zero using the other rules and so EB through EB
together with EB –EB is a GB. They have been included
in this list because they are in the starting set of relations,
and we find it helpful to keep the starting relations visible for
reference.

The relations which form the GB for (EB) are of interest
because they underlie the energy balance equations in
control.

C. An Infinite Gröbner Basis for PreNF

The set of relations considered in this section is named
(preNF) because it is preliminary to a set of relations which
is named NF for agy– oias.15 The indeterminates which
are used in (preNF) and the ordering which we use are as
follows. Using the guidelines for ordering atomic expressions
mentioned at the beginning of Section III, the orders which we
consider for the expressions of (preNF) (expressions in

and)

14 That is, they come from the definition of “inverse.”

15 The NF relations add �� 0 ��� and �� 0 ��� to preNF. They are
important to those working with 2 2 2 block unitary matrices or with discrete
time lossless balanced systems (called the Nagy–Foias operator model by
mathematicians). Further details are found in [4].

308 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

all have the form

By specifying in addition that we have the order

preNF

The set of relations of (preNF) is the set of defining relations
of and .
Notice that the variables and relations for (preNF) are those
for (EB) together with those for (RESOL) with and

. The Gröbner basis obtained for (preNF) is infinite.
It consists of a small collection of special relations followed
by several sequences of parameterized relations. This is the
content of the next theorem.

The theorem is proved using the -Polynomial criterion
discussed in Section II-D. The details of a similar proof are
found in [4]. Since the proof involves detailed checking of
a large number of cases, we omit it here. The authors are
studying ways to automate and simplify proofs of this sort.

Theorem 16: The following relations form a Gröbner Basis
for (preNF).

There are 22 special relations:

1) the relations for (EB);
2) the (RESOL) relations for both and with

;

3) two additional relations

PreNF

PreNF

There are eight (infinite) classes of general relations each of
which are parameterized by a positive integer :

where

Observations: Class IV is obtained from Class I by inter
changing and . Classes II and III are similarly related.
Class VIII is obtained from Class V by interchanging and
and reordering terms. Some of the other classes (classes I and
V) are obtained from very general rules [, respectively,

] in the forthcoming Section IV.

IV. GENERAL RULES

Some of the infinite families of rules which you have just
seen are special cases of the simple rules which are given in
this section. These rules are a bit sophisticated in that they are
stated directly in terms of the functional calculus of a matrix.
The functional calculus is an important construction in matrix
and operator theory which associates the matrix to a
matrix and a polynomial in one complex variable. More
generally, one can use a function which is analytic on the
spectrum of . The mapping of analytic functions
to matrices is what is called the functional calculus of . For
example, if , then is . Similarly,
one can obtain expressions like and

, provided the eigenvalues of and are in
the right location.

This section concentrates on a particular list of rules which
are described in terms of the functional calculus. As you will
see, a brief list of functional calculus-based rules contains a
great deal of information.

A. Statement of the (GENR) Rules

The following is a set of rules which hold for all operators
and on a Hilbert space with and

invertible, functions analytic on the spectrum of and
and all . (Technically, the following are not necessarily
replacement rules for certain since the LHS may not be a
monomial. We will discuss this shortly.)

B. GENR Rules

Gr0)
Gr1)
Gr2)
Gr3)

Gr4)

Gr5–9) The rules (Gr0)–(Gr4) with and swapped.

309 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS

In the above list of rules, the expression on the LHS of the
rule may not be a monomial. For example, see Gr4) or set

. It is easier to automate replacement rules if
the LHS of a rule is a monomial. When these rules are used
for machine computation, they are rearranged, using a term
ordering, so that LHS is a monomial.

It should be noted that it is easy to verify the GENR Rules
by hand so that they can be introduced independent of the
Gröbner Basis machinery. For example, Gr1) follows from
Gr0) by multiplying Gr0) on both sides by , and the
following calculation verifies Gr3) using (RESOL) and Gr1):

C. Properties of GENR

The rules (RESOL) plus (GENR) are a “complete” set of
rules in a sense. A major point is that these rules are valid for
every analytic function . These rules are a “complete”16 set
of rules in that they are complete for the ideal generated by
the key relations on

for any (which is analytic on the spectrum of
These key relations are as follows:

and).

the defining relations for the inverses

and and

the relations and

(17)

This is discussed more thoroughly in [4].

