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in Linear Systems Theory 
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Abstract—Currently, the three most popular commercial com
puter algebra systems are Mathematica, Maple, and MACSYMA. 
These systems provide a wide variety of symbolic computation 
facilities for commutative algebra and contain implementations 
of powerful algorithms in that domain. The Gröbner Basis 
Algorithm, for example, is an important tool used in computation 
with commutative algebras and in solving systems of polynomial 
equations. 

On the other hand, most of the computation involved in linear 
control theory is performed on matrices, and these do not com
mute. A typical issue of IEEE TRANSACTIONS ON AUTOMATIC 
CONTROL is full of linear systems and computations with their 
coefficient matrices A B C D’s or partitions of them into block 
matrices. Mathematica, Maple, and MACSYMA are weak in 
the area of noncommutative operations. They allow a user to 
declare an operation to be noncommutative but provide very few 
commands for manipulating such operations and no powerful 
algorithmic tools. 

It is the purpose of this paper to report on applications 
of a powerful tool, a noncommutative version of the Gröbner 
Basis algorithm. The commutative version of this algorithm is 
implemented in most major computer algebra packages. The 
noncommutative version is relatively new [5]. 

Index Terms—Automated simplification, Grobner bases, linear 
systems. 

I. INTRODUCTION 

PART ONE of the paper introduces Gröbner Bases (GB) 
and lays the foundation for simplification of complicated 

algebraic expressions from engineering and other applications. 
In Part Two we shall describe the Gröbner Bases for several 
elementary situations which arise in systems theory. These 
GB’s give (in a sense to be made precise) a “complete” set of 
simplifying rules for formulas which arise in these situations. 
We have found that this process provides a practical means of 
simplifying expressions. 

We begin Part Three with an illustration of how the simpli
fication rules from Part One apply in system theory. Section V 
illustrates the use of Gröbner Basis with an application to the 
Doyle–Glover–Khargonekar–Francis (DGKF) theory of 
control. The rest of Part Three explores other facets of the 
Gröbner Basis machinery. 

The simplification process and the Gröbner Basis depend on 
the choice of an ordering on variables. In Section VI we will 
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examine the effect of changing the ordering on the GB which 
arises in connection with Lyapunov equations. 

In addition to providing an approach to simplifying complex 
expressions, the Gröbner Basis algorithm can be used to 
generate new and (sometimes) interesting equations from 
equations that are the statements of the basic assumptions. 
For example, the Youla–Tissi (Y–T) formulas involving the 
intertwining of the controllability and observability operators 
of a system arise as a subset of the Gröbner bases studied in 
Section VII. 

The research required the use of software suited for com
puting with noncommuting symbolic expressions. Most of 
the research was performed using a special-purpose system 
developed by Wavrik. This system uses a new approach to 
the creation of support software for mathematical research. 
It provides the flexibility needed for experimentation with 
algorithms, data representation, and data analysis. 

In an effort to make available computational facilities for 
work in noncommutative algebras to a wider audience, the 
other authors have written a collection of packages for Math
ematica called NCAlgebra.1 NCAlgebra has a number of 
commands for manipulating noncommuting expressions which 
are named and designed to be noncommutative analogs of 
Mathematica’s built-in commands. We have incorporated in 
these packages many of the results on simplification obtained 
from this research. 

PART ONE: SIMPLIFYING EXPRESSIONS 

II. SIMPLIFICATION 

The problem of simplification involves a collection of 
expressions and a notion of equivalence among expressions. A 
goal is to obtain expressions equivalent to a given expression 
which are simpler in some way. Another goal is to find a 
unique representation for equivalent expressions. 

When matrix expressions are simplified by hand, they 
are scanned for subexpressions which can be replaced by 
something which is equivalent and simpler. For example, 
the expression simplifies to because the 
subexpression can be replaced by , and then can 
be replaced by . 

In the case above, the occurrence of a matrix expression 
next to its inverse leads to a rather obvious simplification. 
Simplification can also use less obvious replacements. For 
example, simplifies to zero even 

1 Available from ncalg@osiris.ucsd.edu. 
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though no subexpression consists of a matrix adjacent to its 

known—but it is not quite as obvious. We will show that this 
rule and others of this sort are generated automatically by the 
simplification technology introduced in this paper. 

We will examine several classes of matrix expressions. In 
each case we will start with a few simple matrix expressions 
and variables like and , which 
we will call elementary or atomic expressions. Polynomial 
expressions are those which can be obtained by repeatedly 
performing arithmetic operations (addition, subtraction, mul
tiplication, and multiplication by scalars) on these atomic 
expressions.2 Very complex expressions can be obtained in 
this way. It is quite possible for two expressions which look 
quite different to be equivalent in the sense that they represent 
the same matrix. We would like to find the simplest possible 
among these representations. 

We are drawing a distinction among, for example, the 
polynomial expressions and . We regard these 
as different expressions because they are formed differently 
in terms of atomic expressions and operations. They look 
different. While they are not identical expressions, they are 
(strongly) equivalent3 in the sense that for any choice of 
invertible matrix they assume the same value. 

Simplification depends on a concept of simplicity and a 
concept of equivalence. A simplifier is a procedure which 
takes any expression to an equivalent and simpler expression 

. Thus we have (indicating that is 
equivalent to ) and (indicating that is 
simpler, in some sense, than ). In this paper we will discuss 
a simplifier which is based on a noncommutative version of 
the Gröbner Basis algorithm. It can be implemented on a 
computer and shows evidence of being a very valuable tool. 
The precise notions of simplicity and equivalence which we 
use are discussed in Section II-C2). We have been able to 
show, in the cases we have examined, that this simplifier 
is a canonical simplifier in the sense that 

The expression is a canonical form for 
. In other words, equivalence of expressions can be tested 

by reducing them to the canonical form. A test for equiva
lence of expressions is a major application for simplification 
machinery. 