D. Using GENR with a Particular Function

Now suppose we specialize to a particular . If, for example,
, then we will have the same atomic

expressions as we used in the preNF situation. A major
difference, however, is that in the preNF case we added
additional relations which come from the definition of

and . We do not expect, nor do we find,
that GENR embodies all the extra relations that may hold for
a particular . What we do expect is that GENR will provide
a useful set of easily implemented rules that at least provides
simplification in a general sense, without using any special
properties of a particular .

Of the eight infinite families listed for preNF, we find that I,
IV, V, and VIII can be obtained from the GENR Rules together
with the RESOL Rules, while the other four families cannot.
Here one makes the substitution , so that

and . The remaining

16 This is formalized by a computation of a Gröbner basis in a related
0� �setting. A Gröbner basis can be found for polynomials in � � � � �

� � � �� 0 ��0� � �� 0 ��0� � � � � , where � and � are variables
and we take as starting relations the defining relations for the inverses and
the relations �� � �� and �� � �� (see [4]) which extract the algebraic
essence of (17). For the case of � � �, the (GENR) rules are obtained by
substituting ����� for � and ����� for � in the Gröbner basis from [4].

four families require the use of more particular properties of
and .

While this paper has not listed the NF rules, the NF Rules
contain 16 infinite families. Eight of these infinite families
follow from the GENR Rules together with the RESOL Rules.

Also, we mention that some special relations in (preNF) and
(NF) can be obtained from the GENR Rules together with the
RESOL Rules.

Even in a situation besides (preNF) and (NF), a natural thing
to try is to supplement (GENR) plus (RESOL) with some of
the obvious rules for whatever particular you are using in
your computations. We have found, in practice, that extremely
effective simplification can be done this way.

PART THREE: USES OF GR ̈OBNER BASES

This part treats several different topics.
In Section V, we will see that GB’s are useful for the

computational task of simplifying expressions. We will also
provide an example of their use in making deductions.

The Gröbner Theory starts with a set of relations and
produces new relations. The primary purpose of the Mora
algorithm is to produce a “complete” set of relations. While
it does not generate all possible relations, the new relations
it does generate are often of intrinsic interest. We show how
the famous formulas of Youla and Tissi for system similarity
emerge directly from a GB as does half of the State-Space
Isomorphism theorem. This is the subject of Section V.

Section VI concerns efficient computation of GB for Lya
punov equations.

V. SIMPLIFICATION OF FORMULAS: AN

ILLUSTRATION INVOLVING CONTROL

In this section we will give an application of the simplifi
cation machinery discussed in Part One. We will also provide
an example of the use of GB in making deductions.

A. An Application of a Gröbner Bases to Control

1) Simplification: In
 control, c.f. [3], one deals with
a Hamiltonian on the state-space of the closed-loop
system. Here is a state of the plant and is a state of
the compensator. The unknowns in are a quadratic form
which is to be a storage function of the closed-loop system and
the which define the unknown compensator. As usual,
take . Thus and are unknowns. If a solution

exists, then one can derive that for some controller, called
the central controller, and must be given by certain
formulas. These formulas do not imply that a solution to the

control problem exists. To see if it does, one must plug
the central controller formulas back into and see if
for all states of the closed-loop system.

We apply the usual normalization to

(18)
The DGKF simplifying assumptions (c.f., [3]) are then

made. These greatly reduce the complexity of the formula for

0

310 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

� � ����� 3 3� 3 3� 3 3� � ����� 3 3

����� � 3 3� 3 3�

� ����� 3 3����� � 3 3� 3 3�

� ����� 3 3����� 3 3� 3 3�

� ����� 3 3����� 3 3����� � 3 3�

0 ����� 3 3����� 3 3����� � 3 3�

� ����� 3 3������ 3 3�� 3 3�

� ����� 3 3� 3 3� 3 3�

0 ����� 3 3� 3 3� 3 3�

0 ����� 3 3����� � 3 3� 3 3�

� ����� 3 3����� � 3 3� 3 3�

� ����� 3 3����� 3 3� 3 3�

0 ����� 3 3����� 3 3� 3 3�

0 ����� 3 3����� 3 3����� � 3 3�

� ����� 3 3����� 3 3����� � 3 3�

� ����� 3 3� 3 3�� 3 3������ 3 3� 3 3�

0 ����� 3 3� 3 3�� 3 3������ 3 3� 3 3�

� ����� 3 3����� � 3 3��

3 3������ 3 3����� � 3 3�

0 ����� 3 3����� � 3 3��

3 3������ 3 3����� � 3 3�

� ����� 3 3� 3 3�� 3 3������ 3 3� 3 3�

0 ����� 3 3� 3 3�� 3 3������ 3 3� 3 3�

0 ����� 3 3� 3 3�� 3 3������ 3 3� 3 3�

� ����� 3 3� 3 3�� 3 3������ 3 3� 3 3�

0 ����� 3 3����� � 3 3��

3 3������ 3 3����� � 3 3�

� ����� 3 3����� � 3 3��

3 3������ 3 3����� � 3 3�

0 ����� 3 3� 3 3����0� � �

3 3�� 3 3� 3 3������ 3 3�� 3 3�

� ����� 3 3� 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3�

� ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3�

0 ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3�

0 ����� 3 3������ 3 3�� 3 3�

3 3����0� � � 3 3� � 3 3� 3 3�

� ����� 3 3������ 3 3�� 3 3�

3 3����0� � � 3 3� � 3 3� 3 3�

� ����� 3 3������ 3 3�� 3 3�

3 3����0� � � 3 3� � 3 3����� � 3 3�

0 ����� 3 3������ 3 3�� 3 3�

3 3����0� � � 3 3� � 3 3����� � 3 3�

� ����� 3 3� 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3�

0 ����� 3 3� 3 3���������0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3�

0 ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3�

� ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3�

� ����� 3 3������ 3 3�� 3 3�

3 3����0� � � 3 3� � 3 3� 3 3�

0 ����� 3 3������ 3 3�� 3 3�

Fig. 1.

. We still obtain an expression which is very complicated,
as shown in Fig. 1.

Here we have used the same notation that one finds in our
NCAlgebra program to give a feel for this type of computation.

stands for transpose while stands for inverse and “ ”
for multiply. This expression has 57 terms. The leading term
has ten factors. Many of the factors in Fig. 1 contain inverses
of the type discussed in Part One. The rules (RESOL) together
with the rules (EB) from Part One are stored in a function
NCSimplifyRational (NCSR) in NCAlgebra which applies

3 3����0� � � 3 3� � 3 3� 3 3�

0 ����� 3 3������ 3 3�� 3 3�

3 3����0� � � 3 3� � 3 3����� � 3 3�

� ����� 3 3������ 3 3�� 3 33 3�����0� � � 3 3� � 3 3����� � 3 3�

� ����� 3 3� 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

0 ����� 3 3� 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

0 ����� 3 3� 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

� ����� 3 3� 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

0 ����� 3 3����� � 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

� ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

� ����� 3 3����� � 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

0 ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

0 ����� 3 3� 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

� ����� 3 3� 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

� ����� 3 3� 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

0 ����� 3 3� 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

� ����� 3 3����� � 3 3����0� � � 3 3��

3 3� 3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

0 ����� 3 3����� � 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3� 3 3�

0 ����� 3 3����� � 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

� ����� 3 3����� � 3 3����0� � � 3 3�� 3 3�

3 3������ 3 3�� 3 3� 3 3

����0� � � 3 3� � 3 3����� � 3 3�

them repeatedly to an expression until no change occurs. When
we apply NCSimplifyRational to , we get the considerably
simpler expression shown in Fig. 2.17

This expression has 29 terms and the highest order term
has only six factors. Notice that everything of the form

and has been eliminated from
. This took 27 s on a SPARC II using NCAlgebra.18

17 Reduction of � by just the starting rules does not produce a change.
18 The same computation took 1.8 s using the special purpose system we

have used for research (running on a 486/33 MHz PC).