The problem of automatically simplifying matrix expres
sions and our use of the noncommutative Gröbner technol
ogy for this purpose are quite new. Simplification plays a 
fundamental role in computer algebra. A treatment of the 
general theory of simplification including an extensive set of 

0�2 For example, �� �� 0 �� and ��  �  ���0�  are polynomial expressions 
in the atomic expressions �� �0� � and ��0 �� 0� , while ������ and ������� 
are not polynomial expressions in �� �0� � and �� 0 �� 0� . 

3 We will just say equivalent until we need to distinguish this from another 
concept of equivalence. 

inverse. Here we use the fact that is equivalent 
to so that 

The simplification rule is well 

Loos [1]. A good general reference on commutative Gröbner 
Basis is [2] and on noncommutative Gröbner Basis is [6]. 

A. Replacement Rules 

For a collection of atomic expressions, there is usually a 
collection of replacement rules coming from obvious relations 
among the expressions. Thus we have rules like and 

references is found in the survey article of Buchberger and 

which allow us to replace a matrix which occurs 
next to its inverse. The initial set of rules is insufficient for 
producing major simplifications. Crucial to our simplification 
procedures is a mechanism for extending a set of simplification 
rules. 

A replacement rule consists of a left-hand side (LHS), which 
will always be a monomial, and a right-hand side (RHS), 
which will always be a polynomial. A replacement rule is 
applied to an expression by scanning its terms to find a match 
for the LHS. If we find a term which has LHS as a factor, 
we replace the factor by RHS. Our notation for a rule is 

. Thus, for example, we have the replacement 
rule 

Naturally, we are unwilling to substitute RHS for LHS 
unless these are equivalent. Thus we require that 

becomes zero (1) 

whenever matrices are substituted for the matrix variables 
that occur in the atomic expressions. is a valid 
replacement rule since becomes zero whenever 
is replaced by an invertible matrix and by its inverse. 

is also a valid replacement rule 
(since becomes zero whenever 
and are replaced by matrices for which this makes sense).4 

Simplification of a polynomial expression using a list 
of replacement rules involves repeatedly applying rules in the 
list until we arrive at an expression which is irreducible (no 
further rules on the list are applicable). In Section II-C2) we 
will place an ordering on the terms of polynomial expressions. 
Our replacement rules will always have the property that LHS 
is greater than any of the terms in the RHS in this ordering. 
This will guarantee that: 1) repeated application of the rules 
eventually leads to an irreducible expression and that 2) the 
irreducible expression is simpler in the sense of having terms 
of smaller order than the original. If is irreducible and 
obtained from by applying reduction rules in list , we will 
say that is a normal form of and write 
or In general, the normal form is not unique.5 

We will now look at an example of simplification. This will 
illustrate the process and show what can occur. Here is a list 
of simplification rules based on the definition of inverse for 
the atomic expressions and
 

Rule 1)
 
Rule 2)
 

4 As mentioned above, this classical rule can be automatically derived from 
simpler rules; see Section II-D. 

5 If the reduction rules are applied in different sequences, different normal 
forms can be obtained (unless � has special properties). Even though the 
normal form is not uniquely defined, the notation � � � ������� �� is 
commonly used. 
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Rule 3) 
Rule 4) 

Example 1: We now apply these rules to the expression 

(2) 

We first apply Rule 3) to the first term. This produces 

(3) 

which, after expanding, rearranging, and cancelling terms, 
produces the result 

(4) 

None of the rules apply to this expression and, therefore, it 
is irreducible. Thus (4) is a normal form for (2). 

B. Complete Lists of Rules 

We come to one of the more basic points which is the 
concept of “completeness” of a list of rules. 

The reader may have noticed that there are other possibilities 
for applying the replacement rules to (2). If we first apply 
Rule 2) then we get 

(5) 

This, after rearranging and cancelling terms, becomes 

(6) 

We obtain two different expressions, (4) and (6), just by 
changing the sequence in which rules are applied. As a 
result, we obtain two expressions which are equivalent but 
which cannot be reduced to a common irreducible form. The 
difference of these two expressions is 

(7) 

It is equivalent to zero but cannot be reduced to zero by 
repeated application of the rules. A set of rules will be 
called complete if it is sufficient for simplifying to zero all 
expressions which are actually equivalent to zero. The set of 
Rules 1)–4) is not complete because they are not enough to 
simplify (7) to zero. 

This problem can be handled by enlarging the set of rules. 
Expression (7) does not reduce to zero using the current set 
of rules, so we add it to the list of rules. The two rules we 
obtain in this way are as follows. 

Rule 5) 
Rule 6) 

Incidentally, Rules 5) and 6) are often called the resolvent 
identities. 

It will follow from Section III-A that this expanded list has 
several important special properties. First of all, the expanded 
set of rules Rule 1)–6) is complete.6 Such a complete set of 
rules corresponds to something called a Gröbner Basis (GB) 
for the relations on and (with respect to the 
given ordering); this will be discussed later. Secondly, if the 

6 This is not obvious. It follows from the fact that the Mora algorithm 
terminates in this case (see Section II-D). 

full list of rules is applied repeatedly to any polynomial in 
and , then one obtains a particular irreducible 

polynomial . The same polynomial is obtained regardless 
of the sequence in which the rules are applied. We can show, 
in this case, that is a canonical form for with respect to 
algebraic equivalence7: decisions about algebraic equivalence 
of expressions can be made by comparing canonical forms . 

We have illustrated the idea of expanding a set of simpli
fication rules to find a complete set for a particular example. 
We now provide a more formal description of this process in 
general. 