311 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS

Fig. 2.

We expect our simplifier to replace high-order terms by
lower order terms. The decrease in the number of factors in
each term and the elimination of complicated factors is the
expected behavior. The simplifier can also, as in this case,
reduce the total number of terms. This is a consequence of
the fact that terms are reduced to a standard form. This can
produce a cancellation of like terms. In our experience, the
Gröbner technology has been very effective for simplifying
expressions built from the type of subexpressions discussed
in Part One.

Notice that the transition from Fig. 1 to Fig. 2 involves the
use of general purpose simplification tools. It uses information
about the way is constructed as an algebraic expression, not
on specialized information from -control theory.

2) Proving a Theorem: A major theorem in
 -control
theory is that if the DGKF [3] Riccati relations hold.
We have simplified to obtain the expression which is
still quite complicated. We now introduce the assumption that
the [3] Riccati equations and hold where

and

An ordering for the variables was chosen essentially at
random by our computer program

This is done in NCAlgebra using the command

SetMonomialOrder

The NCAlgebra command

GroebnerSimplify

computes the reduction of with respect to the Gröbner
Basis generated by and . The result of the simpli
fication of using the above command was zero. The
computation took 116 s using NCAlgebra.19 The GB generated
was finite.

19 Using the special-purpose research software it took 5.1 s to calculate the
Gröbner Basis and 0.4 s to perform the reduction. NCAlgebra is integrated
with Mathematica and is therefore slower.

We have just obtained20 the classic result.
Theorem: The Hamiltonian of the closed-loop system based

on the central controller is identically zero if and satisfy
the two DGKF Riccati equations and .

B. Comments

In the proof in Section V-A2) we produce a GB from
relations special to the problem. The goal is to examine
consequences of these relations. Gröbner Bases are applicable
in other areas which involve matrix expressions. We emphasize
that when working in control, one often knows the DGKF
Riccati equations hold. It is, therefore, natural to introduce
these relations as hypotheses and seek to draw conclusions
from them. We have used a well-known theorem to illustrate
the process. The ideas which we have presented can be just
as useful when the answer is not known in advance. They can
be a valuable tool for exploration. They can provide a quick
way to check the correctness of a tentative set of assumptions.
They can disclose additional conditions needed for a theorem
to hold. They can provide a proof for a general theorem whose
truth is suggested by examples or special cases.

VI. THE EFFECTS OF ORDERING: AN

ILLUSTRATION WITH LYAPUNOV EQUATIONS

In this section we shall examine GB’s which arise in the
study of Lyapunov equations. We shall see that in some cases,
the same starting relations will produce either a finite or an
infinite GB, depending on the term ordering. Finally, in Section
VI-B we make some comments on the description of infinite
Gröbner Bases by generating functions.

A. Lyapunov Equations

If the Mora algorithm terminates with a finite basis, this
basis is automatically a Gröbner Basis. A finite basis is,
therefore, advantageous. In contrast, if the Mora algorithm
does not terminate and is interrupted, a truncated list of
rules produced may be useful for simplifying expressions.
As we saw in Section III-C it is often possible to describe
an infinite basis as collections of parameterized polynomials.
However, this type of analysis is not automated and can be
time consuming. In this section we examine a situation in
which the same set of starting relations produce both finite
and infinite bases depending on the choice of term ordering.
We will give some guidelines for obtaining a finite GB in the
case of the Lyapunov equation and an application to lossless
systems. The finite Gröbner Bases which we find in this section
are very small (e.g., around 30 relations) and can be generated
with a computer in less than 1 min.