C. Formal Description 

It can become very confusing if we sometimes regard 
and as different, and, at other times, treat them as the 
same. We can understand what is at issue here by introducing 
a bit of formalism. This section will also make precise the 
concepts of simplicity and equivalence used in this work. 

1) Polynomials: We will make a polynomial ring with one 
(noncommuting) variable for each of our atomic expressions. 
Let us continue with the example from the previous section 
where the atomic expressions are and We 
introduce three polynomial variables and . Since the 
variables do not commute, and are different polynomials. 
Now take a polynomial in and and substitute a matrix 

for for and for . The result is a 
matrix. The result of substituting into is , while the 
result of substituting into is . The polynomials are 
different but the resulting matrices are the same. We obtain, 
in this way, one notion of equivalence on polynomials: two 
polynomials are (strongly) equivalent if, upon any meaningful 
substitution, they produce the same matrix. Here are some 
polynomials that are equivalent to zero with the substitution 
as in this example: 

(8) 

because, on substitution, they become 

all of which are zero for any matrix for which they 
make sense. A polynomial which is equivalent to zero (in 
the context of association of the polynomial’s variables with 
atomic expressions) is said to be a relation on the variables. 
Therefore, in our example, and 

are relations on and . 
Let denote all polynomials in three noncommuting vari

ables and . Define 

(9) 

and observe that if we substitute for for and 
for , then these polynomials become zero and 

7 We will discuss algebraic equivalence in Section II-C3). It depends on the 
choice of starting rules. 



305 HELTON et al.: COMPUTER SIMPLIFICATION OF FORMULAS 

in fact constitute the definitions of the expressions and 
. These relations correspond to the simplification 

rules in Rules 1)–4). In practice it is only easy to determine that 
some very simple polynomials are relations. and 
are relations which result from the definition of inverse. We 
often show that a more complicated polynomial is a relation 
by showing that it is an “algebraic consequence” of known 
relations. For example, is a relation because 

(10) 

and which 
make 

Notice that any matrices substituted for 
and zero will also make zero. Thus is a 

relation since and are relations and is an “algebraic 
8and . 

Since our work involves the notion of “algebraic con
sequence” we will introduce some terminology to make it 
precise. Let 

consequence” of 

be the set of polynomials in a fixed finite 
collection of noncommuting variables. Recall that an ideal of 

is a subset of such that whenever and are in 
and whenever and are in , both and 

are in . The ideal generated by a set of polynomials is the 
smallest ideal of containing . This ideal consists of finite 
sums of the form where are any polynomials 
and . 

Suppose that is a finite set of polynomials 

is the ideal generated by and . If any set of matrices 
satisfies the equations , then they 

also satisfy If the are relations on 
some atomic expressions, then will also be a relation on 
these expressions. We say that is an algebraic consequence 
of if is in the ideal generated by the . An ideal 
is the set of all algebraic consequences of a starting set of 
polynomials. 

Notation: Using the strict polynomial notation, as we 
have above, makes it hard to remember which atomic ex
pression is associated with which variable. We have found 
it convenient to use the associated atomic expressions as 
names for the polynomial variables. Thus, in the case above, 
we would use rather than and rather than . 
should be thought of as a variable for which matrices can 
be substituted. should be thought of as a polynomial 
in two variables which is not zero (as a polynomial) but which 
becomes zero when any matrix and its inverse are substituted 
for the variables. We will always specify in advance which 
atomic expressions are being used. 

2) Ordering: A replacement rule gives rise 
to a relation . A relation, on the other hand, could 
give rise to several possible replacement rules. For example, 
the definition of gives the relation 

(11) 

8 We call attention to the way that � is obtained from �� and �� , namely 
� � �� �0��� . This shows that � can be obtained from �� and �� by applying 
certain algebraic operations. 

The three replacement rules we could associate to this are 

We wish to use the rule to make expressions less complicated 
so we choose the last rule which replaces the “most compli
cated” monomial in (11) by a sum of simpler ones. A choice 
of a particular replacement rule for any relation is made by 
placing an ordering on the terms in expressions. The ordering 
will be chosen so that expressions which we subjectively 
regard as complicated tend to be higher in the order than those 
which we think of as simpler. Once an ordering is imposed, 
each relation has a term of highest order. We associate to a 
relation that replacement rule for which LHS is the term of 
highest order. 

Let us assume that the variables for the polynomial ring 
are (one letter for each atomic expression). The 

monomials of are words in the letters . We place 
an ordering on these monomials by 

if and only if 

either 

or and 

comes before in the dictionary. 

This is called graded lexicographic ordering of the mono
mials. 

If , then the monomials of degree three are ordered 

These are all taken to be bigger than any monomial of degree 
two.9 

Every polynomial has a unique term whose monomial 
part10 is of highest order. This is called the leading term of 

and is denoted . A polynomial relation is converted 
to a simplification rule by setting to be and 
to be . One polynomial is simpler than another if 
the terms of the first polynomial are smaller in this ordering 
than the largest term of the second. Our simplification rules 
decrease the order of the terms. 

3) Definition of Gröbner Basis—Definition 12: Let be 
a polynomial ring and an ordering on the terms of . A set 

of polynomials corresponds (using the ordering) to a set 
of replacement rules. Let and be polynomials, and let 
be obtained from by applying rules in list until no further 
rules apply. We will say that is a normal form of and write 

or 

9 This ordering is intended to capture our notion of simplicity. When we 
apply this machinery, we assign variables higher in the ordering (alphabet) 
to atomic expressions which seem more complicated. Terms having fewer 
factors are automatically regarded as simpler than terms with more factors. 

10 In the term ����, � is the coefficient and ��� the monomial part. 
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Definition 13: Let be a polynomial ring, an ideal of 
, and an ordering on the terms of . A set is 

called a Gröbner Basis for if it generates and if 
implies 

We will also speak of a set of simplifying rules as a Gröbner 
Basis when the associated set of polynomials is a GB. If 

is a Gröbner Basis, then is independent of 
the order in which replacement rules are applied. It is also a 
canonical form for algebraic equivalence (that is, and are 
algebraically equivalent if is in the ideal ).11 

D. A Gröbner Basis Algorithm 

Here is a simplified version of Mora’s algorithm used to 
extend a set of generators for an ideal to a larger (and 
potentially complete) set of generators. 

Simplified Basis Algorithm 
Let
 
While
 

Choose
 

For all
 
Let
 
If
 then 

An is a combination of the form 
where the are numbers and the and are 

monomials. These are chosen so that: 1) the leading term 
of equals the leading term of and 2) this 
occurs in a “minimal” way.12 may depend on 
the sequence in which the simplification rules are applied. 
can be chosen to be any normal form of . 

Notice that the algorithm is an iterative process which adds 
new polynomials to . Notice also that every new element 
which is added to is in the ideal . So the elements of 
at any stage in this algorithm are all algebraic consequences 
of the starting . Thus, if the original consists of relations 

polynomials in commuting variables, the algorithm always 
terminates and thus always produces a Gröbner Basis. 

1) Comments on Rules and Notation: In general, the 
process of applying rules to simplify a given expression is very 
quick once a Gröbner Basis has been computed. The process 
of computing a Gröbner Basis is usually labor intensive and 

11 If � and � are algebraically equivalent and if the generators of � are 
relations (i.e., become zero upon substitution), then � and � are also strongly 
equivalent. Thus, for most of our Gröbner Bases, which are obtained from 
somewhat evident starting relations, two expressions which simplify to the 
same normal form are equivalent in the usual sense. 

12 In the case of commuting variables, there is a unique minimal match—and 
so a unique �������� � ���. In the noncommutative case, there may be none 
or several minimal matches for a given pair ��� � ���; see [4]–[6] for details. 

there is a big advantage to computing it and storing it, once 
and for all, for a given set of atomic expressions. As we have 
noted, if the Mora algorithm terminates yielding a finite basis, 
then this basis is automatically a Gröbner Basis [5]. 

In some of our examples, the Gröbner Basis is infinite. 
In this case, the Mora algorithm is interrupted after it has 
produced sufficiently many new polynomials to indicate the 
ultimate result. The truncated output can be quite useful. In 
practice we have found that it can provide a list of rules which 
has considerable simplifying power. We have also found that 
in analyzing the output we could sometimes obtain recursive 
formulas for parameterized families of relations. Application 
of the SPoly criterion has allowed us to assert that the infinite 
families discussed in this paper are actually Gröbner bases; 
see Section III-C for examples of this. 

Parameterized families of rules can be applied almost as 
readily as a finite set of rules. Thus, the use of an infinite 
set of rules can be quite practical. We are using an ordering 
which depends on the number of factors in a term. If we wish 
to simplify a particular expression , the only rules which 
will be applicable are those whose LHS has a smaller number 
of factors than the leading term of . Thus, a finite subset 
of the rules will be sufficient to simplify all expressions up 
to a certain complexity. An infinite set of rules has been 
implemented by storing all rules up to a sufficiently high 
degree to handle most situations, generating any instances of 
yet higher order rules as needed. 

PART TWO: LISTS OF GR ̈OBNER BASES 

In this part we will give lists of simplification rules which 
arise in settings of increasing complexity. We will provide ex
amples of complete bases which are finite and also some which 
are infinite. We conclude with a formulation which provides a 
powerful general summary of many of our simplification rules. 

III. SIMPLIFICATION RULES FOR SOME COMMON SETTINGS 

In this section we list Gröbner Bases for reducing polyno
mials in 

The names (RESOL), (EB), (preNF), and (NF) are explained 
in the following sections even though the names are irrelevant 
to what we are doing here. 

Here, as in the rest of this paper, we have adopted the 
convention that atomic expressions will be used as the names 
of polynomial variables (sometimes called indeterminates). 
Thus, for example, and are not matrices; they are 
variables for which matrices can be substituted. If we substitute 
a matrix for , we must substitute the inverse of that matrix 
for . 

There are many ways to impose orders on the monomials 
in the expressions we have listed above. The choice of an 
ordering for monomials is arbitrary, but the Gröbner Basis 

among a set of matrix expressions, all the elements of (at 
any stage) will also be relations on the matrix expressions. 

A criterion for a set to be a Gröbner Basis is 
for all . If the algorithm 

terminates, then the criterion shows that the (finite) resulting 
set is automatically a Gröbner Basis for . In the case of 

(RESOL) and 
(EB) and 
(preNF) 

and 
(NF) 

and . 
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may depend on the particular order chosen. In this paper we 
use a graded lexicographic order which is determined by an 
ordering of the atomic expressions. We have selected orderings 
which reflect our subjective notion of which expressions are 
more complicated than others. 

For example, the ordering of 
variables is consistent with this intuitive idea of increasing 
complexity. Specifying an order on the three variables imposes 
a unique graded lexicographic order on the monomials in these 
variables. For example, when we use this graded lexicographic 
order, the following monomials are ordered as indicated: 

A. A Gröbner Basis for RESOL 

The first list, called RESOL Rules, is a generalization of the 
example presented in Section II which involves expressions in 

and 
expressions in and : 

. The following list of rules13 involves 

(RESOL ) 

(RESOL ) 

(RESOL ) 

(RESOL ) 

(RESOL ) 

(RESOL ) 

for all operators on a Hilbert space and distinct com
plex numbers and . The following theorem is an easy 
generalization of a corresponding result from [4]. 