The Lyapunov equation, as follows, is one of the most
common equations in engineering:

(19)

20 The idea of the proof is this: The fact that �� � reduces to zero using
the GB obtained from the DGKF Riccati equations shows that �� � is in the
ideal generated by �� and �� . That is, �� � is a sum of terms of the form
���� where � is a number, � and � are monomials, and � is either �� or
�� . Thus, if matrices are substituted for the variables, a substitution which
solves the DGKF equations will also make �� � � �.

312 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

TABLE I

Here and are typically given and is unknown,
eventually to be determined numerically. At the algebraic
stages of the research, one often is manipulating expressions
in: and the resolvents of

and . (We will not treat and in this paper,
although they do commonly arise.) We take (19), together with
some invertibility assumptions as indicated, to be the starting
relations for the GB process.

Table I summarizes the results of some experiments with
term ordering.

Notice that the finitude of the GB depends on whether or
not is invertible, whether we use a “ ” (with total degree
one) or ‘ ’ (with total degree two) as the affine term, and
the choice of ordering. In many engineering applications the
affine term “ ” in (19) is a quadratic of the form . For
example, is a familiar expression which
has this property. The results above show that a Gröbner Basis
obtained from this relation (together with the defining relations
for the inverses) will be finite for suitably chosen orders.

It is common to manipulate expressions which contain the
resolvents and , where and are
scalars. When we add these resolvents, similar conclusions
are reached. In particular, it seems that if and are
high in the order, we obtain an infinite Gröbner Basis, while
if and are low in the order, the basis is finite.

B. Infinite Families and Generating Functions

In Section III-C, we gave a GB for (preNF) which was
infinite. This GB consisted of a finite set of polynomials
together with eight infinite collections of polynomials. Each
of these collections of polynomials was parameterizable using
a single integer. There are other interesting ways to describe
the members of an infinite family. Here we will explore the
use of generating functions. A generating function can often
be found which has the members of the family appearing as
coefficients in its expansion.

Here is an example which is related to the Lyapunov
equations discussed in this section. We found that we obtain
an infinite basis in some situations (Table I). For example, if
one uses the starting relation with the order

, the Mora algorithm produces
general rules

for . If we set
, then

Generating functions like this occur in classical studies of
Lyapunov equations. For example, if the spectrum of and
are disjoint, then the integral equation

yields the commonplace formula

(20)

for . Here the contour is chosen so that the spectrum of
lies inside of and the spectrum of lies outside of .

VII. GR ̈ OBNER BASES SPAWN INTERESTING FORMULAS

Rather than viewing the Gröbner Basis algorithm as a means
toward the end of simplification, we view it in this section
as a means for obtaining algebraic consequences of a set of
equations. We will provide a simple illustration of how this
occurs in a familiar system engineering context. Our example
shows how the famous formulas of Youla and Tissi [9] for
system similarity emerge directly from a GB, as does half of
the State-Space Isomorphism theorem. One thing we shall see
is that the occurrence of an infinite GB in this case is quite
natural. For example, the elements of the infinite GB appear
as coefficients of the power series expansions of frequency
response function.

A. State-Space Isomorphism Theorem

A basic theorem of system theory, the State-Space Iso
morphism theorem, says that two controllable and observable
systems with identical frequency response function are
“similar.” Systems
similar if there is a map

and
satisfying

are said to be

(21)

(22)

(23)

It is natural to generate a GB for these relations in order
to discover consequences. The defining relations for
together with (21)–(23) were used as starting relations for the
Mora algorithm

The ordering used was the graded lexicographical order in
duced by .

313 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS

When we run Mora’s algorithm on [0]– [4], the
algorithm does not terminate in a short time, and so we
interrupted it and viewed the set which had been produced
up to that point (see Section II-D). It was apparent that
the Gröbner Basis was not finite. Computations by hand
showed that the reduced Gröbner basis is the starting relations

[0]– [4] together with the special relations

and general rules

for all .
We now recall that two systems have the same frequency

response function if

(24)

for all such that both and are invertible. If
(24) is expanded in powers of , we find that the coefficients of
the various powers (called Markov parameters) are precisely
the relations [2]. Thus we have shown that similar systems
have the same Markov parameters; indeed this is the content
of [2].