Theorem 14: The list of RESOL Rules is complete (where 
and are distinct complex numbers).
 

Proof: If one uses the ordering
 

and the polynomials corresponding to (RESOL ), (RESOL ), 
(RESOL ), and (RESOL ) together with the fact that scalars 

and commute with everything as starting relations 
for Mora’s algorithm, then the algorithm terminates giving 
(RESOL )–(RESOL ) as output. Thus by Section II-D, this 
is a GB. 

The name RESOL reflects the fact that operator theorists 
call the resolvent of . 

B. A Gröbner Basis for EB 

The indeterminates which are used in EB and the ordering 
which we use is as follows: 

13 We use graded lexicographic order consistent with the order in which the 
symbols are listed. 

The set of relations of EB is the set of defining relations 
of and (EB through EB 
below).14 This set of relations is not a Gröbner basis. The 
following theorem shows that one can extend this list of 
relations to obtain a Gröbner basis. 

Theorem 15: The following relations constitute a finite 
Gröbner basis for EB: 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

EB
 

Proof: Mora’s algorithm terminates producing this set. 
We express this GB as a list of polynomials rather than 

as a list of replacement rules. We will use the convention 
that polynomials are written with terms in descending order. 
Thus, the first term of a polynomial will be the LHS when it is 
converted to a replacement rule. Note that EB and EB can be 
reduced to zero using the other rules and so EB through EB 
together with EB –EB is a GB. They have been included 
in this list because they are in the starting set of relations, 
and we find it helpful to keep the starting relations visible for 
reference. 

The relations which form the GB for (EB) are of interest 
because they underlie the energy balance equations in 
control. 

C. An Infinite Gröbner Basis for PreNF 

The set of relations considered in this section is named 
(preNF) because it is preliminary to a set of relations which 
is named NF for agy– oias.15 The indeterminates which 
are used in (preNF) and the ordering which we use are as 
follows. Using the guidelines for ordering atomic expressions 
mentioned at the beginning of Section III, the orders which we 
consider for the expressions of (preNF) (expressions in 

and ) 

14 That is, they come from the definition of “inverse.” 

15 The NF relations add �� 0 ��� and �� 0 ���  to preNF. They are 
important to those working with 2 2 2 block unitary matrices or with discrete 
time lossless balanced systems (called the Nagy–Foias operator model by 
mathematicians). Further details are found in [4]. 
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all have the form 

By specifying in addition that we have the order 

preNF 

The set of relations of (preNF) is the set of defining relations 
of and . 
Notice that the variables and relations for (preNF) are those 
for (EB) together with those for (RESOL) with and 

. The Gröbner basis obtained for (preNF) is infinite. 
It consists of a small collection of special relations followed 
by several sequences of parameterized relations. This is the 
content of the next theorem. 

The theorem is proved using the -Polynomial criterion 
discussed in Section II-D. The details of a similar proof are 
found in [4]. Since the proof involves detailed checking of 
a large number of cases, we omit it here. The authors are 
studying ways to automate and simplify proofs of this sort. 

Theorem 16: The following relations form a Gröbner Basis 
for (preNF). 

There are 22 special relations: 

1) the relations for (EB); 
2) the (RESOL) relations for both and with 

;
 
3) two additional relations
 

PreNF 

PreNF 

There are eight (infinite) classes of general relations each of 
which are parameterized by a positive integer : 

where 

Observations: Class IV is obtained from Class I by inter
changing and . Classes II and III are similarly related. 
Class VIII is obtained from Class V by interchanging and 
and reordering terms. Some of the other classes (classes I and 
V) are obtained from very general rules [ , respectively, 

] in the forthcoming Section IV. 

IV. GENERAL RULES 

Some of the infinite families of rules which you have just 
seen are special cases of the simple rules which are given in 
this section. These rules are a bit sophisticated in that they are 
stated directly in terms of the functional calculus of a matrix. 
The functional calculus is an important construction in matrix 
and operator theory which associates the matrix to a 
matrix and a polynomial in one complex variable. More 
generally, one can use a function which is analytic on the 
spectrum of . The mapping of analytic functions 
to matrices is what is called the functional calculus of . For 
example, if , then is . Similarly, 
one can obtain expressions like and 

, provided the eigenvalues of and are in 
the right location. 

This section concentrates on a particular list of rules which 
are described in terms of the functional calculus. As you will 
see, a brief list of functional calculus-based rules contains a 
great deal of information. 

A. Statement of the (GENR) Rules 

The following is a set of rules which hold for all operators 
and on a Hilbert space with and 

invertible, functions analytic on the spectrum of and 
and all . (Technically, the following are not necessarily 
replacement rules for certain since the LHS may not be a 
monomial. We will discuss this shortly.) 

B. GENR Rules 

Gr0) 
Gr1) 
Gr2) 
Gr3) 

Gr4) 

Gr5–9) The rules (Gr0)–(Gr4) with and swapped. 
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In the above list of rules, the expression on the LHS of the 
rule may not be a monomial. For example, see Gr4) or set 

. It is easier to automate replacement rules if 
the LHS of a rule is a monomial. When these rules are used 
for machine computation, they are rearranged, using a term 
ordering, so that LHS is a monomial. 

It should be noted that it is easy to verify the GENR Rules 
by hand so that they can be introduced independent of the 
Gröbner Basis machinery. For example, Gr1) follows from 
Gr0) by multiplying Gr0) on both sides by , and the 
following calculation verifies Gr3) using (RESOL) and Gr1): 

C. Properties of GENR 

The rules (RESOL) plus (GENR) are a “complete” set of 
rules in a sense. A major point is that these rules are valid for 
every analytic function . These rules are a “complete”16 set 
of rules in that they are complete for the ideal generated by 
the key relations on 

for any (which is analytic on the spectrum of 
These key relations are as follows: 

and ). 

the defining relations for the inverses 

and and 

the relations and 

(17) 

This is discussed more thoroughly in [4]. 