Also note that if the defining relations for and
are added to the starting relations using the order

then (24) itself is in the GB. Thus we see several ways in
which the Gröbner process could be interpreted as producing
formulas which prove one half the State-Space Isomorphism
theorem.

The Y–T Formulas: Now we turn to the interpretation of
[1] and [3].

Recall the famous formulas (Youla and Tissi [9]) for the
state-space isomorphism which say that it intertwines the
controllability operators and observability operators of the
system. In our notation these say

(Y-T) and

for all .
We see that [1] is exactly the second of the (Y–T)

formulas, while [3] is a simple variant of it. The first of
the (Y–T) formulas reduces to zero (using [5] and [4]).
So both the controllability and observability formulas have
been shown to be a consequence of the relations which define
similarity.

It is interesting to note that the second (Y–T) formula
appears explicitly in the GB, while the first does not (although
they do reduce to zero). We note that there is a change in the

ordering of variables21 for which Mora’s algorithm produces
a GB in which the first (Y-T) formula occurs but the second
does not.

APPENDIX

REMARKS ON SPECIAL SITUATIONS

A. Exploiting Finite Dimensions

What we have done in this paper is purely algebraic, and a
formula derived by these methods takes no account of whether
one is working with matrices on an -dimensional space,
operators on a Hilbert space, or on a Banach space, be they
bounded or unbounded. Many of us wish to work with finite-
dimensional matrices and are fully willing to use the fact that
they are finite dimensional. An interesting question is: Can one
formulate the finite dimensionality in an algebraic way which
fits well with the techniques of this paper?

A common suggestion is that we use the Cayley–Hamilton
theorem if we work in an -dimensional space for a fixed .
The fact that every matrix satisfies a polynomial equation
of degree would, at first glance, seem to provide a way
for reducing higher powers of matrices to lower powers and
eliminate infinite families of simplification rules. The main
problem with this is that the characteristic polynomial, ,
of the matrix has coefficients which depend on . Thus
even if we knew the characteristic polynomial for each of
the atomic variables in the problem, we would
not necessarily know the characteristic polynomial for any
sum, product, etc. of the atomic variables. Consequently, using
the Cayley–Hamilton theorem to impose finite dimensionality
does not give rules which apply in general. Indeed, when a
specialist uses the Cayley–Hamilton theorem in derivations,
he typically applies it to one or two matrices which he
has carefully constructed. In this context, one might adjoin
a characteristic polynomial equation to a computer algebra
session to obtain results for a particular matrix.

B. Square Versus Nonsquare Matrices

Another question which arises is how do these techniques
handle nonsquare matrices. At first glance it appears that there
is a problem because the setting for this paper is an algebra,
to which we may multiply any two matrices, while if, for
example, is not a square matrix, then is not meaningful.
In other words, when the matrices involved are all square
matrices of the same size, the translation between polynomials
and matrix expressions is clear and simple. Any product of
variables makes sense. On the other hand, when the matrices
involved are not all square matrices, then some products and
some sums of matrices are allowed while others are not.

We begin by considering a collection of polynomials which
we call allowable. This is done in a purely algebraic way by
attaching to each variable a pair of numbers and
(which will correspond to the number of rows and columns for
the matrix which will be substituted for in the problem). We
allow only products of elements with compatible dimensions.

21 This is true for the ordering � � �0 � � � � � � � � � � � � �.

314 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

We can attach dimensions to any allowable product.22 A
polynomial is allowable if each term is allowable, and all
the terms have the same dimensions. Intuitively, these are
polynomials which produce meaningful matrix expressions
when we substitute matrices of the proper dimensions for the
variables.

Note that in all examples of this paper, the starting rela
tions correspond to allowable matrix expressions, and all the
relations in the GB’s we obtained correspond to allowable
matrix expressions. The following theorem shows that this
phenomenon holds in general.