D. Using GENR with a Particular Function 

Now suppose we specialize to a particular . If, for example, 
, then we will have the same atomic 

expressions as we used in the preNF situation. A major 
difference, however, is that in the preNF case we added 
additional relations which come from the definition of 

and . We do not expect, nor do we find, 
that GENR embodies all the extra relations that may hold for 
a particular . What we do expect is that GENR will provide 
a useful set of easily implemented rules that at least provides 
simplification in a general sense, without using any special 
properties of a particular . 

Of the eight infinite families listed for preNF, we find that I, 
IV, V, and VIII can be obtained from the GENR Rules together 
with the RESOL Rules, while the other four families cannot. 
Here one makes the substitution , so that 

and . The remaining 

16 This is formalized by a computation of a Gröbner basis in a related 
0� �setting. A Gröbner basis can be found for polynomials in � � � � �

� �  �  �� 0 ��0� � �� 0 ��0� � �  � � , where � and � are variables 
and we take as starting relations the defining relations for the inverses and 
the relations ��  �  �� and �� � ��  (see [4]) which extract the algebraic 
essence of (17). For the case of � � �, the (GENR) rules are obtained by 
substituting ����� for � and ����� for � in the Gröbner basis from [4]. 

four families require the use of more particular properties of 
and . 

While this paper has not listed the NF rules, the NF Rules 
contain 16 infinite families. Eight of these infinite families 
follow from the GENR Rules together with the RESOL Rules. 

Also, we mention that some special relations in (preNF) and 
(NF) can be obtained from the GENR Rules together with the 
RESOL Rules. 

Even in a situation besides (preNF) and (NF), a natural thing 
to try is to supplement (GENR) plus (RESOL) with some of 
the obvious rules for whatever particular you are using in 
your computations. We have found, in practice, that extremely 
effective simplification can be done this way. 

PART THREE: USES OF GR ̈OBNER BASES 

This part treats several different topics. 
In Section V, we will see that GB’s are useful for the 

computational task of simplifying expressions. We will also 
provide an example of their use in making deductions. 

The Gröbner Theory starts with a set of relations and 
produces new relations. The primary purpose of the Mora 
algorithm is to produce a “complete” set of relations. While 
it does not generate all possible relations, the new relations 
it does generate are often of intrinsic interest. We show how 
the famous formulas of Youla and Tissi for system similarity 
emerge directly from a GB as does half of the State-Space 
Isomorphism theorem. This is the subject of Section V. 

Section VI concerns efficient computation of GB for Lya
punov equations. 

V. SIMPLIFICATION OF FORMULAS: AN  

ILLUSTRATION INVOLVING CONTROL 

In this section we will give an application of the simplifi
cation machinery discussed in Part One. We will also provide 
an example of the use of GB in making deductions. 

A. An Application of a Gröbner Bases to Control
 

1) Simplification: In
 control, c.f. [3], one deals with 
a Hamiltonian on the state-space of the closed-loop 
system. Here is a state of the plant and is a state of 
the compensator. The unknowns in are a quadratic form 
which is to be a storage function of the closed-loop system and 
the which define the unknown compensator. As usual, 
take . Thus and are unknowns. If a solution 

exists, then one can derive that for some controller, called 
the central controller, and must be given by certain 
formulas. These formulas do not imply that a solution to the 

control problem exists. To see if it does, one must plug 
the central controller formulas back into and see if 
for all states of the closed-loop system.
 

We apply the usual normalization to
 

(18) 
The DGKF simplifying assumptions (c.f., [3]) are then 

made. These greatly reduce the complexity of the formula for 

0
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Fig. 1. 

. We still obtain an expression which is very complicated, 
as shown in Fig. 1. 

Here we have used the same notation that one finds in our 
NCAlgebra program to give a feel for this type of computation. 

stands for transpose while stands for inverse and “ ” 
for multiply. This expression has 57 terms. The leading term 
has ten factors. Many of the factors in Fig. 1 contain inverses 
of the type discussed in Part One. The rules (RESOL) together 
with the rules (EB) from Part One are stored in a function 
NCSimplifyRational (NCSR) in NCAlgebra which applies 
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them repeatedly to an expression until no change occurs. When 
we apply NCSimplifyRational to , we get the considerably 
simpler expression shown in Fig. 2.17 

This expression has 29 terms and the highest order term 
has only six factors. Notice that everything of the form 

and has been eliminated from 
. This took 27 s on a SPARC II using NCAlgebra.18 

17 Reduction of � by just the starting rules does not produce a change. 
18 The same computation took 1.8 s using the special purpose system we 

have used for research (running on a 486/33 MHz PC). 
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Fig. 2. 

We expect our simplifier to replace high-order terms by 
lower order terms. The decrease in the number of factors in 
each term and the elimination of complicated factors is the 
expected behavior. The simplifier can also, as in this case, 
reduce the total number of terms. This is a consequence of 
the fact that terms are reduced to a standard form. This can 
produce a cancellation of like terms. In our experience, the 
Gröbner technology has been very effective for simplifying 
expressions built from the type of subexpressions discussed 
in Part One. 

Notice that the transition from Fig. 1 to Fig. 2 involves the 
use of general purpose simplification tools. It uses information 
about the way is constructed as an algebraic expression, not 
on specialized information from -control theory.
 