Theorem 25: If the starting relations are allowable, then
Mora’s algorithm produces only relations which are allowable.

The proof requires an analysis of the details of the Mora
algorithm at a level beyond the scope of this paper and is
omitted.

REFERENCES

[1]	 B. Buchberger and R. Loos, “Algebraic simplification,” Computer
Algebra—Symbolic and Algebraic Computation. New York: Springer-
Verlag, 1982, pp. 11–43.

[2]	 D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative
Algebra. New York: Springer-Verlag, 1992.

[3]	 J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-
space solutions to standard �� and �� control problems,” IEEE Trans.
Automat. Contr., vol. 34, pp. 831–847, 1989.

[4]	 J. W. Helton and J. J. Wavrik, “Rules for computer simplification of
the formulas in operator model theory and linear systems,” Operator
Theory: Advances Appl., vol. 73, pp. 325–354, 1994.

[5]	 F. Mora, “Groebner bases for noncommutative polynomial rings,”
Lecture Notes in Computer Sci., no. 229, pp. 353–362, 1986.

[6]	 , “An introduction to commutative and noncommutative Gröbner
Bases,” Theoretical Computer Sci., vol. 134, no. N1, pp. 131–173, Nov.
7, 1994.

[7]	 J. W. Helton, R. L. Miller, and M. Stankus, “NCAlgebra: A math
ematica package for doing non commuting algebra,” available from
ncalg@ucsd.edu.

[8]	 B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert
Space. Amsterdam, The Netherlands: North Holland, 1970.

[9]	 D. C. Youla and P. Tissi “�-port synthesis via lossless extraction—Part
I,” in Proc. 1966 Int. Conv. Rec., vol. 14, pt. 7, pp. 183–208.

22 The empty product � is considered to be allowable, but it is not assigned
dimensions. It acts as if ���� � ���� � � for arbitrary �.

J. William Helton (M’73) was born in Jacksonville,
TX, in 1944. He received the B.S. degree from the
University of Texas, Austin, in 1964 and the M.S.
and Ph.D. degrees from Stanford University, CA, in
1966 and 1968, respectively, all in mathematics.

From 1968 to 1973 he was at SUNY, Stony
Brook, as an Assistant and then Associate Professor.
In 1974 he visited UCLA and subsequently moved
to the University of California, San Diego, as an
Associate Professor, where he is currently a Profes
sor of Mathematics. His current research interests

include extending �� control to nonlinear systems, computer algebra aimed
at linear systems research, and frequency domain optimization theory and
algorithms.

Dr. Helton was a recipient of a Guggenhiem Fellowship and an Outstanding
paper Award from the IEEE TRANSACTIONS ON AUTOMATIC CONTROL in 1986.
He has delivered plenary addresses at the annual meeting of the AMS, the
EECTD, and several at the International Symposia on the Mathematical
Theory of Networks and Systems.

Mark Stankus was born in Braintree, MA. He re
ceived the B.S. degree from Rensselaer Polytechnic
Institute in 1987 and the M.S. and Ph.D. degrees
from the University of California, San Diego, in
1990 and 1993, respectively, all in mathematics.

From 1993 to 1996 he was with the University of
California, San Diego, as a postdoctoral Research
Mathematician. He is currently at the California
State University of San Luis Obispo. His current
research interests include computer algebra aimed
at linear systems research and modeling bounded

linear transformations of a Hilbert space.
Dr. Stankus coauthored three papers which are being given Featured

Reviews by Math Reviews (from the American Mathematical Society).

John J. Wavrik was born March 17, 1941, in New
York City. He received the B.A. degree in mathe
matics from Johns Hopkins University, Baltimore,
MD, and did graduate work at Johns Hopkins and
Stanford University, CA. He received the Ph.D.
degree in 1966 from Stanford University, under the
direction of Fields Medalist Kunihiko Kodaira in
the field of algebraic geometry and deformations of
complex manifolds.

Since 1969 he has been on the faculty of the
University of California, San Diego. His current

research interest is in computational aspects of abstract algebra.