2) Proving a Theorem: A major theorem in
 -control 
theory is that if the DGKF [3] Riccati relations hold. 
We have simplified to obtain the expression which is 
still quite complicated. We now introduce the assumption that 
the [3] Riccati equations and hold where 

and 

An ordering for the variables was chosen essentially at 
random by our computer program 

This is done in NCAlgebra using the command
 

SetMonomialOrder
 

The NCAlgebra command 

GroebnerSimplify 

computes the reduction of with respect to the Gröbner 
Basis generated by and . The result of the simpli
fication of using the above command was zero. The 
computation took 116 s using NCAlgebra.19 The GB generated 
was finite. 

19 Using the special-purpose research software it took 5.1 s to calculate the 
Gröbner Basis and 0.4 s to perform the reduction. NCAlgebra is integrated 
with Mathematica and is therefore slower. 

We have just obtained20 the classic result. 
Theorem: The Hamiltonian of the closed-loop system based 

on the central controller is identically zero if and satisfy 
the two DGKF Riccati equations and . 

B. Comments 

In the proof in Section V-A2) we produce a GB from 
relations special to the problem. The goal is to examine 
consequences of these relations. Gröbner Bases are applicable 
in other areas which involve matrix expressions. We emphasize 
that when working in control, one often knows the DGKF 
Riccati equations hold. It is, therefore, natural to introduce 
these relations as hypotheses and seek to draw conclusions 
from them. We have used a well-known theorem to illustrate 
the process. The ideas which we have presented can be just 
as useful when the answer is not known in advance. They can 
be a valuable tool for exploration. They can provide a quick 
way to check the correctness of a tentative set of assumptions. 
They can disclose additional conditions needed for a theorem 
to hold. They can provide a proof for a general theorem whose 
truth is suggested by examples or special cases. 

VI. THE EFFECTS OF ORDERING: AN 
  

ILLUSTRATION WITH LYAPUNOV EQUATIONS
 

In this section we shall examine GB’s which arise in the 
study of Lyapunov equations. We shall see that in some cases, 
the same starting relations will produce either a finite or an 
infinite GB, depending on the term ordering. Finally, in Section 
VI-B we make some comments on the description of infinite 
Gröbner Bases by generating functions. 

A. Lyapunov Equations 

If the Mora algorithm terminates with a finite basis, this 
basis is automatically a Gröbner Basis. A finite basis is, 
therefore, advantageous. In contrast, if the Mora algorithm 
does not terminate and is interrupted, a truncated list of 
rules produced may be useful for simplifying expressions. 
As we saw in Section III-C it is often possible to describe 
an infinite basis as collections of parameterized polynomials. 
However, this type of analysis is not automated and can be 
time consuming. In this section we examine a situation in 
which the same set of starting relations produce both finite 
and infinite bases depending on the choice of term ordering. 
We will give some guidelines for obtaining a finite GB in the 
case of the Lyapunov equation and an application to lossless 
systems. The finite Gröbner Bases which we find in this section 
are very small (e.g., around 30 relations) and can be generated 
with a computer in less than 1 min. 

The Lyapunov equation, as follows, is one of the most 
common equations in engineering: 

(19) 

20 The idea of the proof is this: The fact that �� �  reduces to zero using 
the GB obtained from the DGKF Riccati equations shows that ��  �  is in the 
ideal generated by �� and �� . That is, ��  �  is a sum of terms of the form 
���� where � is a number, � and � are monomials, and � is either �� or 
�� . Thus, if matrices are substituted for the variables, a substitution which 
solves the DGKF equations will also make ��  �  � �.  
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TABLE I 

Here and are typically given and is unknown, 
eventually to be determined numerically. At the algebraic 
stages of the research, one often is manipulating expressions 
in: and the resolvents of 

and . (We will not treat and in this paper, 
although they do commonly arise.) We take (19), together with 
some invertibility assumptions as indicated, to be the starting 
relations for the GB process. 

Table I summarizes the results of some experiments with 
term ordering. 

Notice that the finitude of the GB depends on whether or 
not is invertible, whether we use a “ ” (with total degree 
one) or ‘ ’ (with total degree two) as the affine term, and 
the choice of ordering. In many engineering applications the 
affine term “ ” in (19) is a quadratic of the form . For 
example, is a familiar expression which 
has this property. The results above show that a Gröbner Basis 
obtained from this relation (together with the defining relations 
for the inverses) will be finite for suitably chosen orders. 

It is common to manipulate expressions which contain the 
resolvents and , where and are 
scalars. When we add these resolvents, similar conclusions 
are reached. In particular, it seems that if and are 
high in the order, we obtain an infinite Gröbner Basis, while 
if and are low in the order, the basis is finite. 

B. Infinite Families and Generating Functions 

In Section III-C, we gave a GB for (preNF) which was 
infinite. This GB consisted of a finite set of polynomials 
together with eight infinite collections of polynomials. Each 
of these collections of polynomials was parameterizable using 
a single integer. There are other interesting ways to describe 
the members of an infinite family. Here we will explore the 
use of generating functions. A generating function can often 
be found which has the members of the family appearing as 
coefficients in its expansion. 

Here is an example which is related to the Lyapunov 
equations discussed in this section. We found that we obtain 
an infinite basis in some situations (Table I). For example, if 
one uses the starting relation with the order 

, the Mora algorithm produces 
general rules 

for . If we set 
, then 

Generating functions like this occur in classical studies of 
Lyapunov equations. For example, if the spectrum of and 
are disjoint, then the integral equation 

yields the commonplace formula 

(20) 

for . Here the contour is chosen so that the spectrum of 
lies inside of and the spectrum of lies outside of . 

VII. GR ̈  OBNER BASES SPAWN INTERESTING FORMULAS 

Rather than viewing the Gröbner Basis algorithm as a means 
toward the end of simplification, we view it in this section 
as a means for obtaining algebraic consequences of a set of 
equations. We will provide a simple illustration of how this 
occurs in a familiar system engineering context. Our example 
shows how the famous formulas of Youla and Tissi [9] for 
system similarity emerge directly from a GB, as does half of 
the State-Space Isomorphism theorem. One thing we shall see 
is that the occurrence of an infinite GB in this case is quite 
natural. For example, the elements of the infinite GB appear 
as coefficients of the power series expansions of frequency 
response function. 

A. State-Space Isomorphism Theorem 

A basic theorem of system theory, the State-Space Iso
morphism theorem, says that two controllable and observable 
systems with identical frequency response function are 
“similar.” Systems 
similar if there is a map 

and 
satisfying 

are said to be 

(21) 

(22) 

(23) 

It is natural to generate a GB for these relations in order 
to discover consequences. The defining relations for 
together with (21)–(23) were used as starting relations for the 
Mora algorithm 

The ordering used was the graded lexicographical order in
duced by . 
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When we run Mora’s algorithm on [0]– [4], the 
algorithm does not terminate in a short time, and so we 
interrupted it and viewed the set which had been produced 
up to that point (see Section II-D). It was apparent that 
the Gröbner Basis was not finite. Computations by hand 
showed that the reduced Gröbner basis is the starting relations 

[0]– [4] together with the special relations 

and general rules 

for all . 
We now recall that two systems have the same frequency 

response function if 

(24) 

for all such that both and are invertible. If 
(24) is expanded in powers of , we find that the coefficients of 
the various powers (called Markov parameters) are precisely 
the relations [2]. Thus we have shown that similar systems 
have the same Markov parameters; indeed this is the content 
of [2]. 

Also note that if the defining relations for and 
are added to the starting relations using the order 

then (24) itself is in the GB. Thus we see several ways in 
which the Gröbner process could be interpreted as producing 
formulas which prove one half the State-Space Isomorphism 
theorem. 

The Y–T Formulas: Now we turn to the interpretation of 
[1] and [3]. 

Recall the famous formulas (Youla and Tissi [9]) for the 
state-space isomorphism which say that it intertwines the 
controllability operators and observability operators of the 
system. In our notation these say 

(Y-T) and 

for all . 
We see that [1] is exactly the second of the (Y–T) 

formulas, while [3] is a simple variant of it. The first of 
the (Y–T) formulas reduces to zero (using [5] and [4]). 
So both the controllability and observability formulas have 
been shown to be a consequence of the relations which define 
similarity. 

It is interesting to note that the second (Y–T) formula 
appears explicitly in the GB, while the first does not (although 
they do reduce to zero). We note that there is a change in the 

ordering of variables21 for which Mora’s algorithm produces 
a GB in which the first (Y-T) formula occurs but the second 
does not. 

APPENDIX
 

REMARKS ON SPECIAL SITUATIONS
 

A. Exploiting Finite Dimensions 

What we have done in this paper is purely algebraic, and a 
formula derived by these methods takes no account of whether 
one is working with matrices on an -dimensional space, 
operators on a Hilbert space, or on a Banach space, be they 
bounded or unbounded. Many of us wish to work with finite-
dimensional matrices and are fully willing to use the fact that 
they are finite dimensional. An interesting question is: Can one 
formulate the finite dimensionality in an algebraic way which 
fits well with the techniques of this paper? 

A common suggestion is that we use the Cayley–Hamilton 
theorem if we work in an -dimensional space for a fixed . 
The fact that every matrix satisfies a polynomial equation 
of degree would, at first glance, seem to provide a way 
for reducing higher powers of matrices to lower powers and 
eliminate infinite families of simplification rules. The main 
problem with this is that the characteristic polynomial, , 
of the matrix has coefficients which depend on . Thus 
even if we knew the characteristic polynomial for each of 
the atomic variables in the problem, we would 
not necessarily know the characteristic polynomial for any 
sum, product, etc. of the atomic variables. Consequently, using 
the Cayley–Hamilton theorem to impose finite dimensionality 
does not give rules which apply in general. Indeed, when a 
specialist uses the Cayley–Hamilton theorem in derivations, 
he typically applies it to one or two matrices which he 
has carefully constructed. In this context, one might adjoin 
a characteristic polynomial equation to a computer algebra 
session to obtain results for a particular matrix. 

B. Square Versus Nonsquare Matrices 

Another question which arises is how do these techniques 
handle nonsquare matrices. At first glance it appears that there 
is a problem because the setting for this paper is an algebra, 
to which we may multiply any two matrices, while if, for 
example, is not a square matrix, then is not meaningful. 
In other words, when the matrices involved are all square 
matrices of the same size, the translation between polynomials 
and matrix expressions is clear and simple. Any product of 
variables makes sense. On the other hand, when the matrices 
involved are not all square matrices, then some products and 
some sums of matrices are allowed while others are not. 

We begin by considering a collection of polynomials which 
we call allowable. This is done in a purely algebraic way by 
attaching to each variable a pair of numbers and 
(which will correspond to the number of rows and columns for 
the matrix which will be substituted for in the problem). We 
allow only products of elements with compatible dimensions. 

21 This is true for the ordering � � �0  �  � � � � � � � � � � � �.  
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We can attach dimensions to any allowable product.22 A 
polynomial is allowable if each term is allowable, and all 
the terms have the same dimensions. Intuitively, these are 
polynomials which produce meaningful matrix expressions 
when we substitute matrices of the proper dimensions for the 
variables. 

Note that in all examples of this paper, the starting rela
tions correspond to allowable matrix expressions, and all the 
relations in the GB’s we obtained correspond to allowable 
matrix expressions. The following theorem shows that this 
phenomenon holds in general. 

Theorem 25: If the starting relations are allowable, then 
Mora’s algorithm produces only relations which are allowable. 

The proof requires an analysis of the details of the Mora 
algorithm at a level beyond the scope of this paper and is 
omitted. 
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